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Abstract
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the existence and further construct such UMVUE in finite samples. For example in
the ongoing Adaptive COVID-19 Treatment Trial (ACTT), it is hard to characterize
the complete sufficient statistics of the underlying treatment effect due to pre-planned
modifications to design aspects based on accumulated unblinded data. As an alterna-
tive solution, we propose a Deep Neural Networks (DNN) guided ensemble learning
framework to construct an improved estimator from existing ones. We show that
our estimator is consistent and asymptotically reaches the minimal variance within
the class of linearly combined estimators. Simulation studies are further performed
to demonstrate that our proposed estimator has considerable finite-sample efficiency
gain. In the ACTT on COVID-19 as an important application, our method essentially
contributes to a more ethical and efficient adaptive clinical trial with fewer patients
enrolled.

Keywords: Adaptive COVID-19 Treatment Trial (ACTT); Consistent estimation; Deep
learning; Efficiency
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1 Introduction

Identifying the potential uniformly minimum variance unbiased estimator (UMVUE) of an

unknown parameter is one of the most fundamental and important problems in statistics. It

provides uniformly no larger variance than any other unbiased estimators in the parameter

space considered (Lehmann and Casella, 2006). However, its existence and characterization

are usually challenging to investigate when one moves beyond exponential families. For ex-

ample in the ongoing Adaptive COVID-19 Treatment Trial (ACTT), adaptive clinical trials

are appealing to accommodate uncertainty with limited knowledge of the treatment profiles

by allowing prospectively planned modifications to design aspects based on accumulated

unblinded data (Bretz et al., 2009; Chen et al., 2010, 2014; National Institutes of Health,

2020a). One is interested in an unbiased estimator of the underlying treatment effect to

have an accurate assessment of the efficacy of the study drug, but traditional estimators

are often biased (Bretz et al., 2009). Although several methods (Shen, 2001; Stallard et al.,

2008) have been proposed to estimate the bias, its correction in adaptive design is still

a less well-studied phenomenon, as acknowledged by the Food and Drug Administration

[FDA; Food and Drug Administration (2019)] and the European Medicines Agency [EMA;

European Medicines Agency (2007)]. Moving beyond, the next question is how to identify

a more efficient unbiased estimator of the treatment effect, which further contributes to a

more ethical and efficient adaptive clinical trial with fewer patients enrolled.

Since the complete sufficient statistics can be hard to characterize or do not even exist

in many problems (Lehmann and Casella, 2006), we consider an alternative perspective by

constructing a better estimator in finite samples from existing unbiased estimators. This is

motivated by the spirit of ensemble learning to build a prediction model by combining the

strengths of a collection of simpler base models (Biau, 2012; Bradic et al., 2016; Katzfuss
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et al., 2016; McDermott and Wikle, 2017; Biau et al., 2019; Tian and Feng, 2021). For

example, the XGBoost algorithm (Chen and Guestrin, 2016) is one of the most powerful

algorithms in machine learning literature as a scalable end-to-end tree boosting system

(Wang et al., 2020).

In this article, we propose a novel Deep Neural Networks (DNN) guided ensemble learn-

ing framework to provide point estimation on the parameters of interest. DNN is becoming

more popular in biomedical fields in recent years due to its strong functional representa-

tion (She et al., 2014; Brahma et al., 2015; Liang et al., 2018; Lu et al., 2018; Rava and

Bradic, 2020; Bai et al., 2020; Chao et al., 2020; Chen et al., 2020; Wu et al., 2020; Yuan

et al., 2020; Gao and Wang, 2021). In this article, we leverage DNN to approximate the

optimal weights of linearly integrating unbiased estimators to achieve minimum variance

in finite sample size. We show that the bias of our estimator is asymptotically zero, and

the mean squared error (MSE) converges to the optimal variance within the class of lin-

early combined estimators. Simulations demonstrate that our proposed estimator achieves

considerable finite-sample efficiency gain, for example in the scale-uniform distribution con-

sidered in Section 5.1 where the Cramér–Rao bound is not satisfied, and in the regression

model for analyzing heterogeneous data in Section 5.2. We further apply our method to the

ACTT on COVID-19 to provide a more accurate estimate on the underlying treatment ef-

fect and to consistently achieve higher power of detecting a promising treatment effect than

several alternatives in the context of hypothesis testing. This makes our method appealing

in practice, because a more ethical trial with fewer patients enrolled can be implemented

to deliver a safe and efficacious drug to patients more efficiently.

The remainder of this article is organized as follows. In Section 2, we introduce our

framework of constructing an ensemble estimator with improved efficiency. Next we propose
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an algorithm based on DNN to approximate the optimal weight parameters in Section 3.

In Section 4, we provide the upper bounds of the bias and the MSE of our estimator. Three

experiments including the ACTT on COVID-19 are conducted in Section 5 to demonstrate

our superior finite sample performance. Concluding remarks are provided in Section 6.

2 An ensemble estimator

Our parameter of interest is θ under an open and bounded Θ ⊆ R. For illustration, θ

is considered as a scalar quantity, but our proposed method can be readily applied to a

vector as considered in the regression problem at Section 5.2. Let x = (x1, · · · , xn) be

independent and identically distributed (i.i.d.) random variables given on the probability

space (Ωx,Ax, Px), where Ωx is a compact set in R and Px = p(x; θ,ω) is the probability

function. The nuisance parameters ω is of d − 1 dimension with an open and bounded

support Ω ⊆ Rd−1 and d is an integer larger than 1.

An estimator T (x) of θ is unbiased if

E [T (x)] = θ, (1)

for all θ ∈ Θ (Lehmann and Casella, 2006). Without being further specified, the expectation

E(·) is with respect to Px. If there exists such an unbiased estimator T (x) satisfying (1),

then the estimand θ is U-estimable. An unbiased estimator is the uniformly minimum

variance unbiased estimator (UMVUE) if it has no larger variance than any other unbiased

estimators of θ for all θ ∈ Θ (Lehmann and Casella, 2006). Despite attractive features of

UMVUE, the existence and characterization are usually challenging to investigate when

one moves beyond exponential families.
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In this article, we propose an alternative approach to construct an improved unbiased

estimator with smaller variance by ensembling two existing ones via Deep Neural Networks

(DNN). Let T1(x) and T2(x) be two unbiased estimators of θ. We construct U(x) by a

linear combination of them,

U(x;w) = w × T1(x) + (1− w)× T2(x), (2)

where w ∈ R. The optimal weight w{opt} is the one that minimizes the variance of U(x;w)

for w ∈ R,

w{opt} = argminw∈Rvar
[
U(x;w)

]
=
E
[
{T2(x)− T1(x)}T2(x)

]
E
[
{T1(x)− T2(x)}2

] . (3)

Since both T1(x) and T2(x) are unbiased for θ and w{opt} is a constant with respect to

observed data x, then U
(
x;w{opt}

)
is also unbiased. The construction in (3) ensures that

U
(
x;w{opt}

)
has the smallest variance among all U(x;w) in (2) for w ∈ R. We provide the

variance reduction in the following Proposition 1 with proof in the Supplemental Materials

Section 1. For simplicity, “(x)” is removed from the notations of T1(x) and T2(x).

Proposition 1 The variance reduction Λ(w) of estimating θ by U
(
x;w{opt}

)
with w{opt}

in (3) as compared with U(x;w) in (2) is

Λ(w) = var {U(x;w)} − var
{
U
(
x;w{opt}

)}
=

[
E {(T2 − T1)T2} − E

{
(T1 − T2)2

}
w
]2

E
{

(T1 − T2)2
} . (4)

Note that this variance improvement Λ(w) is non-negative with Λ
(
w{opt}

)
= 0. In some
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problems where (3) is free from θ and ω or can be evaluated in a closed form, the solution

of w{opt} is straightforward – for example, on estimating the mean of a normal distribution

with known coefficient of variation based on two unbiased estimators from the sample mean

and the sample variance (Khan, 2015). In general, w{opt} in (3) is a function of θ, ω and

sample size n, but does not necessarily have an analytic solution. For many problems, we

do not have closed forms of the distributions of T1 and T2, and thus the direct computation

is not feasible. For some other problems, T1 and T2 themselves do not have closed forms,

and making the computation even harder.

While it is usually feasible to empirically estimate w{opt} given underlying θ and ω, our

goal is to estimate w{opt} and further construct improved statistics based on observed data

x with given sample size n. We further denote φ = (θ,ω). In the next Section 3, we

introduce our proposed algorithm for approximating w{opt}(φ) by DNN from x.

3 A DNN-based algorithm to approximate w{opt}

We first provide a short review on Deep Neural Networks (DNN) in Section 3.1, and then

demonstrate in Section 3.2 that there exists a DNN structure which can well approximate

the underlying w{opt}(φ) to a desired level of accuracy. In the next section 3.3, we illustrate

our DNN-based algorithm to estimate w{opt}(φ).

3.1 Review on Deep Neural Networks (DNN)

Deep learning is a specific subfield of machine learning with a major application to ap-

proximate a function y = w(φ) (Goodfellow et al., 2016). We restrict our attention to

the so-called deep feedforward networks or feedforward neural networks, which define a

7



mapping function y = w̃(φ;η) and learn the value of parameters η that result in the best

function approximation, where η denotes a stack of the weights and bias parameters in the

neural networks with dimension dη.

In earlier years, it has been shown that a shallow neural network with sigmoid activation

function can approximate any continuous function to a desired accuracy with sufficiently

large number of nodes (Cybenko, 1989), and then interest shifted towards deeper networks

with a better generalizability (Liang et al., 2018; Lu et al., 2018; Chen et al., 2020; Rava

and Bradic, 2020; Wu et al., 2020). The upper bounds were also investigated on the

approximation error of Lipschitz-continuous functions (Bach, 2017; Xu and Wang, 2018;

Chen et al., 2019), and functions in Sobolev spaces (Yarotsky, 2017).

Consider a motivating example of a DNN with two hidden layers in Figure 1. The input

parameter φ has a dimension d = 2 on the left, with a scaler output y on the right. We

follow the notations in Anthony and Bartlett (2009) to characterize the complexity of a

DNN structure. In this simple architecture, there are 6 computation units from the two

hidden layers, a total of 18 weights parameters, and 7 bias parameters. Therefore, the

dimension of η is dη = 25. We further define n(l) as the depth of DNN and n(w) as the total

number of computation unites, weights and bias parameters. In Figure 1 we have n(l) = 4

and n(w) = 31.

3.2 Approximation error bound of DNN

We utilize DNN to construct a mapping function w̃ : Φ→ R to approximate w{opt}, where

φ ∈ Φ ⊆ Rd. Before studying the approximation error, we first list the following regularity

conditions,

A.1 Let Φ of dimension d be open and bounded, with ∂Φ of class C1.
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Figure 1: An illustrative Deep Neural Networks with two hidden layers.

A.2 E
{

(T1)
2 ;φ

}
, E
{

(T2)
2 ;φ

}
and E (T1T2;φ) are Lipschitz continuous on Φ for some

constants c1, c2 and c12, respectively.

A.3 T1 and T2 have finite second moments bounded by b1 and b2, respectively, for φ ∈ Φ.

A.4 infφ∈ΦE
{

(T1 − T2)2 ;φ
}
≥ cL, for a positive constant cL.

Remarks: Condition A.1 specifies that the parameter space Φ is open and bounded with a

continuously differentiable boundary (Evans, 2010). Condition A.2 requires that the second

moments of T1, T2 cannot be too steep. A function u : U → R is Lipschitz continuous on

U if

|u(x)− u(y)| ≤ C |x− y| ,

for some constant C and every x, y ∈ U . This condition is weaker than differentiation but

stronger than continuity. Consider an example where x of size n follow a normal distribution

with mean zero and variance σ2, and T1 is the sample mean with E
{

(T1)
2} = σ2/n. It can

be shown that C = 1/n satisfies the above definition for every σ2 ∈ U ⊆ R+. This condition

is usually satisfied by T1 and T2 in common statistical models. These two base statistics

are required to have finite second moments in Condition A.3. The fourth condition A.4

requires that the variance of T1 − T2 is lower bounded by a positive constant. A trivial
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counterexample is that the variance of T1 − T2 becomes zero when T1 = T2. We provide

more discussion on how to choose T1 and T2 in practice in Section 4.2.

In the following Proposition 2, we show that under those four regularity conditions,

there exists a DNN w̃(φ;η0) with finite n(l) and n(w) that can well approximate w{opt} with

the uniform maximum error defined by,

∥∥w{opt} − w̃∥∥∞ = max
φ∈Φ

∣∣w{opt}(φ)− w̃(φ;η0)
∣∣ . (5)

Proposition 2 Under regularity conditions A.1 - A.4, for a given dimension d and an

error tolerance εd ∈ (0, 1), there exists a DNN w̃(φ;η0) with underling η0 and ReLU

activation function that is capable of expressing w{opt} with the uniform maximum error

∥∥w{opt} − w̃∥∥∞ ≤ εd.

The DNN has a finite number of layers n(l), finite total number of computation unites,

weight and bias parameters n(w), which satisfy

n(l) < c(d) {ln(1/εd) + 1} ,

n(w) < c(d)ε−dd {ln(1/εd) + 1} ,

for some constant c(d) depending on d.

The proof is provided in the Supplemental Materials Section 2. Our contribution is

to show that the objective function w{opt} in (3) is Lipschitz continuous for φ ∈ Φ under

those four regularity conditions. Therefore, it belongs to a Sobolev space W 1,∞(Φ) with
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the norm

‖w‖W 1,∞(Φ) = max
m:|m|≤1

ess sup
φ∈Φ

|Dmw(φ)| , (6)

where m = (m1, ...,md) ∈ {0, 1}d, |m| =
∑d

i=1mi, D
m is the respective weak derivative,

and “ess sup” is the essential supremum (Evans, 2010). The norm ‖w‖W 1,∞(Φ) in (6) is

denoted as cd. Furthermore, the upper bounds on n(l) and n(w) of approximating functions

in Sobolev spaces are obtained from Theorem 1 in Yarotsky (2017).

3.3 A DNN-based algorithm

In the previous section, we have shown that there exists a DNN w̃(φ;η0) that can well

approximate w{opt}(φ) with a controlled uniform maximum error in (5) in Proposition 2.

The next question is how to estimate η0 by η̂ to construct a learnable DNN w̃(φ; η̂) using

data.

At Step 1 of Algorithm 1, we construct input data of DNN as {φm}
M
m=1, and the

output label as {ŵ(φm)}Mm=1 of size M . The input {φm}
M
m=1 are i.i.d. random variables

defined on a working probability space (Φ,Aφ,P φ), where Φ is a compact set in Rd. The

working multivariate probability function P φ is usually set as some flat distributions to

let simulated {φm}
M
m=1 spread within the support Φ. In the remainder of this article, we

draw each of the d elements in φm for m = 1, · · · ,M from d separate uniform distributions

under its corresponding support in Φ. The output label is ŵ(φm) as an estimate of the

underlying w{opt}(φm), whose functional form is usually unknown. It can be obtained from

the numerical integration method if the joint distribution of T1 and T2 is known, or it can

be estimated by the sparse grid method in a high-dimensional setting (Shen and Yu, 2010;

Zhang et al., 2015), or by Monte Carlo samples. For a general demonstration, we obtain
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ŵ(φm) with

ŵ(φm) =

∑N
i=1

[
{T2(xi)− T1(xi)}T2(xi)

]∑N
i=1

[
{T1(xi)− T2(xi)}2

] , (7)

where xi of size n are drawn from the distribution function p(x;φm), for i = 1, · · · , N .

Given the underlying parameters φm, it is usually feasible to compute ŵ(φm) in (7) as

a consistent estimator of w{opt}(φm) in (3). However, one is more interested in estimating

w{opt}(φm) based on observed data x. The true model is

ŵ(φm) = w(opt)(φm) + em, (8)

and the working model is

ŵ(φm) = w̃(φm;η0) + ẽm, (9)

where em converges in probability to zero as M goes to infinity, and ẽm, for m = 1, · · · ,M ,

are assumed to be i.i.d. random errors with zero mean and finite variance.

In statistics, fitting a neural network can be viewed as a nonlinear regression problem

to find the least squared estimator η̂ of η0 (White, 1990; Shen et al., 2019), where η̂ is

given by

η̂ = arg min
η∈H

1

M

M∑
m=1

{ŵ(φm)− w̃(φm;η)}2 , (10)

and H is a compact subset of Rdη ; and recall that dη is the dimension of η. There are

many challenges in obtaining η̂ and further studying its properties. The structure of DNN

w̃(φ;η0) in (9) which satisfies the approximation error bound in Proposition 2 is usually

unknown. The identifiability of η0 is questionable if the structure of w̃(φ;η) in (9) is

arbitrarily complex (White, 1990). Shen et al. (2019) considered a sieve as a sequence of

function classes indexed by size M , and further established the consistency and asymptotic
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properties of a least squared estimator under sub-Gaussian errors ẽm in (9) with one hidden

layer and sigmoid activation function. Furthermore, since the loss function in (10) is usually

non-convex, identifying η̂ is a challenging and active field in machine learning (Goodfellow

et al., 2016). We utilize the RMSProp for the DNN fitting at Step 2 and 3, as it has

been shown to be an effective and practical optimization algorithm (Hinton et al., 2012;

Goodfellow et al., 2016).

It is important to select a proper DNN structure by cross-validation at Step 2 (Good-

fellow et al., 2016). By increasing the number of layers and number of nodes in DNN, the

empirical MSE from the training dataset usually decreases by containing more complex

structures. However, the MSE in the validation dataset or the MSE from the Jackknife

method is subject to increasing with poor performance at generalization tasks. Then one

can further implement certain regulation approaches, for example dropout techniques or L1

and L2 regularization methods, on the over-saturated DNN structure to decrease validation

MSE while keeping the training MSE below a certain tolerance, for example 10−5. Several

candidates around this sub-optimal structure can be proposed, and the final structure at

Step 3 is selected by cross-validation with the smallest validation MSE from this candidate

pool to obtain the fitted DNN w̃(φ; η̂).

For a generic conclusion, we consider the approximation error of w̃(φ; η̂) as

∥∥w̃(η̂)− w{opt}
∥∥
∞ ≤ ‖w̃(η̂)− w̃(η0)‖∞ +

∥∥w̃(η0)− w{opt}
∥∥
∞ = εw + εd, (11)

where εd is the specified tolerance in Proposition 2, and εw is the approximation error

of estimating w̃(φ;η0) by w̃(φ; η̂). To accommodate a more general distribution on ẽm

in addition to Shen et al. (2019)’s work, we consider an alternative perspective on this

problem to adopt existing results on non-linear regression (Jennrich, 1969; Wu, 1981). In
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the Supplemental Materials Section 3, we show that εw can be expressed as Op
(
M−1/2)

with four additional regularity conditions. Since M and N are our design parameters, they

can be chosen sufficiently large to control the approximation error. One may substitute

for it with results from other formulations, for example Theorem 4.1 in Shen et al. (2019)

based on sieve estimation.

Algorithm 1 Utilize DNN to estimate w{opt}

Step 1. Generate training data of size M for DNN. The input data are denoted as
{φm}

M
m=1, and the output label is {ŵ(φm)}Mm=1 in (7).

Step 2. Conduct cross validation to select a proper DNN structure class F with the
training datasets of size 80%×M and the validation datasets of size 20%×M .

Step 3. Utilize the RMSProp algorithm to train DNN with the selected structure to get
η̂. Compute w̃(φ; η̂) as an approximating function of w{opt}(φ).

4 Point estimation of θ

In Section 4.1, we illustrate how to construct the ensemble estimator U(x; w̃) following the

DNN training in Algorithm 1. Its bias and MSE are further studied at Section 4.2.

4.1 Construct the ensemble estimator U(x; w̃)

After obtaining w̃(φ; η̂) as an estimate of w{opt}(φ) from Algorithm 1, we are now ready to

construct the ensemble estimator. We denote the variance of T1 and T2 in (2) based on x
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of size n as V1 and V2, respectively. Suppose that V1 and V2 can be decomposed as follows,

V1 = c(n)r (θ,ω)× n−r, (12)

V2 = c
(n)
t (θ,ω)× n−t, (13)

where r and t are positive constants, and the leading terms c
(n)
r (θ,ω) and c

(n)
t (θ,ω) are

positive as well. For example, if T1(x) is the sample mean of x drawn from a Normal

distribution with mean µ and variance σ2, then V1 = σ2/n with c
(n)
r (µ, σ) = σ2 and r = 1.

Without loss of generality, we assume that V1 ≤ V2, which means that T1(x) is a more

precise unbiased estimator as compared with T2(x) at the current sample size n.

Suppose that there exists an unbiased or consistent estimator ω̂(x) of the nuisance pa-

rameters ω. For an observed data vector x, we can use (T1, ω̂) to estimate φ = (θ,ω), and

therefore w̃ (T1, ω̂; η̂) approximates w{opt}(φ). Following Algorithm 2, we plug w̃ (T1, ω̂; η̂)

to equation (2), and compute the ensemble estimator of θ as U [x; w̃ (T1, ω̂; η̂)].

Algorithm 2 Point estimate of θ based on observed data x

Step 1. Compute the two base estimators T1 and T2 of θ, and ω̂ of ω.

Step 2. Use w̃ (T1, ω̂; η̂) to estimate w{opt}.

Step 3. Construct the ensemble estimator of θ as U [x; w̃ (T1, ω̂; η̂)].

4.2 Bias and MSE of U(x; w̃)

For illustrating purposes, we assume that ω̂(x) is an unbiased estimator of the nuisance

parameter ω. The following results can be generalized to cases where ω̂(x) is consistent.

We first introduce two additional conditions before discussing the bias and MSE of the
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ensemble estimator,

B.1 The maximum element-wise variance of ω̂(x) is denoted as Vω, and it is finite with

the following form,

Vω = max
i∈{1,··· ,d−1}

var [ω̂i(x)] = c(n)s (θ,ω)× n−s, (14)

where s and c
(n)
s (θ,ω) are positive.

B.2 The first order partial derivative ∂w̃(φ;η)/∂φ and ∂w̃(φ;η)/∂η are upper bounded

at c̃φ and c̃η, respectively, for φ ∈ Φ and η ∈H .

The notation of Vω in Condition B.1 is analog to V1 for T1 in (12) and V2 for T2 in

(13). Condition B.2 can be checked empirically based on the fitted DNN w̃(φ; η̂) obtained

in Algorithm 1. Next, we provide upper bounds on the absolute bias and MSE of our

estimator U [x; w̃ (T1, ω̂; η̂)] in the following Theorem 1.

Theorem 1 Under the aforementioned conditions A.1 - A.4, B.1, B.2, and (11), the ab-

solute bias of U(x; w̃ [T1, ω̂; η̂]) is upper bounded at,

∣∣∣E{U(x; w̃ [T1, ω̂; η̂])− θ
}∣∣∣ ≤

|εw + εd| ×
(√

V1 +
√
V2

)
+ cd × d×

√
max(V1, Vω)×

(√
V1 +

√
V2

)
, (15)

where V1 is defined in (12), V2 in (13), and Vω in (14). The mean squared error (MSE) of

U(x; w̃ [T1, ω̂; η̂]) is upper bounded at

E

({
U(x; w̃ [T1, ω̂; η̂])− θ

}2
)
≤ var(Ũ) + S1 + 2

√[
S1 + var(Ũ)

]
S2 + S2, (16)
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where

Ũ =w{opt}(φ)T1 +
[
1− w{opt}(φ)

]
T2, (17)

S1 =(cd)
2d2 max(V1, Vω)var(T1 − T2)+

2cd × d
√

max(V1, Vω)

√
var(T1 − T2)var(Ũ), (18)

S2 = [εw + εd]
2 var(T1 − T2). (19)

We provide some remarks on the upper bound of the absolute bias in (15). The first

part can be arbitrarily small by increasing the training data size M and the number of

Monte Carlo samples N in Algorithm 1 and choosing a sufficiently small εd in Proposition

2 as discussed in Section 3.3. We further denote

Ṽ = max(V1, V2, Vω) = max
{
c(n)r (θ,ω)× n−r, c(n)t (θ,ω)× n−t, c(n)s (θ,ω)× n−s

}
, (20)

as the maximum finite variance of T1, T2 and ω. The second part shrinks as the sample

size n of x increases based on Ṽ in (20). As further demonstrated in the following three

experiments, this bias is relatively small in our evaluated finite-sample settings.

On the mean squared error (MSE) of U(x; w̃ [T1, ω̂; η̂]), we compute its MSE improve-

ment as compared with the component T1. Note that T1 has a smaller variance than the
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other component T2 as specified in Section 4.1. The reduction of MSE is

MSE(T1)−MSE {U(x; w̃ [T1, ω̂; η̂])}

≥var(T1)− var(Ũ)− S1 −

{
2

√[
S1 + var(Ũ)

]
S2 + S2

}
︸ ︷︷ ︸

M1

≥var(T1 − T2)


(
1− w{opt}

)2 − (cd)
2d2Ṽ︸ ︷︷ ︸
M2

− 2cd × d
√
Ṽ w{opt}

√
E[T2(T1 + T2)]

E[T2(T2 − T1)]︸ ︷︷ ︸
M3

−M1.

(21)

The MSE improvement of U(x; w̃ [T1, ω̂; η̂]) is lowered bounded by (21). The first term

var(T1−T2)
(
1− w{opt}

)2
is non-negative and represents the underlying potential improve-

ment with the unknown w{opt} as compared with T1 based on Proposition 1. For M1, it

can be sufficiently small by our algorithm design following the similar argument of absolute

bias on εw and εd from S2 in (19). The next term M2 decreases as sample size increases per

Ṽ in (20). The last term M3 decreases as the covariance between T1 and T2 decreases. By

Condition A.4 in Section 3.2, the denominator E[T2(T2 − T1)] in M3 is lower bounded by

cL/2. If T1 and T2 are highly correlated such that M2 +M3 >
(
1− w{opt}

)2
, then there will

be no reduction of MSE by using our ensemble estimator. In an extreme scenario where

T1 is the known UMVUE, then w{opt} is equal to a constant of 1 with cd = 0. The MSE

improvement of our method can be negative, because the lower bound of (21) is −M1.

In practical problems where UMVUE is unknown or does not exist, we suggest applying

our proposed method to combine two estimators with a relatively small correlation to obtain

a more precise estimator with reduced MSE. If there are more than two candidate unbiased
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estimators, we suggest using the two with the smallest empirical variances to get a smaller

Ṽ in (20). This construction also ensures that Ũ with the underlying w{opt}(φ) is at least

as accurate as either one of them. As a generalization, one can also iteratively apply our

algorithm to identify a better statistic with more than two base estimators if necessary.

5 Experiments

In this section, we evaluate the performance of our proposed ensemble estimator in three

examples. Section 5.1 considers the scale-uniform distribution, and Section 5.2 assesses a

regression model for analyzing heterogeneous data to show our finite sample efficiency gain.

In Section 5.3, we apply our analysis method to the Adaptive COVID-19 Treatment Trial

(ACTT) to make it more efficient and ethical.

5.1 Scale-uniform family of distributions

We use Unif to denote the Uniform distribution, and consider the scale-uniform distribu-

tion Unif
(

[1−k]θ, [1+k]θ
)

with the parameter of interest θ and a known design parameter

k ∈ (0, 1) (Galili and Meilijson, 2016). This type of distribution has wide applications, for

example the product inventory management in economics (Wanke, 2008) and the inverse

transform sampling (Vogel, 2002).

We are interested in making inference on θ using sample x = (x1, · · · , xn) of size n

with the support Ωx = {x ∈ R : px(x; θ, k) > 0}, where px(x; θ, k) denotes the probability

density function of Unif
(

[1 − k]θ, [1 + k]θ
)

. Since the support Ωx is not the same for all

θ ∈ Θ with Θ as an open interval in R, this distribution family does not satisfy the usual

differentiability assumptions leading to the Cramér–Rao bound and efficiency of maximum
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likelihood estimators (MLEs; Lehmann and Casella (2006), Galili and Meilijson (2016)).

We apply the proposed method to construct a more efficient estimator of θ based on existing

ones.

As a starting point, we utilize the Rao–Blackwell theorem to construct the first base

unbiased estimator T1. The minimal sufficient statistic for θ is
{
x(1), x(n)

}
, where x(1) =

min(x) and x(n) = max(x). Since x1 is unbiased for θ, then an improved unbiased estimator

based on the Rao–Blackwell theorem is,

θ̂RB = E
[
x1|x(1), x(n)

]
=
x(1) + x(n)

2
. (22)

The second base estimator T2 is set as θ̂M ,

θ̂M =
x(n)

1 + k(n− 1)/(n+ 1)
, (23)

which is the unbiased corrected version of the MLE θ̂MLE = x(n)/(k + 1) (Galili and

Meilijson, 2016),

Utilizing our proposed method, we ensemble T1 = θ̂RB and T2 = θ̂M in (2) to construct

a better estimator U
(
θ̂RB, θ̂M

)
with a smaller variance. Suppose we are interested in

θ ∈ Θ = (0.2, 10) as an open interval in R with finite data size n = 2 or 10. For a given

n, we simulate M = 103 training input data for DNN with varying θ ∼ Unif(0.2, 10) and

the known parameter k at either 0.1 or 0.9 to accommodate the scenarios considered at

Table 1 for evaluating performance. Note that the above training data sample spaces can

be set wider as needed. The input data of DNN is φ = (θ, k), and the output label ŵ(φ)

in (7) is evaluated by N = 106 Monte Carlo samples. In cross-validation, we consider 4

candidate DNN structures: 2 hidden layers with 40 nodes per layer, 2 hidden layers with
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60 nodes per layer, 3 hidden layers with 40 nodes per layer, 3 hidden layers with 60 nodes

per layer, and select the structure with the smallest validation MSE for final DNN training.

We use a dropout rate of 0.1, number of training epochs at 103, and a batch size of 100 in

the training process to obtain a fitted DNN w̃(φ; η̂). The number of simulation iterations

for testing at Table 1 is 106. The above setup parameters of training DNN are utilized

throughout this article if not specified otherwise.

Under all scenarios considered in Table 1, the relative bias of U
(
θ̂RB, θ̂M

)
is less than

10−3 (results not shown). To further evaluate the efficiency gain of our method, we compute

the relative efficiency of U
(
θ̂RB, θ̂M

)
versus three existing estimators: θ̂RB in (22), θ̂M in

(23) and θ̂E as the sample mean. The relative efficiency of two estimators is defined as the

inverse ratio of their variances. The ensemble estimator U
(
θ̂RB, θ̂M

)
is uniformly more

efficient than three comparators as demonstrated by all ratios larger than 1. Within the

same n, one observes that θ̂RB is more efficient than θ̂M when k = 0.1, and vice versa

when k = 0.9. Our U
(
θ̂RB, θ̂M

)
learns their advantages under different k’s and shows a

consistently better performance.

5.2 Regression model for analyzing heterogeneous data

Aggregating and analyzing heterogeneous data is one of the most fundamental challenges

in scientific data analysis (Fan et al., 2018). For observable X ∈ Rd and a discrete variable

Z ∈ Z, a general mixture model assumes,

X|(Z = z) ∼ F(θz),
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Relative efficiency versus

n k θ SD θ̂RB θ̂M θ̂E

2 0.1 0.5 0.020 1.003 1.254 1.003
1 0.041 1.003 1.253 1.003
5 0.204 1.003 1.252 1.003

0.9 0.5 0.163 1.271 1.002 1.271
1 0.326 1.268 1.002 1.268
5 1.632 1.270 1.002 1.270

10 0.1 0.5 0.006 1.008 1.566 2.220
1 0.012 1.009 1.564 2.221
5 0.061 1.008 1.570 2.217

0.9 0.5 0.043 1.665 1.003 3.669
1 0.086 1.665 1.003 3.665
5 0.430 1.658 1.003 3.653

Table 1: Standard deviation (SD) of U
(
θ̂RB, θ̂M

)
and its high relative efficiency versus

two base components θ̂RB and θ̂M , and the empirical mean θ̂E.

for a distribution F with parameters θz in the sub-population z (Fan et al., 2018). The

variable Z can be known in some applications, for example on synthesizing control infor-

mation from multiple historical clinical trials (Neuenschwander et al., 2010); or it can be

latent in general (Fan et al., 2014).

In this motivating simulation study, we consider the following Gaussian regression model

where the variance of the dependent variable is proportional to the square of its expected

value (Amemiya, 1973; Ramanathan, 2002),

yi ∼ N
(
x′iθ, [x

′
iθ]

2
)
,
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where xi is a vector of covariates for subject i, and θ is a vector of unknown parame-

ters. This type of model has wide applications in economics and operational research, for

example understanding the influence of customer demographics on the rent paid (Ander-

son and Jaggia, 2009), and modeling efficiency scores in censoring data generating process

(McDonald, 2009).

Challenges exist in this problem to find an efficient unbiased estimator of θ in finite

samples. The minimal sufficient statistics consisting of sample mean and sample variance

are not complete for θ ∈ Θ (Khan, 2015). When x′iθ is relatively small, the Fisher in-

formation matrix can be ill-conditioned (Amemiya, 1973), which introduces bias in the

maximum likelihood estimator (MLE). As robust alternatives, Amemiya (1973) considers

the following two unbiased estimators,

θ̂L =

[
n∑
i=1

xix
′
i

]−1 n∑
i=1

xiyi (24)

θ̂W =

 n∑
i=1

1(
x′iθ̂L

)2xix′i

−1

n∑
i=1

1(
x′iθ̂L

)2xiyi, (25)

where θ̂L is the least square estimator and θ̂W is the weighted least square estimators. To

avoid extreme values in practice, we upper bound the weight 1/
(
x′iθ̂L

)2
by 105. Matrix∑n

i=1 xix
′
i is assumed to be positive definite and xi is bounded for i = 1, · · · , n. We utilize

our proposed method to assemble θ̂W as T 1 and θ̂L as T 2 to get a DNN-based estimator

U
(
θ̂W , θ̂L

)
with smaller variance.

In this simulation study, we consider that θ is a four-dimensional vector with θ1 as

intercept and θ2, θ3 and θ4 as coefficients. Further denote U1, U2, U3 and U4 as the
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elements in our ensemble estimator: U
(
θ̂W , θ̂L

)
= (U1, U2, U3, U4). The parameter space

for θ1, θ2, θ3 and θ4 are considered at Θ = (−1.5, 1.5). Covariates xi, for i = 1, · · · , n,

is simulated from a uniform distribution with a lower bound −2 and an upper bound 2.

A moderate sample size n = 100 is evaluated in this study. In Algorithm 2, we simulate

M = 103 training input data for DNN as φ = (θ1, θ2, θ3, θ4) with varying θ1, θ2, θ3 and

θ4 from uniform distributions within Θ. The number of Monte Carlo samples is N = 105

when computing ŵ(φ) in (7). In the testing stage, we evaluate different patterns of θ with

three magnitudes at 0.2, 0.6 and 1.2 at Table 2.

The absolute relative bias of our estimator is less than 0.02 across all scenarios. Table

2 shows the finite sample efficiency, where θ̂W is generally more efficient than θ̂L and can

be less efficient on estimating θ4 in some cases. Our proposed estimator U
(
θ̂W , θ̂L

)
is

consistently more efficient than its two components θ̂W and θ̂L under all scenarios (relative

efficiencies are larger than one).

5.3 Adaptive COVID-19 Treatment Trial (ACTT)

In this section, we apply our method to the Adaptive COVID-19 Treatment Trial (ACTT)

to evaluate the safety and efficacy of remdesivir from Gilead Inc. in hospitalized adults

diagnosed with COVID-19 (National Institutes of Health, 2020a). Adaptive clinical trials

are appealing under the COVID-19 pandemic with limited knowledge on treatment profiles

under evaluation, because they are capable of accommodating uncertainty during study

conduction. As acknowledged by regulatory agencies (Food and Drug Administration,

2019; European Medicines Agency, 2007), the bias correction in adaptive design is still a

less well-studied phenomenon. Our proposed method not only provides a solution for this

problem to have an accurate understanding of the treatment effect, but also improves finite
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Relative efficiency versus θ̂W Relative efficiency versus θ̂L

θ1 θ2 θ3 θ4 U1 U2 U3 U4 U1 U2 U3 U4

0.2 0.2 0.2 0.2 1.186 1.301 1.388 1.394 1.961 1.605 1.790 1.575
0.2 0.2 0.2 -0.2 1.336 1.372 1.479 1.536 1.755 1.572 1.586 1.475
0.2 -0.2 -0.2 -0.2 1.582 1.598 1.481 1.617 1.605 1.427 1.684 1.395
-0.2 -0.2 -0.2 -0.2 1.162 1.306 1.392 1.390 1.921 1.617 1.789 1.565

0.6 0.6 0.6 0.6 1.321 1.384 1.465 1.471 1.947 1.525 1.660 1.472
0.6 0.6 0.6 -0.6 1.445 1.420 1.546 1.612 1.729 1.498 1.486 1.399
0.6 -0.6 -0.6 -0.6 1.616 1.671 1.518 1.660 1.535 1.381 1.612 1.374
-0.6 -0.6 -0.6 -0.6 1.297 1.380 1.467 1.469 1.914 1.527 1.674 1.473

1.2 1.2 1.2 1.2 1.330 1.409 1.491 1.508 1.929 1.519 1.653 1.468
1.2 1.2 1.2 -1.2 1.437 1.430 1.593 1.629 1.689 1.476 1.485 1.386
1.2 -1.2 -1.2 -1.2 1.646 1.690 1.537 1.637 1.554 1.388 1.623 1.351
-1.2 -1.2 -1.2 -1.2 1.338 1.414 1.492 1.499 1.928 1.527 1.655 1.465

Table 2: High relative efficiency of U
(
θ̂W , θ̂L

)
versus two base components θ̂W and θ̂L.

sample efficiency of such estimators to make adaptive designs more efficient and ethical.

For illustrative purposes, we consider the sample size reassessment adaptive design with

a binary endpoint of achieving hospital discharge at Day 14 (National Institutes of Health,

2020b; Gilead Inc., 2020). Let θ1 be the response rate in the placebo, and θ2 be that from

the treatment. The objective is to estimate the treatment effect θ = θ2−θ1 based on binary

data from two groups. The underlying true θ1 = 0.47 and θ2 = 0.59 are assumed based on

the preliminary interim results in National Institutes of Health (2020b).

We consider a two-stage adaptive design, where n(1) subjects are randomized to the

treatment group and n(1) subjects to the control group in the first stage. After evaluating

unblinded interim data from those 2× n(1) subjects, a Data and Safety Monitoring Board
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(DSMB) makes sample size adjustments based on the following rule,

n(2) =

 n
(2)
min, if θ̂

{
x
(1)
2

}
− θ̂

{
x
(1)
1

}
> θmin

n
(2)
max, otherwise

(26)

where θ̂
{
x
(h)
j

}
is the sample average, x

(h)
j is a vector of observed binary data of size

n(h) for group j, j = 1, 2 at stage h, h = 1, 2, and n
(2)
min, n

(2)
max and θmin are pre-specified

design features. Basically, n(2) in the second stage will be decreased to n
(2)
min if a promising

treatment effect larger than a clinically meaningful difference θmin is observed, but increased

to n
(2)
max otherwise. Other adaptive rules can also be applied (Bretz et al., 2009). Due to the

pre-specified adjustment of n(2) based on the first stage data, it is challenging to determine

the existence or to characterize the functional form of the complete sufficient statistics of

θ. The empirical treatment difference θ̂ (x2)− θ̂ (x1) is even a biased estimator of θ (Bretz

et al., 2009), where xj =
{
x
(1)
j ,x

(2)
j

}
is the pooled data from two stages in group j, j = 1, 2.

An unbiased estimator of θ can be constructed by the following weighted average of the

treatment differences from two stages based on the conditional invariance principle (Bretz

et al., 2009),

θ̃(k) = k∆(1) + (1− k)∆(2), (27)

where k ∈ [0, 1] is a constant, and ∆(h) = θ̂
{
x
(h)
2

}
− θ̂

{
x
(h)
1

}
is an unbiased estimator

of θ based on data at stage h, for h = 1, 2. The pre-specified weight k can be chosen

to minimize the variance of θ̃(k) in the study design stage given a working value of the

true treatment effect θ, but may lead to efficiency loss when observed data deviate. Using

our proposed method, we ensemble T1 = θ̃(0.5) and T2 = ∆(1) to deliver a more accurate

unbiased estimator within a neighborhood of the underlying θ.
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We consider θ1 ∈ (0.2, 0.7) and θ ∈ (−0.2, 0.3) as our parameter spaces, and n(1) = 100,

n
(2)
min = 50, n

(2)
max = 250 and θmin = 0.16 as design features in (26). Following Algorithm

2, we simulate M = 103 training input data for DNN with varying θ and θ1 from uniform

distributions within their corresponding supports. The input data vector for DNN is φ =

(θ1, θ). The performance of our DNN based estimator U
{
θ̃(0.5),∆(1)

}
is compared with

three unbiased estimators θ̃(0.2), θ̃(0.5) and θ̃(0.8) in (27) with k = 0.2, 0.5, and 0.8,

respectively.

In the first block of Table 3, these 4 scenarios cover varying magnitudes of θ1 around

its true value 0.47, and with θ2 = θ1 demonstrating no treatment effect. The next three

blocks consider varying placebo rate θ1 and varying treatment effect θ. Under all scenarios

evaluated, our ensemble estimator has a relatively small bias ≤ 0.001. Among the three

comparators, θ̂(0.2) is more accurate when θ = 0, and θ̂(0.5) is preferable when θ > 0. Our

estimator is consistently more efficient than them, supported by the relative efficiency.

We then plot the power of rejecting the one-sided null hypothesis H0 : θ ≤ 0 at a

type I error rate α = 0.05 under θ1 = 0.47 and varying treatment effect θ in Figure

2. The critical values of rejecting H0 are computed at 0.064 for our method, 0.064 for

θ̃(0.2), 0.068 for θ̃(0.5), and 0.094 for θ̃(0.8) by the grid search method to control validating

type I error rates not exceeding 5% when θ1 = θ2 = 0.42, 0.5, 0.58, 0.66. Our proposed

method has consistently higher power of detecting a promising treatment effect than the

other three estimators. Therefore, a more efficient and more ethical adaptive clinical trial

can be implemented based on our proposed method to evaluate treatment options to cure

COVID-19.
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U
{
θ̃(0.5),∆(1)

}
Relative efficiency versus

θ1 θ2 θ Bias SD θ̃(0.2) θ̃(0.5) θ̃(0.8)

0.42 0.42 0 0.001 0.039 1.012 1.165 2.157
0.50 0.50 0.001 0.039 1.009 1.162 2.150
0.58 0.58 0.001 0.039 1.010 1.166 2.160
0.66 0.66 0.001 0.037 1.011 1.173 2.178

0.42 0.52 0.1 0.001 0.045 1.203 1.034 1.607
0.54 0.12 0.001 0.047 1.292 1.019 1.477
0.56 0.14 < 0.001 0.049 1.386 1.010 1.361

0.47 0.57 0.1 0.001 0.045 1.197 1.037 1.625
0.59 0.12 0.001 0.047 1.289 1.021 1.487
0.61 0.14 < 0.001 0.049 1.385 1.009 1.358

0.52 0.62 0.1 0.001 0.045 1.205 1.037 1.612
0.64 0.12 0.001 0.047 1.296 1.017 1.473
0.66 0.14 < 0.001 0.049 1.392 1.009 1.354

Table 3: Small bias of U
{
θ̃(0.5),∆(1)

}
and its high relative efficiency compared with three

unbiased estimators in the ACTT on COVID-19.

Figure 2: Consistently higher power of U
{
θ̃(0.5),∆(1)

}
than θ̂(0.2), θ̂(0.5) and θ̂(0.8) to

detect a promising treatment effect θ in the ACTT on COVID-19.

28



6 Discussion

In this article, we propose a novel DNN-based ensemble learning method to improve finite

sample efficiency of point estimation. As a critical application in the ACTT on COVID-19,

our method is more efficient and has a higher power of detecting a promising treatment

effect than several alternatives. The proposed method can contribute to a more ethical and

efficient adaptive clinical trial with fewer patients enrolled.

Our construction in (2) is to get the best linear unbiased estimator when the optimal

weight is known. In practice when the weight is to be estimated from data, we show that

the bias approaches zero as sample size increases. This construction on correcting bias is

preferred in many applications, for example in understanding the treatment effect of the

study drug relative to placebo in the ACTT on COVID-19. Our method can be generalized

to minimize other measures such as MSE, Bayes risk, et cetera. For instance, the Ridge

estimator can be combined to reduce MSE by introducing a tolerable bias. One can also

iteratively apply our method to integrate more than two base estimators.

There are some potential limitations of our method. The DNN-based approach requires

additional training and computational time to obtain the estimator. It takes approximately

4 hours to simulate training and validation data to reproduce Table 3 in the case study.

However, the well-trained DNNs can be saved in files before observing current data. As

illustrated in our shared code, one can instantly compute the weight parameter and con-

struct the ensemble estimator with available functional form of DNNs. A future work is to

make statistical inference of the parameters of interest based on the ensemble estimator.
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Supplementary Materials

Supplementary Materials are available online including the R code and a help file to repli-

cate all simulation studies.
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