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Abstract—The ongoing global pandemic of Coronavirus Dis-
ease 2019 (COVID-19) poses a serious threat to public health
and the economy. Rapid and accurate diagnosis of COVID-19 is
crucial to prevent the further spread of the disease and reduce
its mortality. Chest Computed tomography (CT) is an effective
tool for the early diagnosis of lung diseases including pneu-
monia. However, detecting COVID-19 from CT is demanding
and prone to human errors as some early-stage patients may
have negative findings on images. Recently, many deep learning
methods have achieved impressive performance in this regard.
Despite their effectiveness, most of these methods underestimate
the rich spatial information preserved in the 3D structure or
suffer from the propagation of errors. To address this problem,
we propose a Dual-Attention Residual Network (DARNet) to
automatically identify COVID-19 from other common pneumonia
(CP) and healthy people using 3D chest CT images. Specifically,
we design a dual-attention module consisting of channel-wise
attention and depth-wise attention mechanisms. The former
is utilized to enhance channel independence, while the latter
is developed to recalibrate the depth-level features. Then, we
integrate them in a unified manner to extract and refine the
features at different levels to further improve the diagnostic
performance. We evaluate DARNet on a large public CT dataset
and obtain superior performance. Besides, the ablation study and
visualization analysis prove the effectiveness and interpretability
of the proposed method.

Index Terms—COVID-19 diagnosis, deep learning, chest CT,
attention module, residual network

I. INTRODUCTION

The Coronavirus Disease 2019 (COVID-19), caused by the
severe acute respiratory symptom coronavirus 2 (SARS-CoV-
2), is spreading rapidly across the world through extensive
person-to-person transmission [1]. The World Health Organi-
zation (WHO) officially declared the COVID-19 a pandemic
on 11 March 2020. As of 23 August 2021, the COVID-19
has infected more than 211 million people in more than 192
countries and territories and caused more than 4.43 million
deaths [2]. Due to the high infectivity and fatality rate, the
COVID-19 pandemic has had a devastating impact on public
health and the economy. It is of great importance to conduct
early diagnosis of COVID-19, for preventing the further spread
of the disease and delivering proper treatment regimen. The
real-time reverse transcription-polymerase chain reaction (RT-
PCR) test is the golden standard for the diagnosis of COVID-
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19 infection [3]. However, the high false-negative rate [1] of
RT-PCR may delay the diagnosis of potential cases.

As a complementary strategy, Chest X-ray and Computed
Tomography (CT) are widely used in the early diagnosis of
patients suspected of SARS-CoV-2 infection [4]. Compared
with X-ray images, chest CT scans have higher sensitivity
in diagnosing COVID-19 infection, and can provide more
detailed information about the lesion, which is helpful for
quantitative analysis [5]. Early investigations have observed
typical radiographic features on chest CT images such as
ground-glass opacities (GGO), multifocal patchy consolida-
tion, and vascular dilation in the lesions [6]–[9]. However,
detecting COVID-19 from CT images is demanding and
prone to human errors as some early-stage patients may have
normal imaging features. Besides, the similar imaging findings
between COVID-19 cases and common pneumonia (CP) cases
on the image make it difficult to differentiate.

Recently, many deep learning methods have been applied to
the automatic diagnosis of COVID-19 using chest CT images
and achieved impressive performance. Some keyframe-based
methods [8], [10] use local abnormal slices rather than 3D
images to make diagnostic decisions, while [11]–[13] focus on
segmenting the lesion area and then extract specific features for
diagnosis. Despite their effectiveness, most of these methods
provide a multi-phase framework, which means that the errors
in upstream tasks will propagate backwards. For instance, the
keyframe-based methods highly rely on the accurate classi-
fication of abnormal slices, otherwise incorrect results will
negatively affect subsequent tasks. Furthermore, these methods
usually have high requirements for annotation data because of
the additional upstream tasks. Based on traditional 2D neural
networks, other methods [14], [15] make efforts on extending
them to classify 3D CT images and obtain promising results.
However, the simple network transformation has limitations
in taking full advantage of the 3D properties of CT images,
resulting in the diagnostic performance that may not meet
actual clinical needs.

To this end, in this paper, we propose a dual-attention resid-
ual network (DARNet), to automatically diagnose COVID-19
from CP and healthy people using CT images. In DARNet, the
3D variant of ResNet-18 [16] is used as the backbone network,
which takes a full 3D chest CT image as input. To fully
leverage the 3D spatial information, we design a dual-attention
module to extract and refine the representation features at
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different levels. The module mainly consists of two parts: 1)
channel-wise attention and 2) depth-wise attention. The former
is first proposed in [17], and we implement its 3D extension. In
this study, we develop the latter, which can adaptively assign
depth-level weights to each feature map during the training.
We evaluate our method on the largest public CT image
dataset, to the best of our knowledge. The experimental results
show that DARNet is superior to existing methods. We further
provide ablation studies and prove the effectiveness of the
proposed dual-attention module in improving the classification
accuracy and the interpretability of the model.

As a summary, our work has three major contributions as
follows:

• We propose DARNet to realize automatic and accurate
diagnosis of COVID-19 using 3D chest CT images.
In addition to superior classification performance, our
method is more sensitive to the location of the lesion
regions in visual attention.

• To make full use of 3D spatial information of CT images,
we design a dual-attention module, which can refine the
learned features at different levels. The experimental re-
sults prove the effectiveness of this module in improving
the classification performance and the interpretability.

• We evaluate DARNet on a large public dataset, achieving
accuracy of 93.28%, sensitivity of 96.86%, specificity
of 97.19%, F1-score of 95.49%, and an area under the
receiver operating characteristic curve (AUC) of 0.995.

II. RELATED WORK

A. Automatic Diagnosis of COVID-19

Recently, the successful application of artificial intelligence
(AI) in medical image analysis [18] has promoted the devel-
opment of radiological diagnosis technology. To combat the
current pandemic, plenty of research efforts had been carried
out over the past few months to design an AI system for
the early diagnosis of COVID-19 via radiological imaging.
[19]–[21] employed convolutional neural networks (CNNs)
to automatically identify COVID-19 infection from chest X-
ray images and obtained impressive results. However, these
methods are still limited due to the low contrast and the lack
of significant features caused by the high overlapping of ribs
and soft tissues.

Compared with a single X-ray image, a chest CT scan
composed of hundreds of 2D slices can reflect more detailed
radiographic features about the lesions, such as GGO and
consolidation. To simplify the computation, several keyframe-
based methods [8], [10] were proposed to diagnose COVID-
19 in CT images and achieved promising results. But these
methods underestimated the 3D spatial information of CT
images and highly relied on the accurate detection of abnormal
slices. [11]–[13] proposed the segmentation-based approaches
that can generate more specific lesion information, such as
the number and volume of lesions, which was valuable for
the quantitative analysis in COVID-19 diagnosis. However,
obtaining large amounts of CT data with segmentation labels

is the primary challenge of these methods. Besides, most of the
above methods provide a multi-stage framework, which means
that these methods may be affected by error propagation. [14],
[15] directly transfer 2D neural networks to classify 3D CT
images, but their performance may not meet actual clinical
needs. We thus develop DARNet to diagnose COVID-19 in an
end-to-end fashion, which takes a complete chest CT image as
input and can achieve competitive classification performance.

B. Attention Mechanism

Attention mechanism is an effective way to improve net-
work performance by enhancing the learned features. Hu et
al. [17] proposed the channel-wise attention (CA) to refine the
hidden features in the channel level during training, which can
make the network more focused on the important regions. In
other words, the CA module amplifies the difference between
channel features by highlighting the features with a greater
response, and suppressing the others. The most important is
that this adjustment mechanism is completely dynamic and
learnable. The effectiveness of the CA module has been proved
in many applications [22]–[24]. At the same time, there have
been many variations and extensions. For example, [25], [26]
proposed a joint attention module based on the CA module,
which brings a significant improvement in segmentation per-
formance. These studies show that multi-attention fusion has
great potential in improving network performance. Inspired
by this, we design a novel attention mechanism called depth-
wise attention (DA) to recalibrate the depth-level features. By
combining this module with the CA module, we construct a
dual-attention module to improve the representation ability of
the 3D neural networks.

III. METHODS

A. Overall Architecture

As shown in Fig. 1(a), the overall architecture of DARNet
mainly consists of three submodules: 1) input module, 2)
dual-attention module, and 3) output module. Considering the
computation complexity and GPU memory capacity, we use
the 3D ResNet-18 [16] as the backbone network. Specifically,
the input module is composed of a 3D convolutional layer
(Conv3D) with a kernel size of (3, 7, 7) and a stride of (1, 2, 2),
a batch normalization layer (BN), and a ReLU activation layer.
Besides, unlike naive ResNet-18, we remove the max-pooling
layer. In this way, the input 3D CT image is downsampled
by a factor of 8 in the depth dimension and a factor of 16 in
the other two dimensions. The higher-resolution feature maps
retain more contextual information, which is also conducive
to visual analysis. In the feature extraction part, a total of
8 dual-attention modules with residual connections constitute
the main structure. Each dual-attention module consists of two
consecutive convolutional layers with a kernel size of (3, 3, 3),
followed by BN, ReLU, and two attention mechanisms: 1)
channel-wise attention and 2) depth-wise attention. More de-
tailed information about this module is introduced in the next
subsection. For the output module, the global average pooling
layer (GAP) is first used to squeeze the input features. Then a



(a) The overall architecture of DARNet.

(b) The schema of 3D CA module. (c) The schema of 3D DA module.

Fig. 1. Illustration of the DARNet, channel-wise attention (CA) and depth-attention (DA) modules in our method. D, H , W , and C represent the depth,
height, width, and input channels of the feature map, and r refers to the reduction ratio.

followed fully connected layer with a softmax layer generates
corresponding prediction probabilities. Finally, the network
returns the predicted category based on the probabilities.

B. Dual-Attention Module

A complete CT image is usually composed of hundreds of
2D slices stacked in sequence. These slices have high spatial
continuity and content relevance, constituting the complete
contextual information of the lungs. Moreover, we observe
that the lesions of various sizes appear randomly in the lungs,
resulting in only a portion of the slices containing visible
disease characterizations. The spatial correlations of different
dimensions and the inter-slice information will be entangled
by a 3D convolution operator when using 3D CNN to directly
classify CT images. To refine the hidden features, Hu et al.
[17] proposed the channel-wise attention module to enhance
channel independence and thereby improve the performance of
the networks. But this module has limitations in our task, due

to the sparse distribution of lesion features at the depth level.
Motivated by this observation, we design a complementary
mechanism called depth-wise attention module for 3D CNN
to recalibrate the depth-level features, which can make the
network more sensitive to the important regions of the images.
By integrating DA and CA modules, we construct the dual-
attention module used in DARNet.

1) Channel-wise Attention Module: We implement the 3D
version of CA module based on the origin idea in [17], as
shown in Fig 1(b). Firstly, the input features are squeezed
by a GAP layer. Considering the input feature map Fin ∈
RC×D×H×W and Fin = [f1, f2, ..., fC ], where C, D, H ,
and W are the input channels, depth, height, and width,
respectively, and fi ∈ RD×H×W . The output of the GAP
represented by Z ∈ RC×1×1×1 with its element

zi =
1

D ×H ×W

D∑
d=1

H∑
h=1

W∑
w=1

fi(d, h, w). (1)



Above operation embeds the global spatial information in
vector Z. This vector is transformed to the weight vector
Ẑ = σ(W2(ξ(W1Z))), with W1 ∈ RC

r ×C , W2 ∈ RC×C
r

being the weights of two fully-connected layers, the ReLU
function ξ(·) and the sigmoid function σ(·). The parameter r
refers to the reduction ratio and is set to 16 in this study. The
recalibrated output vector is

Fout = [ẑ1f1, ẑ2f2, ..., ẑifi, ..., ẑCfC ]. (2)

Each element in Ẑ indicates the importance of the cor-
responding channel and is used to dynamically amplify or
suppress the input response. In this way, the CA module can
enhance the important features and ignore the irrelevant ones.
However, it is limited to directly extend this module in 3D
neural networks to classify CT images. Due to the sparse
distribution of lesions, the information between slices varies
greatly. The performance improvement achieved by differen-
tiating channel-level features alone is not very significant.
Therefore, we design the DA module to make up for this
defect.

2) Depth-wise Attention Module: For DA module, as same
as CA module, the spatial information is aggregated first
along the depth axis by GAP layer, as shown in Fig. 1(c).
Considering the input feature map Uin ∈ RC×D×H×W and
Uin = [u1,1,u1,2, ...,ui,j , ...,uC,D], and ui,j ∈ RH×W . The
output of the GAP represented by T ∈ RC×D×1×1 with its
element

ti,j =
1

H ×W

H∑
h=1

W∑
w=1

ui,j(h,w). (3)

Then, a gating mechanism is designed to the learn non-linear
and non-mutually-exclusive relationships in the depth dimen-
sion. The gating mechanism is parameterized by two fully-
connected layers and two non-linearity activation functions.
The output is T̂ = σ(W2(ξ(W1T))), with W1 ∈ RCD

r ×CD,
W2 ∈ RCD×CD

r being the weights of two fully-connected
layers. The parameter r here is equal to the number of input
channels. Finally, the resultant tensor is used to refine Uin to

Uout = [t̂1,1u1,1, t̂1,2u1,2, ..., t̂i,jui,j , ..., t̂C,DuC,D]. (4)

The DA module recalibrates the depth-level features by
adaptively assigning weights, which can make the network
more focused on the important regions distributed sparsely
along the depth dimension. This module makes up for the
deficiency of the CA module. Then, we develop the dual-
attention module of DARNet based on the serial combination
of the two, which can refine the learned features at different
levels.

IV. EXPERIMENTS

We conduct experiments on a public dataset provided by
the China Consortium of Chest CT Image Investigation (CC-
CCII1) [11] to evaluate our method. In this section, the

1http://ncov-ai.big.ac.cn/download?lang=en

construction of the dataset used and implementation details
are described first. Then, we compare different networks in
terms of the diagnostic performance, and perform ablation
studies to validate the effectiveness of the proposed dual-
attention module in improving the performance. Finally, class
activation mapping (CAM) [27] is employed to visualize
the discriminative regions of these networks in diagnosing
COVID-19, which can help to explore the interpretability of
different methods.

A. Dataset and Metrics

TABLE I
THE STATISTICS AND DIVISION OF THE EXPERIMENTAL DATASET. THE

DATASET IS DIVIDED INTO THE TRAINING AND TEST SETS.

#images (patients) Training set Test set In total

COVID-19 1,245 (764) 299 (165) 1,544 (929)

CP 1,137 (789) 419 (175) 1,556 (964)

healthy controls 856 (732) 222 (117) 1,078 (849)

In total 3,238 (2,285) 940 (457) 4,178 (2,742)

In this paper, we evaluate our proposed method on a large
publicly available CT dataset provided by CC-CCII. The CT
dataset contains a total of 4,178 chest CT images from 2,742
patients, including 1,544 CT images from 929 COVID-19
patients, 1,556 CT images from 964 CP patients, and 1,078
CT images from 849 healthy controls. As shown in Table I, we
separate the dataset into two parts. The first part (Training set)
is used for training, which includes 1,245 COVID-19 images,
1,137 CP images, and 856 images of healthy controls. The
second part (Test set) serves for independent testing, including
299 COVID-19 images, 419 CP image, and 222 images of
healthy controls. In particular, the split is done on patient level,
which means the images of same subject are kept in the same
set of training or testing.

In the training stage, the training set is randomly divided
into five folds on patient level for cross-validation. For evalu-
ating, we use five different classification metrics, including the
area under the receiver operating characteristic curve (AUC),
accuracy, sensitivity, specificity, and F1-score, to evaluate the
performance of different networks. The mathematical expres-
sions of accuracy, sensitivity, and specificity are shown below.

Accuracy =
TP + TN

TP + TN + FP + FN
. (5)

Sensitivity =
TP

TP + FN
. (6)

Specificity =
TN

TN + FP
. (7)

True positive, true negative, false positive, and false negative
are denoted by TP, TN, FP, and FN respectively.



TABLE II
THE PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS OF IDENTIFYING COVID-19 ON THE DATASET PROVIDED BY CC-CCII. FOR THE
RESULTS ON THE INDEPENDENT TEST SET OF DARNET, WE SHOW THE MEAN±STD (STANDARD DEVIATION) SCORES OF FIVE TRAINED MODELS OF

EACH TRAINING-VALIDATION FOLD. LARGER VALUES INDICATE BETTER PERFORMANCE, AND - DENOTES NO RELEVANT DATA.

Method AUC Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

[11] 0.9797 92.49 94.93 91.13 -

[14] - 88.69 88.08 - 89.26

[15] - 93.57 94.21 93.93 91.74

[28] 0.9212 - 77.99 93.55 -

DARNet 0.9950±0.0020 93.28±0.85 96.86±0.81 97.19±1.08 95.49±1.15

B. Implementation Details

Pytorch is adopted to implement our proposed method.
For training the networks, we use Adam optimizer [29] to
minimize the cross-entropy loss with an initial learning rate
of 10−3. The convolutional layer weights are initialized by
the Kaiming Normalization [30] and the biases are set to 0.
Besides, we apply the multi-step decay strategy to control the
change of the learning rate during training. The learning rate
is reduced every 30 epochs with a decay factor of 0.1. All
the models are trained from scratch using 2 NVIDIA Tesla
P40 graphic processing units. Given the limitation of GPU
memory, the batch size is set to 8 and the size of all images is
fixed to 64×224×224 by under-sampling or up-sampling. In
each fold, the model is evaluated on the validation set at the
end of each training epoch, and finally the best model within
80 epochs is evaluated on the independent test set. To alleviate
the overfitting problem, we conduct online data augmentation
including random flipping, rotation, translation, and scaling.
The codes used in the experiments is available2.

C. Overall Performance

We compare the performance of DARNet with four existing
methods. For a fair comparison, the test sets used by these
methods are also from the same CT dataset provided by CC-
CCII, and we directly quote the results reported in related pa-
pers. As shown in Table II, we can see that DARNet achieves
the best performance on four indicators with sensitivity of
96.86%, specificity of 97.19%, F1-score of 95.49%, and AUC
of 0.995. As for the accuracy, the performance of DARNet is
a little bit lower than that of [15].

In particular, [15] proposed an ensemble learning method
using multiple classifiers to make the diagnostic decision.
Although this method has high accuracy, it is also demanding
on the classifier design and integration strategy. [14] provides
a benchmark for COVID-19 detection using deep learning
models. The benchmark tests multiple models and we select
the best performing one for comparison. According to its
results, we observe that it is limited to directly transfer 2D
neural networks to classify 3D CT images. The main reason is
that this method ignores the rich spatial information preserved

2https://github.com/shijun18/COVID-19 CLS

in the 3D structure. Moreover, [11] and [28] are segmentation-
based methods, which highly rely on accurate segmentation
of the lesions. However, these multi-stage frameworks often
suffer from error propagation. For example, the incorrect
segmentation results can directly make a negative impact
on subsequent tasks. In contrast, DARNet is an end-to-end
model that can avoid this problem. Besides, the proposed dual-
attention module can effectively improve the feature extraction
ability of the model, which helps to obtain higher classification
performance than the naive CNN-based methods. The results
in Table II prove the superiority of DARNet in identifying
COVID-19 from CP and healthy people.

D. Ablation Study

The overall experiments have proved the superiority of
DARNet. However, which module plays a more important
role in performance improvement is still unclear. Therefore,
we conduct an ablation study to validate the effectiveness
of each module, including CA, DA, and the dual-attention
modules. Table IV quantitatively compares the performance
of different networks on the independent test set. For COVID-
19 versus the other two classes (CP and healthy controls),
DARNet achieves the highest AUC, accuracy, sensitivity, and
F1-score. Meanwhile, DARNet obtains the best results on all
performance indicators for the three-way classification.

TABLE III
PARAMETER COMPARISON OF ABLATION STUDY.

Method Parameters (M)

DARNet (w/o DA and CA) 33.15

DARNet (w/o DA) 33.24

DARNet (w/o CA) 35.15

DARNet 35.24

The results of the ablation experiments reveal the impor-
tance of each part. According to the results, we can observe
varying degrees of model performance decline. Among all of
them, the dual-attention module has the biggest impact on the
model performance. By applying the dual-attention module,
DARNet has a significant improvement on all performance
indicators, while the parameter is only increased by about



TABLE IV
FOR EVALUATING THE EFFECTIVENESS OF THE PROPOSED MODULE, WE CONDUCT AN ABLATION STUDY (W/O DENOTES WITHOUT) ON THE

INDEPENDENT TEST SET. THE RESULT OF ACCURACY INDICATOR IS THE MACRO AVERAGE OF ALL CATEGORIES.

Method AUC Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

Two classes: COVID-19 and non-COVID-19 (CP and healthy)

DARNet (w/o DA and CA) 0.9938±0.0024 91.32±1.87 95.52±1.07 97.15±1.28 94.86±1.21

DARNet (w/o DA) 0.9926±0.0024 92.13±1.90 94.65±1.86 97.88±1.28 95.04±0.49

DARNet (w/o CA) 0.9923±0.0024 92.55±0.51 95.25±0.73 97.72±1.15 95.20±0.89

DARNet 0.9950±0.0020 93.28±0.85 96.86±0.81 97.19±1.08 95.49±1.15

Three classes: COVID-19, CP and healthy

DARNet (w/o DA and CA) 0.9850±0.0041 91.32±1.87 90.34±3.85 95.32±1.88 90.74±2.44

DARNet (w/o DA) 0.9854±0.0047 92.13±1.90 91.70±3.58 95.95±1.95 91.63±2.44

DARNet (w/o CA) 0.9832±0.0041 92.55±0.51 91.96±1.55 96.14±1.00 92.05±0.81

DARNet 0.9879±0.0028 93.28±0.85 93.03±1.85 96.56±0.99 92.92±1.09

Fig. 2. Visualization results of different methods on three COVID-19 cases with varying degrees of infection. From top to down, there are mild, moderate,
and severe cases, respectively. The discriminative regions of different networks are highlighted.

6.4% as shown in Table III. Moreover, removing CA or DA
module will also have a negative impact on network perfor-
mance. These observations further prove the effectiveness of
the dual-attention module.

E. Visualization Analysis

To further explore the interpretability of DARNet, we
employ CAM [27] to visualize the discriminative regions of
different networks in diagnosing COVID-19. Fig. 2 shows the
visualization results on three COVID-19 cases with different
degrees (mild, moderate, and severe) of infection, highlighting
the regions that the network focuses on when making deci-

sions. We observe that DARNet can accurately locate lung
lesions that vary greatly in size and distribution.

However, after removing CA or DA module, the positioning
ability of the network has declined significantly. For instance,
for the severe COVID-19 case in Fig. 2, we can see diffuse
lesions in both lungs, consolidation of the lower lobe of
the left lung. When we remove the CA and DA modules
in turn, the highlighted area in the right lung gradually
shrinks. Especially, the network without these two modules
has very low sensitivity to the lesions, and may even be
disturbed by the information outside the lung area. The above
results demonstrate that DA and CA modules can enhance



the learned features to ensure that the decisions made by the
network depend mainly on the infection regions to a certain
extent, rather than the irrelevant parts of the images. More
importantly, the results also show that DARNet has better
interpretability and reliability in diagnosing COVID-19.

V. CONCLUSION

In this work, we proposed a dual-attention residual net-
work that can realize the automatic and accurate diagnosis
of COVID-19 using 3D chest CT images. In our method,
we constructed the dual-attention module by combining CA
and DA modules to refine the hidden features by adaptively
assigning weights during training. This module can effectively
improve the classification performance and interpretability of
3D ResNet, while only slightly increasing the computational
complexity. We evaluated our method on a large public CT
dataset, achieving state-of-the-art results. To further under-
stand the decision of the proposed method, we showed the
visual evidence to reveal the discriminative regions used in the
model for diagnosis. In future work, we will further investigate
the generalization capability of the proposed method. Besides,
more work is still devoted to analyzing the relationship be-
tween these discriminative regions and the image findings.
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