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Abstract

We present a workflow for clinical data analysis that relies on Bayesian Structure
Learning (BSL), an unsupervised learning approach, robust to noise and biases, that
allows to incorporate prior medical knowledge into the learning process and that
provides explainable results in the form of a graph showing the causal connections
among the analyzed features. The workflow consists in a multi-step approach that goes
from identifying the main causes of patient’s outcome through BSL, to the realization of
a tool suitable for clinical practice, based on a Binary Decision Tree (BDT), to
recognize patients at high-risk with information available already at hospital admission
time. We evaluate our approach on a feature-rich COVID-19 dataset, showing that the
proposed framework provides a schematic overview of the multi-factorial processes that
jointly contribute to the outcome. We discuss how these computational findings are
confirmed by current understanding of the COVID-19 pathogenesis. Further, our
approach yields to a highly interpretable tool correctly predicting the outcome of 85% of
subjects based exclusively on 3 features: age, a previous history of chronic obstructive
pulmonary disease and the PaO2/FiO2 ratio at the time of arrival to the hospital. The
inclusion of additional information from 4 routine blood tests (Creatinine, Glucose, pO2
and Sodium) increases predictive accuracy to 94.5%.

1 Introduction

Coronavirus disease (COVID-19) first appeared in China in November 2019 and it is
caused by the new coronavirus SARS-CoV-2. Its spreading was immediately very fast,
prompting WHO to declare a pandemic status on March 12, 2020. Currently,
COVID-19 counts over 116M accumulated cases worldwide with more than 2.5M
deaths [1]. Early identification of critical patients is an imperative challenge for triage
systems as the severity of cases is putting great pressure on hospital resources, leading
to the need of alleviating the shortage of medical assets [2]. This is especially
important during COVID-19 pandemic when the access to the relatively less available
supportive care and intensive care units (ICUs) is more frequent and timely
interventions may reduce mortality.

Since the pandemic outbreak, several algorithms have been proposed to evaluate
predictive scores helping in management of COVID-19 patients. Not surprisingly, most
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of the proposed tools relied on complex sets of clinical parameters or laboratory markers
with only few of them shared between different approaches. These systems are based on
both standard statistical approaches and Machine Learning (ML) methodologies [3].
The application of supervised ML algorithms to medical research has become
widespread in the last years. It has been therefore natural to see a continuation of this
trend in the analysis of COVID-19 clinical data, also thanks to the generally superior
predictive performance of ML-based solutions over classical statistical approaches.
However, the adoption of ML models is also known to be subjected to many pitfalls due
to their black box and data-driven nature. In fact, the feckless application of supervised
ML often results in overfitting problems, confounding bias effects and scarce
interpretability; the latter being particularly troublesome for clinical practice. These
phenomena have effectively been noted by a recent meta-analysis [4] where predictive
models for COVID-19 are defined to be “poorly reported, at high risk of bias, and their
reported performance is probably optimistic”.

Another critical issue that needs careful consideration is the fact that commonly
adopted ML approaches to diagnosis or outcome prediction are almost uniquely from
the family of the supervised learning models. As such, they work on a purely associative
approach, by identifying correlations between input data, such as symptoms, clinical
history and treatments, and the target variable. Many examples show that the inability
to distinguish correlation from causation can produce classifications that are misleading
to the point of being potentially dangerous [5]. For instance, the paper by Caruana et
al. [6] describes a model to predict the probability of death by pneumonia, trained on
medical records of patients who have previously had pneumonia. Counter-intuitively,
the model found that asthma lowers the risk of death, while it is known to be a severe
condition in subjects with pneumonia. This misleading effect occurred because the
patients with asthma in the training set received more care by the hospital system. In
this example, the association learned from the dataset was correct, but clearly the aim
of this application was to find only causal relations useful to prioritize care for patients
with pneumonia.

A good option to avoid this kind of problems is given by Bayesian Structure
Learning (BSL) approaches [7], which allow to learn from data a probabilistic directed
acyclic graph (DAG), called Bayesian Network (BN), connecting the elements that
according to the Bayes’ rule have a causal relationship. With respect to supervised ML
models, BSL has several features making it suitable for medical research [8, 9], such as:

• it is intrinsically interpretable given that it produces a graph representing the
causal relationships among the input data;

• it allows to include domain knowledge [10], i.e. it can take into account a set of
a-priori known mandatory and prohibited connections. This is a useful feature to
combine consolidated medical knowledge with the ongoing research;

• it naturally avoids overfitting [11] and it is less sensitive to noise, because of its
non-supervised nature and because it relies on a statistically based definition of
conditional probability, instead of finding an arbitrary complex pattern fitting the
data;

• it has shown good performances also with small sized dataset [12], a common
situation in medical applications.

On a less rigorous note, it has been observed that building causal graphs with BSL
forces the researchers to think clearly about the topic, and articulate that thinking in
the form of the graph, which is often beneficial in and of itself [10, 13,14].

All these features make BSL an optimal tool for medical research. In fact, it has
found good application in the analysis of genetic data [15,16], electronic health record
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time series [17], longitudinal and standard clinical data [18,19]. In particular, the
knowledge of causality relationship between potential predictors and mortality among
patients diagnosed with COVID-19 would be crucial to target patients at highest risk
and improve outcomes [20]. However, only few works applied Bayesian approaches to
the study of COVID-19, mainly to analyse its spreading [21–23] and for contact
tracing [24,25]. One paper interestingly applied BSL to serological tests of COVID-19
to determine a more accurate estimation of the disease’s infection and fatality rates
taking into account the reliability of each kind of test [26].

Following these considerations, the main objective of this paper is to introduce the
use of a BSL-based methodology to study the causal relationship between various
predictors and mortality in COVID-19 patients. We aim at verifying whether BSL can
reproduce and/or improve our current understanding of causal pathways of COVID-19
risk of mortality using a single-centre but feature-rich clinical dataset [27] which
includes demographic information, clinical history of the patient, symptomatology,
blood analysis data on admission and outcome. Our analysis is conducted both with
and without incorporating prior medical information, to test whether there are
significant differences. Following up the causal analysis, we leverage the features that
are deemed to be causally related to the outcome to construct a Binary Decision Tree
(BDT) that describes a practical flow chart to identify patients at high-risk using data
available right at the admission in hospital.

Overall, this study presents a novel clinical data analysis framework that provides a
multi-step approach that goes from the identification of causal relationships between
medical data to the realization of a clinically suitable tool for patients triage that is easy
to use, straightforward to interpret and has solid clinical bases for its predictions.

2 Dataset description

The dataset includes COVID-19 diagnosed patients admitted between the 3rd of March
2020 and the 30th of April 2020 from three different units of the Pisa University
Hospital (Emergency Room, Emergency Medicine Department and ICU) [27]. All data
were acquired from both paper and electronic records and carefully checked for the
presence of spurious and/or erroneous inputs. Data collection was performed according
to the principles stated in the Declaration of Helsinki and it conforms to standards
currently applied in our country. The use of the data was approved by the Comitato
Etico Area Vasta Nord Ovest (Internal Review Board - IRB number 230320). The
patient’s informed consent was obtained.

The main outcome of the data cohort is dismissal at home or death. The subjects
included in the study are 265, of whom 71 died for COVID-19 or for its complications.
The death rate of this sample is thus 26.8%. The original dataset included 125 variables.
Among the various features collected during the triage and the hospitalization, 63 are
missing in less than 50 subjects and thus are included in the study. For the purpose of
this study, these features are grouped into six different logical categories as illustrated in
Table 1. All the medical exams used in this analysis have been made on the first day of
hospitalization.

3 Causal learning for COVID-19 data

The methodology put forward in this paper is articulated in three steps, leveraging
different machine learning and statistical methods. First we apply BSL to analyze how
the variables of the sample are causally interconnected. Then, we evaluate with
Bivariate Statistical Tests (BST) the strength of the connections between the outcome
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Category Feature

Available data
for dead
subjects (max 71)

Available data
for recovered
subjects (max 194)

Values

Demographic

data

Age (years) 71 194 µ = 66.6 σ = 15.9

SEX 71 194 0=male 1=female

Smoke(y/n) 66 187 0=no 1=yes

Smoke(ex/y/n) 64 187 0=yes 1=ex 2=no

Prior
respiratory

problems

COPD (chronic obstructive pulmonary disease) 71 194 0=no 1=yes

Asma 70 194 0=no 1=yes

Other resp. disease 71 194 0=no 1=yes

Prior
diseases

Diabetes 71 194 0=no 1=yes

Hypertension 71 194 0=no 1=yes

Cardio.disease 71 194 0=no 1=yes

Hypercolest 71 194 0=no 1=yes

Cerebrovasc. disease 71 194 0=no 1=yes

Neuro. disease 71 194 0=no 1=yes

Dementia 71 194 0=no 1=yes

Cancer 71 194 0=no 1=yes

Blood cancer 71 194 0=no 1=yes

Kidney disease 71 194 0=no 1=yes

Liver disease 71 194 0=no 1=yes

Cirrhosis 71 194 0=no 1=yes

Autoimmune disease 71 194 0=no 1=yes

Ongoing
treatments

Anticoag 71 194 0=no 1=yes

RAAS BLOCK (renin-angiotensin-aldosterone system) 71 194 0=no 1=yes

Immunos. therapy 71 194 0=no 1=yes

Dialysis 71 194 0=no 1=yes

Symptoms

on admission

Fever 71 194 0=no 1=yes

Conjunct. congest. 71 194 0=no 1=yes

Nasal congestion 71 194 0=no 1=yes

Headache 71 194 0=no 1=yes

Cough 71 194 0=no 1=yes

Sore throat 71 194 0=no 1=yes

Sputum 71 194 0=no 1=yes

Fatigue 71 194 0=no 1=yes

Hemoptysis 71 194 0=no 1=yes

Short breath 71 194 0=no 1=yes

Nausea 71 194 0=no 1=yes

Diarrhea 71 194 0=no 1=yes

Myalgia 71 194 0=no 1=yes

Rash 71 194 0=no 1=yes

FC (cardiac frequency, bpm) 63 176 µ = 87.3 σ = 17.8

PAS (systolic arterial pressure, mmHg) 65 174 µ = 131.4 σ = 20.3

PAD (diastolic arterial pressure mmHg) 65 174 µ = 75.9 σ = 13.3

Chest pain 71 194 0=no 1=yes

Confusion 71 194 0=no 1=yes

Blood analysis

on admission

Haemoglobin (g/dl) 68 188 µ = 13.3 σ = 2.01

WBC (white blood cells, cells/nl) 69 192 µ = 7.7 σ = 3.8

Lymphocyte (cells/µl) 68 191 µ = 1200 σ = 1140

Neutrophils (cells/µl) 69 188 µ = 5690 σ = 3322

Haematocrit (%) 69 187 µ = 39.7 σ = 22.2

Platelets (cells/nl) 69 191 µ = 206.3 σ = 102.1

INR (international normalized ratio) 65 184 µ = 1.81 σ = 7.38

Bilirubin (mg/dl) 64 186 µ = 1.26 σ = 6.13

AST (aspartate aminotransferase, IU/l) 59 181 µ = 44.70 σ = 46.18

ALT (alanine aminotransferase, IU/l) 66 187 µ = 42.77 σ = 49.81

Glucose (mg/dl) 64 186 µ = 127.4 σ = 46.3

Creatinine (mg/dl) 67 191 µ = 1.22 σ = 1.09

BUN (blood urea nitrogen,mg/dl) 58 178 µ = 27.9 σ = 24.8

Sodium (mEq/l) 68 190 µ = 138.1 σ = 4.6

Potassium (mmol/l) 67 187 µ = 4.02 σ = 0.67

pH 57 162 µ = 7.45 σ = 0.06

pO2 (O2 partial pressure, mmHg) 62 173 µ = 75.3 σ = 32.7

pCO2 (CO2 partial pressure, mmHg) 61 167 µ = 34.6 σ = 7.9

PF (pO2/FIO2 ratio, %) 65 188 µ = 283.2 σ = 95.8

PCR (C-reactive protein ,mg/dl) 67 177 µ = 9.25 σ = 8.55

Outcome 71 194
0=death
1=recovery

Table 1. Summary of the dataset features. Third and fourth column show the feature occurrence in the dataset in dead and
recovered subjects, while the last column reports a description of the feature values.
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and its neighbours in the BSL graph. This second analysis may seem redundant with
respect to the first step. However, while BSL performs a multivariate analysis taking
into consideration also latent variables and the possibility of mediated connections, the
second one evaluates singularly how each variable affects the outcome. Thus, on the one
hand, the causal graph obtained with BSL helps to understand the logical cause-effect
sequence bringing to the outcome and to select the features of interest; on the other
hand, BST helps to rank the dependency between each feature and the outcome. The
third step targets selecting the most relevant features to train a Binary Decision Tree
(BDT) useful for clinical practice.

The following sections provide a synthetic background on Bayesian Networks,
describe the BSL algorithm used and the workflow of the three analyses discussed above.

3.1 Bayesian Network (BNs) background

BNs are graphical models (G,P ), where P is a joint probability of random variables
XV = (X1, . . . , XN ) associated with nodes V = {1, . . . , N}. Each random variable Xi

can possibly be of different nature (binomial, multinomial, ordinal, continuous). The
graph G = (V,E) is a directed acyclic graph (DAG) whose edges E encode the joint
probabilistic relationships among the N random variables. The graph is a visual
representation of the joint distribution of the data, where a directed edge eij from node
i to j indicates that i is the parent of j as part of a conditional dependence relationship
between the two nodes [28].

Broadly speaking, there are two main families of methods to learn the structure of a
BN from data: constraint-based methods and score-based ones [29,30]. The first class of
methods learns the conditional independence relations of the BN from which, in turn, it
generates the network. Score-based approaches, instead, cast structure learning as an
optimization problem, often addressed as an heuristic search task leveraging a score
function to drive exploration of the space of the graph structures in search of the
optimal DAG.

3.2 Causal graph analysis

3.2.1 BSL Algorithm

In order to single out the best approach for our analysis, we have considered the fact
that constraint-based algorithms have been shown to be more accurate than score-based
algorithms for small sample sizes, and that score based algorithms tend to scale less well
to high-dimensional data [31]. Additionally, constraint-based algorithms can naturally
integrate domain knowledge in the form of already-known results of independence tests,
while it is more difficult to include this kind of information in score-based methods.
Since we would like to incorporate prior knowledge in our analysis, and since the single
samples in our dataset are highly dimensional while the dataset has a relatively low
number of subjects, in this paper we use a constraint-based algorithm called Fast
Causal Inference (FCI)1 [32]. FCI is an extension of the popular PC [33] algorithm that
considers also the presence of hidden variables, that are random variables for which no
observable input data is available. Briefly, the FCI algorithm comprises two steps:

• Skeleton definition: starting from a fully connected graph, edges are removed
according to the result of conditional independence tests between pairs of
variables, or to the domain knowledge provided;

• DAG learning: the edge directions are learnt and added to the skeleton.

1Implemented using the fci function of the pcalg R package
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In our analysis, variable independence is tested with a Gaussian conditional
independence test for continuous variables, and the G2 test for binary variables [32].

A significant issue with constraint-based algorithms is that the number of
independence tests needed to remove an edge increases significantly with the number of
vertices and with the number of values assumed by the random variables (for the
discrete case). For this reason, heuristic search algorithms are usually employed to avoid
testing a combinatorial number of cases [32]. As a consequence, the true DAG can
seldom be identified and multiple DAGs with different edge directions are found to be
compatible with the input data. For this reason, in our analysis we do not consider edge
orientation by the algorithm as reliable information, leaving this task to the clinician
interpretation.

3.2.2 Quantifying causal effects

For every DAG identified by FCI, we estimate the effect that each variable has on the
variables it is connected to, representing an indicator of the strength of their causal
connection, using covariate adjustment2. Basically, for each pair of variables, X and Y ,
we compute a linear regression of Y on X using the parent set of X, extracted from the
DAG, as covariate adjustment. When multiple DAGs are available, we average the
effects estimated from each DAG. However, in this study we have observed that the
DAG is usually estimated without ambiguity and thus the cases in which multiple
different effects are found are very rare. Note that this method describes the effect that
a unitary increase in X has on Y and, therefore, it is highly sensitive to the range of
both X and Y . In order to be able to qualitatively compare the effects, we standardized
the variables before this calculation.

3.2.3 BSL strategy on our cohort

The application of the BSL pipeline described in the previous subsection followed some
considerations related to the nature of the dataset available in our study. First, it has to
be noted that only a portion of the features in Table 1 has been collected or is available
for all subjects in our dataset. As most data-driven methods, BSL performs better when
the sample size is higher than the number of features. Therefore, we opted for applying
the BSL pipeline separately for the 6 categories of features identified in Table 1, in order
to maximize the amount of samples available. The outcome variable has been included
in each category-specific analysis.

After building the BNs (one per category), we identified those features of each
skeleton that reported either a direct causal connection with the outcome, or an indirect
connection mediated by a single intermediate feature. These served to define the
candidate pool of relevant features which have been jointly analyzed with another round
of the BSL algorithm (i.e. representing samples only in terms of the filtered features)
leading to an integrated causal graph.

The BSL algorithm attempts to infer causal relationships from input data, which are
unavoidably biased, because the sample analyzed is composed by subjects whose
medical conditions required hospitalization. Thus, the results from this analysis should
be interpreted as representative of the most severe situations.

The causal graph analysis pipeline discussed so far has been repeated under two
different conditions. In the first we provide to the BSL process a conservative list of
prohibited causal connections (drawn up by our clinicians and based on the fact that
there is vast medical agreement on the nonexistence of such relationships), whose
severance is enforced during the graph identification process. The second one, instead,
comprises a fully data driven setting, where no prior knowledge is supplied to the BSL

2Implemented using the ida function of the pcalg R package
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algorithm. This second condition is tested for comparison, to assess the capability of the
method to autonomously identify causal relationships that are not blatantly in contrast
with widely agreed clinical knowledge.

3.3 Bivariate statistical analysis

The focus of this step of our analysis is to study how the outcome depends singularly
from each relevant feature identified at the previous stage. To this end, we use the
Fisher Exact Test (FET) [34] for categorical variables and the Point-Biserial Correlation
(PBC) [35] for the continuous ones. The FET method tests whether two binary
variables are independent, such as ”death-recovery” and ”male-female”. The PBC,
instead, is a correlation test, such as the Pearson’s correlation, specifically developed to
correctly estimate the correlation between a categorical variable, in this case the
outcome, and a continuous variable. The bivariate statistical analysis is applied to all
the features considered in the integrated causal graph.

3.4 Decision tree analysis

BDT models are characterized by an inferential process which has some resemblance
with human reasoning, which makes them amenable to human interpretation. However,
they are known to severely suffer from overfitting [36], thus it is fundamental to reduce
the complexity, and thus the depth, of the tree to avoid the identification of poorly
generalizable classification rules.

The scope of our BDT analysis is two-fold. On the one hand we would like to
identify a compact BDT to provide an interpretable and procedural view on what are
the discriminative cut-point values for the features identified by the BSL causal analysis,
and if those values are in agreement with clinical knowledge. On the other hand, we
would like to measure the predictive value of such candidate features on our dataset.

The first objective (interpretation) has been addressed by training a BDT with a
depth fixed to 4 levels, considering only those features present in the integrated graph
and only those subjects having those features fully available. The interpretable BDT is
trained on the full data, as it is never used for prediction. To assess the impact of the
identified causal features on predictive performance, we train two additional models.
The first is a BDT with the same structural constraints and features of the intepretable
one, but it is trained and assessed in a 10-fold cross-validation scheme, Its predictive
performance is assessed as the average accuracy on the 10 validation folds. The second
is a permutation test BDT, again trained and evaluated in 10-fold cross-validation, but
using features randomly drawn from the set of features in Table 1.

The comparison between the latter two BDTs is intended to verify the effectiveness
of the feature identified by the BSL causal analysis. However, a fair comparison requires
to ensure that the two BTDs have a comparable number of subjects in training,
otherwise it is impossible to understand whether a performance reduction is to be
imputed to the lower training size or to the different features. Thus, in the permutation
test, we train about 1000 different BDTs of depth-4 with number of training subjects
and features matching those used for training the causal BDT.

4 Results

We report the main results of the empirical analysis run on the dataset described in
Section 2 following the three-fold structure of our methodology (Section 3). A pictorial
overview of the experimental analysis is provided in Figure 1. Here, we highlight the
explorative causal analysis run separately on the different feature categories (Step I),

May 18, 2021 7/21



Respiratory

Dataset

(a) Structure learning of causal graphs for
individual categories

(b) Integrated causal graph with most
relevant features for each category

Disease Demographic

SymptomsTreatment Blood

(a) Fisher test and point-biserial correlation
between causally connected features and

outcome

(c) Interpretable binary decision tree with
the features causally connected to the

outcome

Step I - Exploration

Feature1 >
Threshold1

Feature2 <
Threshold2

Feature3 >=
Threshold3

... ...

Step II -
Interpretation

(a) Predictive performance test considering
causal features Vs random features

Step III - Validation

Fig 1. Flow chart of the empirical analysis highlighting the three steps, from
explorative analysis, to interpretation, concluding with quantitative validation.

followed by the analysis on selected causal features (Step II) comprising the integrated
causal graph, the BST and interpretable BDT. The final stage comprises a predictive
analysis comparing the BDT on causal features with the BDT on randomly drawn
features (Step III).

4.1 Causal graph analysis

The results of the BSL step run separately on the single feature categories are provided
in Figure 2, while Figure 3 depicts the corresponding integrated graph. All graphs have
been obtained including prior knowledge on prohibited connections through a list
provided by our physicians. Their fully data-driven counterparts are reported in the
Appendix (Figure 6 and 7) to ease readability. One can easily appreciate that no
substantial difference exists between the two sets of graphs, confirming the robustness of
the causal inference process. Note that the distance between nodes in the graphs has no
meaning and it is automatically adjusted to make the diagrams visually appealing.
Instead, the thickness of the edges reflects the intensity of the connection (calculated as
described in Section 3.2.2) and the red (blue) edges connect positively (negatively)
correlated variables. The definition of positively/negatively correlated variables may be
confusing when one variable is categorical and the other is continuous. For instance in
Figure 3, age (continuous) appears to be negatively correlated with the outcome, which

May 18, 2021 8/21



Feature X
% of deaths in
patients with X

% of recoveries in
patients with X

% of deaths in
patients without X

% of recoveries in
patients without X

P-Value
(Fisher test)

COPD 69.0 % (×2.6) 31.0 % 21.6 % 78.4 % 5.2 ∗ 10−7

Kidney disease 58.3 % (×2.2) 41.7 % 23.7 % 76.3 % 6.2 ∗ 10−4

Cerebrovasc. disease 59.3 % (×2.2) 40.7 % 23.1 % 76.9 % 1.7 ∗ 10−4

Cardio. disease 42.5 % (×1.6) 57.5 % 19.1 % 80.9 % 6.4 ∗ 10−5

Anticoag. 51.5 % (×1.9) 48.5 % 23.3 % 76.7 % 1.1 ∗ 10−3

Myalgia 2.7 % 97.3 % (×1.3) 30.7 % 69.3 % 6.1 ∗ 10−5

Confusion 71.9 % (×2.7) 28.1 % 20.6 % 79.4 % 1.4 ∗ 10−8

Short breath 34.1 % (×1.3) 65.9 % 20.1 % 79.9 % 7.5 ∗ 10−3

Dialysis 50.0 % (×1.9) 50.0 % 26.4 % 73.6 % 0.29

Hypercolesterolemia 37.0 % (×1.4) 63.0 % 24.7 % 75.3 % 6.6 ∗ 10−2

Hypertension 35.5 % (×1.3) 64.5 % 19.1 % 80.9 % 2.1 ∗ 10−3

Diarrhea 11.8 % 88.2 % (×1.2) 30.4 % 69.6 % 4.0 ∗ 10−3

Fatigue 23.3 % 76.7 % 27.5 % 72.5 % 0.36

Headache 4.3 % 95.7 % (×1.3) 28.9 % 71.1 % 5.5 ∗ 10−3

Table 2. Contingency table and results of the Fisher test between the categorical variables present in Fig. 3 and the
outcome. The deaths (recoveries) fold increase with respect to the dataset average is marked in red (green).

has value 1 for death and 0 for recovery. This means that older subjects have a higher
risk of death than younger ones. To fully understand the meaning of each connection, we
refer to Table 1 which reports the values of each categorical variable under examination.

4.2 Bivariate statistical analysis

Table 2 reports the contingency and the p-values of the Fisher exact test computed for
all the categorical variables found relevant in the single-category BSL analyses and thus
included in the integrated causal graph in Figure 3. With relevant we mean that these
features are connected to the outcome within 2 hops. To ease intepretation of the
results we report in red (green) colour the death (recovery) excess factors with respect
to the occurrence in the whole dataset.

Table 3 instead reports PBCs and their p-values. As it can be noted, these measures
emphasize some differences with respect to the BSL-based analysis. For instance, in the
integrated graph fatigue and headache seem both to be linked to the outcome through
myalgia. The Fisher analysis instead reveals that headache is unrelated to the outcome
and has to be simply related to myalgia, while fatigue seems to be actually causally
connected to the outcome.

4.3 Decision tree analysis

Figure 4 shows the BDT trained with all the 198 subjects having the 26 features
included in the integrated causal graph Fig. 3. The interpretable BDT chose to base its
prediction exclusively on 7 features: AGE, PF, COPD, Creatinine, Glucose, pO2 and
Sodium. Remarkably, all of them are connected to the outcome within 2 hops in the
integrated causal graph (Figure 3). When computing the classification accuracy of the
interpretable BDT on its training set, we appreciate that only 5.5% of the data are
misclassified. Despite a few leaves being clearly tailored to fit the dataset (and thus
being good candidates for pruning), all the learned patterns appear to be in line with
current clinical understanding of how these features affects the outcome.

The first line in Table 4 shows various performance metrics of the BDT classifier
evaluated in ”train all” setting (i.e. trained and validated on the same data comprising
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Fig 2. Image showing the BSL analysis applied to different categories of features. All the illustrated graphs are generated
taking the information provided by clinicians into account.
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Fig 3. Graph generated with the most relevant features found from the graphs shown in Fig. 2, taking the information
provided by clinicians into account

Feature Correlation P-Value

Age -0.46 1.3 ∗ 10−15

PAS 0.21 4.6 ∗ 10−4

PAD 0.24 8.1 ∗ 10−5

AST -0.11 0.052

Glucose -0.19 1.5 ∗ 10−3

Creatinine -0.20 5.6 ∗ 10−4

BUN -0.45 1.1 ∗ 10−13

Sodium -0.16 5.0 ∗ 10−3

Potassium -0.18 1.6 ∗ 10−3

PCR -0.21 4.4 ∗ 10−4

pO2 0.12 0.032

PF 0.46 1.1 ∗ 10−14

Table 3. Point-biserial correlation value and significance test between the continuous
variables present in Fig. 3 and the outcome.
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Fig 4. BDT trained with the features included in the graph analysis reported in Fig. 3. The color of the squares represents
the class prevalence: red for deaths, green for recoveries and grey in case of parity. The number of subjects is indicated in the

first line of each square, while the last line reports deaths/recoveries. Black edges denote leaves.

all the available subjects) and in a 10 fold cross-validation assessment. As it can be
noted, the results are quite coherent, suggesting that the overall pattern is really
informative and almost insensitive to overfitting. The permutation test, whose results
are reported in the second line of Table 4, shows instead a completely different
behaviour. Even with randomly selected features it is possible to achieve high
performances in ”train all” setting, but these performances are not maintained in
cross-validation.

Figure 5 depicts the average proportion of misclassified patients in cross-validation of
our BDT (red line) and of the permutation test (orange columns), showing that the
errors in the former tree are significantly lower from what would be obtained from one
considering 7 features randomly taken from the dataset.

We believe that these results support the methodological choice to select the features
causally connected to the outcome through BSL and then training a BDT to obtain an
intepretable clinical decisional tool.

5 Discussion

In this section, we briefly discuss the experimental results obtained by our causal
analysis, from the clinical perspective. We begin by considering the results from the
single-category causal graphs in Figure 2.

Among respiratory diseases (graph b), COPD is the only pathology in direct causal
relationship with mortality. This result was recently confirmed by a meta-analysis on
the associations between respiratory diseases and COVID-19 outcomes [37].
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Fig 5. Histogram reporting the percentage of misclassified subjects in the permutation test. The red bar shows the
performance of the BDT reported in Fig. 4. All the misclassification rates are calculated as the average over a 10-fold

cross-validation.

Input data
Sensitivity Specificity F1 score

Train all 10f cross-val Train all 10f cross-val Train all 10f cross-val

7 features of the tree in Fig. 4 0.99 0.90 0.95 0.95 0.97 0.92

7 random features 0.99 0.88 0.82 0.49 0.97 0.86

Table 4. Comparison between the performance of the classifier developed in this study and classifiers trained on a random
set of 7 features. The results of the permutation tests are the average of those obtained from all the 1,000 permutations.
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As regards prior (non-respiratory) diseases (graph a), not surprisingly, cardiovascular
disease has a direct relationship with the outcome [38]. Furthermore, it is the mediator
of the causal effects of hypertension and hypercholesterolemia. On the other hand,
hypercholesterolemia also has a causal effect on the presence of cerebrovascular disease
which has a direct impact on the outcome [39]. Similarly, the presence of dialysis has
only an indirect causal relationship on mortality through kidney disease [40].
Remarkably, the three pathologies directly connected to the outcome (i.e.
cardiovascular, cerebrovascular and kidney diseases) exert a strong effect on it,
increasing the probability of death by 1.6, 2.2 and 2.2 with respect to the average in the
dataset, respectively (see the analysis in Table 2). In contrast to published results, in
our analysis liver diseases (including cirrhosis) [41], diabetes [42] and the presence of
dementia or neurological diseases [43] seem to be not causally connected to the
outcome. This discrepancy is mainly imputable to their scarce representation in the
dataset, which does not allow to satisfy the conditional probability criterion with which
the graph connections are identified. In fact, despite their limited size, in all the subsets
of subjects presenting the aforementioned diseases, the risk of mortality rises at least by
a factor of 2.3. However, these increases cannot be attributed to these diseases alone
because at least 75% of the subjects who died and were affected by one of them,
presented also one of the three pathologies directly connected to the outcome.

Age is one of the most cited risk factors due to its close relationship with mortality
in COVID-19 patients [44]. Accordingly, the BSL approach (see graph c) identifies a
strong causal relationship with the outcome also in the patients enrolled in Pisa. The
importance of this effect can be appreciated even more by looking at the thickness of
the ”age-outcome” edge in the integrated causal graph, Fig. 3. On the other hand, in
our cohort neither sex nor smoking seem to have a direct causal role with mortality
contrary to what was claimed by recent meta-analysis [45,46]. The apparent
inconsistency on the effect of sex is explained by the intrinsically biased cohort which
has been selected based on the symptomatology severity of the patients in admission. In
fact, only 32% of the examined sample is composed by females, which means that they
are somewhat protected from acute forms of COVID-19. Additionally, it must be noted
that in an unbiased situation hospitalized females should be even more than males,
considering that they have a higher longevity [47] and thus the elder population, which
is the most vulnerable to COVID-19 is enriched by females. Thus, according to our
analysis being a female has no protective effect against death when the patient already
shows severe symptoms that necessitate hospitalization, while this protective effect is
present ab origin and it is detectable by the gender bias in hospitalized patients.

The BSL analysis applied to treatment features (graph d) shows also a direct
connection between the assumption of anticoagulant before/during Coronavirus
infection and the outcome. As it can be noted from Table 2, the prescription of
anticoagulants increases the risk of mortality by a factor of 1.9, while the cardiovascular
diseases by only 1.6. This effect suggests that the subjects that are prescribed to take
anticoagulants have a more severe form of cardiovascular disease, and that the true
causal effect is given by cardiovascular disease alone. Following this idea, given that
kidney diseases increase the risk of mortality, we would expect a connection between
outcome and dialysis, however only 4 subjects of the cohort were following this
treatment.

Results from the analysis of the symptoms present at hospital admission (graph e)
are particularly intriguing. In fact, only a relatively small number of symptoms show a
direct causal relationship with the outcome. Among these, myalgia seems to be
protective against the risk of mortality. This fact, which has been recently confirmed by
Zheng et al. [48], could be explained by the fact that patients with less severe form of
disease are reporting a generic muscle pain with augmented sensitivity as they do not
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suffer from more severe and debilitating symptoms. Accordingly, myalgia presents
upstream causal relationships with many other symptoms of medium and mild severity,
such as nasal congestion, sputum and nausea. On the other hand, a strong causal link
between confusion and mortality was detected (leading to an increased risk of death by
2.7 with respect to the average in Table 2), probably associated with the older age of
patients presenting this symptom. Regarding shortness of breath, its association with
outcome can be a consequence of the effects of COPD on mortality. In the same way,
the effects of PAD (and indirectly PAS) could be explained by the already demonstrated
causal relationship between cardiovascular disease and outcome. In contrast to what is
present in the literature, the presence of fever at the time of admission seems to lack a
direct causality link with mortality [49], however differences in fever assessment may
alter the results of this analysis. For instance, fever may be measured at the hospital at
the time of admission or assessed by the patient and in both cases its value may be
altered by antipyretic assumption, whose frequency depends on self-medication habits.

Among laboratory tests (graph f), only three parameters have a direct causal
relationship with mortality. PF ratio is an index of respiratory function and, given that
the respiratory system is one of the systems most affected by COVID-19, its causal
relationship with mortality is highly understandable. This connection can be observed
both in the single-category as well as in the integrated causal graph. Other clinical
variables selected by our automatic method are BUN and creatinine. Elevated levels of
both BUN and creatinine can be associated to chronic kidney disease which was already
demonstrated in direct causal relationship with mortality. Furthermore, a link between
creatinine, BUN and mortality has already been observed in COVID-19 patients by
other authors [50].

The study of causality between classes of clinical variables and mortality in
COVID-19 patients revealed some already known relationships as well as offering some
new insights. However, the picture becomes more clear when all clinical variables are
used together to assess causal effects on the outcome as in the integrated causal graph
of Figure 3. In this case, only 4 variables show a direct causal effect on the outcome.
However, these direct relationships are very strong, with PF, age and BUN being
particularly correlated to mortality (see Table 3). Furthermore, these parameters also
exhibit a strong upstream causal relationship with practically all the clinical variables
that are directly associated with the outcome in the analysis divided by single
categories. In fact, age has causal relationships with confusion, cardiovascular and
cerebrovascular diseases, as well as with the use of anticoagulants and high blood
pressure. Similarly, BUN levels mask a causal relationship with creatinine levels and the
presence of nephrological disease. Finally, the PF mediates the relationship with
shortness of breath. On the contrary, myalgia seems to have a weaker and more distant
causal role with the outcome when all the clinical variables are considered. This seems
to sustain the hypothesis that the apparently causal of myalgia on symptoms is due to
the fact that less severe patients report its occurrence together with the deficiency of
more critical symptoms.

Moving to the BDT illustrated in Fig. 4, remarkably the first two levels of the tree
alone allow to correctly classify 85% of the subjects basing on their age, a previous
history of COPD in young and middle-aged patients and the PF ratio value in the older
ones. The PF threshold discovered by the algorithm to distinguish patients at high and
low risk is almost equal to the criterion adopted by the American-European Consensus
Conference Committee (AECC) to define hypoxemia, i.e. a PF ratio less than or equal
to 200 mmHg [51]. Throughout the tree, creatinine levels have been questioned 3 times.
Despite in healthy subjects creatinine normally can range between 0.6 to 1.3 mg/dl,
from this analysis it seems that subjects affected by COVID-19 have an increased risk of
mortality already when its value passes 0.96 for the younger ones and 1.145 for the older
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ones. Instead, binary decisions based on sodium and pO2 levels are coherent with
normal range values. Sodium below 135 mEq/L indicates hyponatremia that may hint
to heart, kidney or liver problems, which notoriously have a negative impact on subjects
with COVID-19 and pO2 values below 80 mmHg indicates that a person is not getting
enough oxygen [52]. The only binary decision of dubious interpretation from a medical
perspective is the one based on glucose value at the third level of the tree. Probably,
this is due to the overfitting problem that characterizes BDTs. However, this question
and the following ones along its branches do not improve particularly the ability of the
BDT to predict the risk of mortality. In fact, already before the debatable question on
glucose the set was composed by 19 subjects who died and only 3 who survived. In
conclusion, overall the decisions taken by the BDT are medically grounded and the
misclassified subjects amount only to the 5.5% of the total population. Despite we
recognised some overfitting effect, we believe that the 3-folded methodology presented in
this paper can be successfully adopted to design an operative flowchart for clinical use.

6 Conclusion

Our work took place on the claim that causal learning, and in particular BSL
methodologies, provide useful tools for delivering a robust and interpretable exploratory
analysis of clinical data. We have put forward an integrated methodology, rooting on
causal graph learning, that provides practitioners with a pipeline of analytical steps
amenable to

• identify and measure the strength of causal association between features and
outcomes in a fully-multivariate fashion;

• select causally relevant features and assess how they impact, separately, the
outcome;

• provide a compact and interpretable procedural description of the
outcome-determination process to support clinical decision making.

We have demonstrated the effectiveness of our approach on a COVID-19 case study,
where we evaluated the causality relationship between clinical parameters and mortality
in a cohort of COVID-19 patients. The analysis was carried out both splitting the
clinical variables into classes as well as using them altogether into an integrated causal
graph. Our clinical discussion provides compelling evidence of the robustness of the
causal relationships identified by our causal learning approach. The results of the causal
analysis were further used to build a highly explainable predictive model of mortality as
a decision tree that could be easily implemented in a real clinical context. Our empirical
validation against a permutation test setting, confirms the quality and relevance of the
features identified by our method, also in a predictive setting. Thus, we suggest the
adoption of this workflow to discover complex cause and effect relationships in clinical
high dimensional dataset, also for other diseases. Within the context of this
Coronavirus emergency, we believe that in future this multi-step approach may be used
to better quantify the role of air pollution exposure [53] with respect to other possible
confounding variables and to investigate how the symptomatology, the care received and
the clinical history of the patient impact on COVID long-term effects, which are still
very unclear [54,55].

Supporting information

This section contains the results of the BSL analysis without incorporating any prior
knowledge.
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Fig 6. Image showing the BSL analysis applied to different categories of features. All the illustrated graphs are generated
without taking the information provided by clinicians into account.
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Fig 7. Graph generated with the most relevant features found from the graphs shown in Fig. 6.
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