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Abstract—Being low-level radiation exposure and less harmful
to health, low-dose computed tomography (LDCT) has been
widely adopted in the early screening of lung cancer and COVID-
19. LDCT images inevitably suffer from the degradation problem
caused by complex noises . It was reported that, compared
with commercial iterative reconstruction methods, deep learning
(DL)-based LDCT denoising methods using convolutional neural
network (CNN) achieved competitive performance. Most existing
DL-based methods focus on the local information extracted
by CNN, while ignoring both explicit non-local and context
information (which are leveraged by radiologists). To address
this issue, we propose a novel deep learning model named
radiologist-inspired deep denoising network (RIDnet) to imitate
the workflow of a radiologist reading LDCT images. Concretely,
the proposed model explicitly integrates all the local, non-local
and context information rather than local information only. Our
radiologist-inspired model is potentially favoured by radiologists
as a familiar workflow. A double-blind reader study on a
public clinical dataset shows that, compared with state-of-the-
art methods, our proposed model achieves the most impressive
performance in terms of the structural fidelity, the noise sup-
pression and the overall score. As a physicians-inspired model,
RIDnet gives a new research roadmap that takes into account
the behavior of physicians when designing decision support tools
for assisting clinical diagnosis. Models and code are available at
https://github.com/tonyckc/RIDnet demo.

Index Terms—LDCT denoising, deep learning, radiologist-
inspired, graph convolution

I. INTRODUCTION

COMPUTED tomography (CT) is one of the most fre-
quently used imaging technologies in modern medicine

[1]. Compared with conventional radiography, CT has the
advantages of superior contrast resolution [2], superb detailed
anatomical representations [3] and the ability to selectively
enhance or remove structures from images [4]. However,
recent studies report that the radiation exposure of CT scans
may come with potential cancer risks, especially for children
[5]. In the past two decades, low-dose computed tomography
(LDCT) thus has become a hot screening tool for noninvasive

This work was supported in part by Sichuan Science and Technology
Program (Nos. 2020YFS0119 and 2021YFS01 72) and National Natural
Science Foundation of China (No. 61806043).

K. Chen, J. Luo, X. Zhang, Y. Zhao, M. Bento, Y. Ren, and X. Pu are with
the School of Computer Science and Engineering, University of Electronic
Science and Technology of China (UESTC), Chengdu, 611731, China.

J. Sun and X. Pan are with the Radiology Department, West China Hospital,
Sichuan University, Chengdu, 610041, China.

J. Shen and D. Wu are with the Radiology Department, West China No.4
Hospital, Sichuan University, Chengdu, 610041, China.

Co-corresponding authors: Xiaorong Pu and Yazhou Ren (e-mails: puxi-
aor@uestc.edu.cn; yazhou.ren@uestc.edu.cn;). K. Chen and J. Sun contributed
equally to this paper.

low radiation examination, such as the early detection of lung
cancer [5] and the diagnosis of COVID-19 pneumonia [6]. The
reduction of dose resulting in heavily noisy CT images is a
though challenge, since it will affect the diagnostic accuracy
for the radiologists.

To overcome this problem, quite a few studies make an
attempt to obtain the latent noise-free CT images by removing
noise from LDCT images [7]–[10]. Existing LDCT denoising
methods can be roughly divided into three streams. The first
two streams are sinogram filtration [11]–[13] and iterative
reconstruction [8], [14] based methods, respectively. Both of
them achieve an effective denoising performance on account of
involving the projection data directly. It is also an intractable
problem that the acquisition of projection data is fairly com-
plicated in clinical environments [9]. In addition, the iterative
reconstruction based methods need to transform the data from
the projection domain to image domain constantly [15], which
is usually regarded as a time consuming process [16]. Thanks
to the progress of deep neural network, the post-processing
based methods using convolutional neural networks (CNN)
[7], [10], [15], [17] realize the best denoising performance
compared with the first two streams. Instead of relying heavily
on projection data, such deep learning-based LDCT denoising
methods work in the image domain of CT data directly [18],
which is extremely convenient. The time consumption of deep
learning-based methods is significantly lower than the first two
streams [7].

For existing deep learning-based LDCT denoising methods
using CNN, the denoising task is usually regarded as a
mapping [18], [19] or texture transfer [9], [15], [20] from
LDCT images to corresponding NDCT images. They often
utilize various CNN-based models. However, litter attention
has been paid to the inner mechanism of adopted models,
such as what information has been learned by the model
for LDCT images denoising? To the best of our knowledge,
CNN-based models concentrate more on the extraction of local
information [21]. This denoising mechanism differs from that
of the one used by radiologists, resulting in a potential problem
in clinical use. Radiologists are more inclined to trust a model
inspired by their own behavior or workflow when reading
the LDCT images, rather than a significantly different model
compared with their work mechanism. Interestingly, what is a
radiologist’s reading behavior or workflow?

Through an in-depth communication with radiologists, the
LDCT denoising mechanism of radiologists is typically a
three-step workflow, which can be roughly summarized as
shown in Figure 1. First, the radiologists will focus on the
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Step 1: Local Information Step 2: Non-local Information Step 3: Context Information

Fig. 1. The workflow of radiologists when reading the LDCT images. In step 1, the radiologist focuses on the region of interest (ROI) with local information.
In step 2, the radiologist leverages those non-local but easily-observed similar tissues to perform auxiliary observation. In step 3, the radiologist slides the
mouse so that the similar ROI in the front and rear slices can be observed.
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(where the  red-bordered slice is the one that 
will be denoised and others are its adjacent slices)

Fig. 2. The proposed radiologist-inspired deep denoising network (RIDnet). Followed by extraction of the feature map, the classical 2D convolution operation
is applied in step 1 and the computation of the intra-slice similarity, the computation of a K nearest neighbor (K-NN), the construction of the non-local graph,
as well as the feature aggregation is successively performed in step 2. In step 3, the whole feature maps are inputted in and then compute the inter-slice, the
construction of the context graph and the feature aggregation. Finally, the result of feature fusion is used to replace the feature map in original input position,
in order to keep the original 3D shape [16]. Please see the section Method for more details.

region of interest (ROI) which represents the local information
(illustrated as the red box in the step 1 of Figure 1), such
as tiny bronchus of the lung and subtle nodules of the lung.
However, such subtle tissue structure and blood vessel will be
converted by the noise easily, making it hard to be observed
for radiologists. Second, to further read these hardly-observed
tissues, the radiologists will leverage those non-local but
easily-observed similar tissues to perform auxiliary observa-
tion (illustrated as the green boxes in the step 2 of Figure
1). This step shows the importance of non-local information.
Third, it is the natural behavior for radiologists to slide the
mouse so that the similar ROI in the front and rear slices
can be observed (illustrated as the green boxes in the step 3

of Figure 1). The heavily noisy ROI may have a noise-free
counterpart in the front or rear slice, because of the random-
ness of noise in different slices. This implicitly leverages the
context information. According to aforementioned discussions,
we can conclude that the reading workflow of radiologists
adopts comprehensive information, i.e., local information, non-
local information and context information, to obtain the best
observation from the noisy ROI.

Conversely, existing deep learning-based LDCT denoising
methods rely heavily on the convolutional neural network
(CNN) [7], [17], [22]. The convolution, essentially, is a local
operator that extracts some useful local information within
it’s filter size. Although these CNN-based methods achieve
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impressive performance, the explicit non-local and context
information (which are also leveraged by the radiologist as
mentioned in aforementioned discussions) are typically ig-
nored by most existing methods. The most important issue
that should be noted is, radiologists may not support a model
whose workflow is vastly different from theirs.

To this end, we propose a novel deep learning model,
namely radiologist-inspired deep denoising network (RIDnet),
to imitate the workflow of a radiologist reading LDCT images.
As shown in Figure 2, following the scheme of radiologist-
inspired comprehensive information, we first introduce the
graph convolutional network (GCN) to imitate the step 2
of radiologists through constructing the non-local graph, i.e.,
explicitly extracting non-local information, which cannot be
utilized by existing CNN-based methods directly. Furthermore,
the GCN is also proposed to imitate the step 3 of radiol-
ogists via establishing the context graph among slices for
context information. Compared with the context information
implicitly extracted by 3D CNN [17], [21], the information
extracted by GCN is more explicit, leading to better effects
as suggested in [23]. Here, the imitation of step 2 and step
3 together is composed of a novel deep learning module,
namely 3D GCN module. The proposed 3D GCN module
aims to imitate the behavior of radiologists, i.e., concerning
the non-local information of the intra-slice and the context
information of the inter-slice. Obviously, the local information
is also important. We therefore leverage classical convolution
operation to acquire useful local patterns. Finally, the proposed
RIDnet integrates the aforementioned three parts to learn the
best adaptive composition through the feature fusion. Note that
the proposed RIDnet can be also stacked to further improve
the denoising capacity. In this paper, the adopted model is
constructed by three RIDnets due to the consideration of
comprehensive performance (we discuss this in supplement
I), as shown in Figure 3. Our proposed RIDnet follows
the workflow of radiologists for LDCT images denoising,
differentiating from the widely adopted CNN.

II. MATERIALS AND METHODS

A. PRELIMINARY

First, some preliminaries need to be claimed.
Given that an LDCT-NDCT paired dataset,
T={(x1,y1), (x2,y2), · · · , (xN ,yN )}, where N denotes
the number of paired training samples. (x,y) ∈ (X ,Y),
where X and Y are two image domains, respectively.
The paired samples x ∈ Rn×n and y ∈ Rn×n are matrix
expression of a noisy LDCT image and a high-quality NDCT
image. Assume that the ith slice xi is the one that needs to be
denoised in overall slices of a patient. The 3D input of xi can
be represented as Xi = concat(x−s,xi−1,xi,xi+1, · · · ,xs),
where 2s + 1 is a predefined number of slices and set to
3 as suggested in [21]. The concat operator denotes the
concatenation operator along with the first dimension.

B. The methodology of proposed RIDnet model

The proposed RIDnet model consists of four parts, i.e., the
layer of embedding, the layer of extracting local information,

the 3D graph convolutional networks (3D GCN), and the layer
of feature fusion. We will discuss them in details.

1) The layer of embedding.: It is usually more effective
for model learning to convert the input into it’s embedding in
feature space [24]. Every pixel then can be regarded as the
format of the feature vector along with the channel direction.
To this end, the classical 3D convolution is adopted in our
proposed RIDnet model. Specifically, the first RIDnet model
has two 3D convolution layers with channels of 64 and 32,
due to the need of stronger capacity of feature extraction in
the start of a model. Other RIDnet models only have one 3D
convolution layer with channel of 32. To maintain the size of
the feature map, the operation of ’reflect’ padding is applied,
which is useful to avoid the artifacts of the edge as suggested
in [24]. The output of embedding layer thus can be denoted as
X′i = (x′−s,x

′
i−1,x

′
i,x
′
i+1, · · · ,x′s) = embedding(Xi).

2) The 3D graph convolutional networks.: As the most
important part in the proposed RIDnet model, the 3D graph
convolutional networks (3D GCN) consists of two modules,
i.e., plane graph convolutional module, depth graph convolu-
tional module, respectively.

3) Plane Graph Convolutional Module.: For every pixel in
the feature space of a CT slice, let construct a plane graph
Gp = (V,E). Note that we only extract non-local information
of feature map that needs to be denoised, i.e., the x′i of X′i,
due to the considerations of efficiency and the contribution to
the final result. Assume that there are K vertices in a plane
graph Gp, represented as vi ∈ V for a vertex. Each edge is a
pair of vertices, represented as (vi, vj) ∈ E, ∀i < j. Our
goal is to represent the non-local relations among features
and aggregate those non-local information, which reflects
that the radiologists will leverage those non-local but easily-
observed similar tissues for auxiliary observation. The first
step is to indicate the importance of the vertex j’s feature
to vertex i’s one. In image domain, the importance of one
pixel relatively to another is usually measured by similarity
[21]. Instead of relying on the weight matrix to obtain the
importance, e.g., self-attention [25], in this paper, we propose
to express the importance by the pixel-wise Euclidean distance
in the feature space, which is inspired by Non-local Means
(NLM) [26] for patch-wise non-local denoising. As a non-
deep-learning method, NLM-based LDCT denoising method
[27] has impressive adaptive denoising ability for complex
noise level in real environments, which will also be desired for
existing deep learning-based models. Formally, the similarity
can be computed as follows

eij =
‖vi − vj‖22

hij
, (1)

where hij denotes the square root of the dimension of the vi or
vj . In order to reduce computational complexity, we compute
the eij for pixels j ∈ Ni, where Ni is a d × d − 8 (The
total number of directly adjacent pixels for vertex i is 8) non-
local neighborhood region of vertex i. Instead of leveraging
all pixels in a CT slice according to the importance [21], we
only select (K-1) nearest neighbour (namely K-NN) in feature
space for information aggregation, which can avoid ineffective
computation and also achieve the desired performance. In this
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Fig. 3. The proposed stacked radiologist-inspired deep denoising networks. This model stacks three RIDnet modules. The last two convolution layers aim to
generate a channel encoder-decoder structure as suggested in [16], [17].

paper, the K is set to 8 as discussed in supplement II. We then
propose to normalize them across all choices of j such that
the importances between vertices can be represented easily.

aij = softmaxj(eij) =
exp(

−‖vi−vj‖22
hij

)

K−1∑
k=1

exp(−eik)

. (2)

One can observe the importance of neighbor vertices vj’s
of vi is represented by the probabilistic result aij induced
from the distance of feature space. In this paper, we assign
every edge (vi, vj) as aij . The next step is to aggregate
those non-local information on this weighted graph. In order
to achieve the specific-task fashion, inspired by the Edge-
Conditioned Convolution (ECC) [28], the probability-based
edge is introduced into ECC as follows:

sN L
i =

1

K − 1

K−1∑
j=1

(F (aij , w)vij + b)

=

K−1∑
j=1

Θijvij
(K − 1)

+ b,

(3)

where F l denotes the output of a network parameterized by
wl which is used to dynamically produce the weight matrix
Θl
j,i for different edge labels zl,j→i, and bl is a learnable bias.

The optimization details can be found in [28]. In our work,
we adopt a multi-layer perception network for F l,

4) Depth Graph Convolutional Module.: Instead of search-
ing the non-local information in the intra-slice, depth graph
convolutional module aims to explicitly obtain the useful
similar information in the inter-slices, which also reflects the
behavior of the radiologists, i.e., sliding the mouse to leverage
front-and-rear slices that helps the denoising of the ROI with
heavy noise. For every pixel in the feature space of a CT slice,
let construct a depth graph Gd = (V,E). Assume that there
are M vertices in a depth graph Gd, represented as vi ∈ V
for a vertex. Each edge is a pair of vertices, represented as
(vi, vj) ∈ E, ∀i < j. Our goal is also to represent the
context relations among features and aggregate them. We adopt
the same aggregation method as described in Plane Graph
Convolutional Module. In this paper, M is set to 3, as the
number of slices for a 3D input is not large.

5) The layer of extracting local information.: In practice,
the radiologist will firstly concentrate on the local region of
the lesion. The local information thus is extremely important

for the denoising of noisy region. As in previous studies [15],
the 2D convolution operation with the 3 × 3 filter is utilized
to extract the local information of the feature map that needs
to be denoised.

6) The layer of feature fusion.: Here, the non-local informa-
tion, local information and context information have been ob-
tained. There is a troublesome issue, i.e., how do we combine
them? It may be very easy for radiologists to handle this fusion
of comprehensive information. In order to address this issue,
we must firstly review the workflow of radiologists. Intuitively,
the radiologist, compared with the context information, will
pay more attention to the inner information (including non-
local information and local information) of a slice that needs
to be denoised. Furthermore, due to the difference of slice
thickness for different body regions or imaging vendors, the
usability of inter-slice information may be not stable, because
if the thickness of a set of slices is very large, the relationship
of inter-slice won’t be very strong for learning. We thus
consider the context information into an auxiliary information.
Based on aforementioned discussions, the process of feature
fusion can be represented as

x′′i = α ·Mean(p′i,NL + p′i,L) + (1− α) · p′i,C , (4)

where p′i,NL, p′i,L), and p′i,C denote the non-local infor-
mation of x′i, the local information of x′i, and the context
information of x′i, respectively. α ∈ [0, 1] is a learnable
parameter. The α is initialized to 0. Mean operator denotes
the pixel-wise average operation.

Finally, the result of fusion x′′i is proposed to replace the
feature map in original input position (as shown in Figure
2), i.e., X′i = concat(x−s,xi−1,x

′′
i,xi+1, · · · ,xs), due

to the considerations of keeping original 3D shape and a
similar shortcut idea [16]. As shown in Figure 3, the overall
model stacks three RIDnet modules. The last two convolution
layers aim to generate a channel encoder-decoder structure as
suggested in [16], [17]

7) The overall framework and loss function.: The overall
framework is based on GAN. Specifically, the proposed RID-
net model plays the role of generator G. The discriminator D
follows the structure in [17]. The loss function of generator is
composed of adversarial loss and perceptual loss as [17]

min
θG

= −EXi
D(G(Xi)) + λ · EXi,yi

‖φ(G(Xi))− φ(yi)‖22.
(5)

As in previous studies, VGG19 [29] is adopted as the feature
extractor φ. λ is a balance term that is set to 0.1 as suggested
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in [17]. θG denotes the parameters of the generator. The loss
function of discriminator follows the wasserstein generative
adversarial network based on gradient penalty [30]. The con-
vergence process of the loss can be found in supplement III.

C. Datasets

1) The Training Set for Model Learning.: As previous
studies [7], [9], [10], the public low/normal-dose dataset re-
leased from the 2016 NIH-AAPM-Mayo Clinic Low Dose CT
Grand Challenge is used for training. This dataset includes 10
patient’s abdominal examinations obtained on similar scanner
models (Somatom Definition AS+, or Somatom Definition
Flash operated in single-source mode, Siemens Healthcare,
Forchheim, Germany). The normal-dose CT images are ac-
quired under the settings of 120kV, 50mAs. Note that the
low-dose counterparts are simulated to reach a noise level that
corresponded to 25% by inserting the Poisson noise. More
information about the dataset is available in 1. We use 6
patient’s CT images as the training set and 4 patients’ CT
images as validation set. To balance the learning efficiency
and the memory consumption, every CT image with the size
of 512×512 is randomly divided into non-overlapping 64×64
sub-patches. The total number of sub-patches is about 27K.

2) The Test Set for Double-Blind Scoring Experiments.:
To adequately compare the denoising performance of our
proposed model with that of other state-of-the-art models,
a paired low/normal-dose clinical CT dataset with various
examination regions, i.e., Low-Dose CT images and Projection
Data (a.k.a., LDCT-PD) dataset 2, is used in this study. The
LDCT-PD dataset was released by Mayo Clinic, including 99
non-contrast head CT scans acquired for the patients of acute
cognitive or motor deficit, 100 low-dose non-contrast chest
scans acquired to screen high-risk patients for pulmona
ry nodules, and 100 contrast-enhanced CT scans of the ab-
domen acquired to look for the patients of metastatic liver
lesions. Similar to [7], the chest and abdomen CT images
are selected for double-blind study. Every part consists of
67 patient’s scans. The normal-dose chest and abdomen CT
images are scanned under the settings of 120kV, 250mAs
and 100kV,300mAs, repectively. The corresponding low-dose
images are 10% and 25% of normal-dose. It should be noted
that the LDCT-PD dataset provided a well-written clinical
report, including the labeled locations of the lesion and the
diagnosis types of the lesion. Based on this, we thus select a
CT slice labeled with lesion and its adjacent slices (a lesion
slice and its front 4 slices and rear 4 slices, totally 9 CT slices)
to denote overall slices of a patient. We then can study the
influence of different denoising results for the lesion.

There are two points that need to be noted. First, the
imaging parameters, equipment vendors and acquired locations
have differences between the training set and test set, which
well reflects the complex environments in clinic. To obtain
the competitive denoising performance, the deep learning-
based models must have a good adaptive and generalized

1https://www.aapm.org/GrandChallenge/LowDoseCT/#
2https://wik i.cancerimagingarchive.net/pages/viewpage.action?pageId

=52758026

capacity. This is one of the motivations for the double-blind
test that if the deep learning-based denoising models have
the effectiveness in clinic, and which models have the best
denoising ability under complex conditions. Second, the test
images in our double-blind experiment refer to plenty of CT
images with labeled lesions, which is very meaningful for the
radiologists, allowing them to evaluate if the denoising results
will influence the judgment of lesion type or image feature.

D. The details of double-blind reader study

The low-dose CT images of each selected patient are
denoised by three deep learn ing-based models (MAP-NN,
RedCNN, and our proposed RIDnet). For each patient, 5
sub-folders can be obtained, i.e., 3 sub-folders with different
denoising results, LDCT sub-folder, and NDCT sub-folder.
The sub-folders of denoising results are named randomly (such
as measure1, measure2, and measure3). Finally, the total 134
folders are obtained for double-blind study. Three experienced
radiologists (J. Shen, radiologist #1 with 23 years experience,
D. Wu, radiologist #2 with 10 years experience, X. Pan,
radiologist #3 with 14 years experience) participate in this
experiment. For the standard of evaluation, we adopt the
scheme of 4-point scale as in the previous study [3] in terms of
image noise, structural fidelity and overall score. Specifically,
1 score denotes the quality of the CT image as unacceptable for
clinical diagnosis. 2 score denotes the CT image can provide
limited diagnostic information only. 3 score denotes that the
CT image is acceptable and can provide the average diagnostic
information. 4 score denotes the CT image has a good quality
in terms of the accurate diagnosis and interpretation. Unlike
any other systemic double-blind study in [3], we add the
overall score as a part of the evaluations. As some results may
have very good denoising performance in terms of the ROIs
but be sub-optimal in terms of the non-ROIs, the radiologists
thus can reflect the real image quality using the term of overall
score.

1) Training Details.: For the details of preprocessing of
training set, we normalize the data in CT domain (the provided
dataset is the format of DICOM) into 0 to 1 using differ-
ent window width and window level, according to different
body regions. For the abdomen scans, the window width
and window level are 400, 40, respectively. For the chest
scans, the window width and window level are 1500, -600,
respectively. The outputs of the model are re-normalized into
corresponding range of CT domain to generate the DICOM
files. For the details of model training, the tensorflow 3 is
applied to construct the proposed RIDnet model. The Adam
optimizer [31] is used to optimize the parameters of the model
with the learning rate of exponential decay. As following,
the framework of generative adversarial network [32], the
initial learning rate is set to 1 × 10−4 for the generator and
4×10−4 for the discriminator as suggested in [4]. To balance
the memory consumption and learning efficiency, the batch
size is set to 32. The model is trained with 40 epochs and
converges finally, using 4 Geforce 1080Ti GPUs. We chose

3www.tensorflow.org
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TABLE I
THE DETAILS OF DEEP LEARNING-BASED METHODS FOR COMPARISON

Method RED-CNN
[TMI,2017]

MAP-NN
[Nature MI,2019]

RIDnet
(Ours)

Backbone CNN CNN GCN+CNN
Imitating

Radiologist No No Yes

Traning Set AAPM-Mayo AAPM-Mayo AAPM-Mayo

the model that has the best performance on validation set for
comparison experiment.

III. RESULTS

To compare the performance of representative deep lear
ning-based methods, a double-blind study is carried out in
this paper. The representative methods for comparison include
RED-CNN [19], MAP-NN [7], and our proposed RIDnet
model. The corresponding details can be found in Table 1.
Using mean square error (MSE) as the loss function, RED-
CNN is widely adopted due to its well noise suppression.
Through systemic double-blind study, MAP-NN shows com-
petitive denoising performance compared with commercial
iterative reconstruction methods. It should be noted that our
proposed model is the only one that tries considering the
behavior of the radiologists. To be fair, all methods are trained
on AAPM-Moyo dataset, which includes 10 patient’s abdomen
scans (paired normal-dose and low-dose (25% of normal-dose)
CT images). We utilize a separate dataset, i.e., LDCT-PD
dataset, to evaluate the denoising capacity of different methods
in real-world complex environments. In LDCT-PD dataset,
the selected test data totally includes 67 pairs of normal/low-
dose (25% of normal-dose) abdomen scans and 67 pairs of
normal/low-does (10% of normal-dose) chest scans. It can be
easily noted that the dose level of low-dose chest scans in test
set is extremely lower than that of the training one. These test
models thus must have a adaptive and generalized capacity to
handle this various environment, which we will analyze further
later in this paper. Unlike previous double-blind studies, the
denoising performance of different methods is completely
evaluated on the region of lesion. We believe that this may
be more valuable for clinical environments. Specifically, the
abdomen and chest CT images have the lesion of metastatic
liver and the lesion of pulmonary nodule, respectively. Three
experienced radiologists from West China Hospital and West
China No.4 Hospital participated in this study. They are named
as ”radiologist #1”, ”radiologist #2”, and ”radiologist #3”,
respectively. The standard of 4-point scale is used to evaluate
the denoising performance in terms of noise, fidelity, and
overall score. Briefly, the higher the score, the better. More
details about the settings of double-blind study can be found
in the section Method.

The analysis of the results for the scans of the chest. As
illustrated in the first column of Figure 4, we can make four
important observations. First, our proposed model significantly
outperforms other methods in terms of noise, fidelity, and
overall score, except for a slight improvement in two results
(noise and fidelity) from radiologist #3. This shows the
superiority of integrating the radiologist-inspired denoising

mechanism. Second, we can notice that RED-CNN is signifi-
cantly behind MAP-NN and our proposed mod -el. Although
the framework of the MSE-guided (adopted by RED-CNN)
would intuitively generate very smooth and little noisy results
(see the Figure 6 and Figure 7), the radiologist may not
favour this style that is much limited for the improvement
of the diagnosis. Instead, the results of generative adversarial
network (GAN) framework (adopted by MAP-NN and ours)
make an obvious improvement compared with LDCT. Third,
compared with MAP-NN, our proposed model still achieved
better performance despite using the same framework. Taking
a different approach, the structure of obeying the workflow
of radiologists is introduced in our proposed model such as
non-local and context information, which appears to be very
effective. Fourth, the better results reflect that our proposed
model has better adaptive and generalized capacity, because
the dose level of the test set mismatches that of the training
set, being very much lower. This property will take a strong
potential in complex clinical environments, especially for
various imaging parameters, equipment vendors and acquired
locations.

The analysis of the results for the scans of the abdomen.
The second column of Figure 4 shows the results of evaluation
for the abdomen. One has the following observations: First,
putting together the results of three metrics, our proposed
model achieves the best performance, especially for the term
of fidelity. This also benefits greatly from the superiority of
the radiologist-inspired model. The proposed model leverages
comprehensive information, which is intuitively useful for
the structure preservation compared with single information
(such as RED-CNN and MAP-NN). Second, as the lesion of
metastatic liver is usually characterized as the closely black
region, the fidelity of grayscale and shape thus is very impor-
tant for the diagnosis. Interestingly, the fidelity evaluation of
our proposed model significantly outperforms other models in
all radiologist’s results. This will contribute to the diagnosis
of some unobservable lesions.

The analysis of the results higher than LDCT in all
cases. The number of cases with scores higher than LDCT
images is also important to indicate the overall performance
of denoising results for all cases, except the average score of
different methods for different body regions. As shown in the
first column of Figure 5, we have some observations. First,
in terms of results of radiologist #1 and #2, we can find
that our proposed model achieves improvement for all cases
basically regardless of the noise, the fidelity, and the overall
score. Although MAP-NN achieves good performance for the
noise and overall score (our proposed model still has a slight
superiority), the improvement of fidelity can not cover all
cases. Intuitively, it is very hard to balance the noise removal
and structure fidelity. The results of MAP-NN clearly show
this challenge. Instead, our proposed model enjoys extra non-
local and context information, which shows that it is more
suitable to handle this challenge by integrating radiologist-
inspired workflow. Second, due to a possible preference among
radiologists, the improvements do not cover all cases in the
radiologist #3’s results. However, our proposed model still
significantly outperforms others in term of the fidelity.
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Fig. 4. The results of double-blind study by three radiologists aspect to the chest and the abdomen. For the noise, fidelity, and overall score, the higher the
better. The full score is 4 for every evaluation standard.

The analysis of the results equal to NDCT in all cases. We
are interested in how many denoising cases achieved the level
of NDCT images, which can further represent the denoising
capacity. Our proposed model achieve the best performance by
analyzing all radiologist’s results as shown in the second col-
umn of Figure 5. Interestingly, in the radiologist #3’s results,
our proposed model is the only one that can achieve the level
of NDCT images for the fidelity. In summary, benefiting from
the integration of radiologist-inspired behavior, our proposed
model has the greatest potential to achieve the quality of

NDCT images.

The analysis of visual results for zoomed-in subtle
structure and lesion. Abdomen: As shown in Figure 6, we can
make some important observations. First, the green box shows
the comparison of zoomed-in subtle structure, we can find
these structures (within red circles) nearly disappear for RED-
CNN, due to the easily observed over-smoothness. Similarly,
MAP-NN suffers from the same problem and also has a
slight over-smoothness. Instead, our proposed model greatly
preserves the subtle structure and generates the texture closest
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Fig. 5. The results of double-blind study by three radiologists aspect to all cases.

to NDCT. Both RED-CNN and MAP-NN only leverage the
local information by the CNN, so it is difficult to balance the
local detail and noise removal with limited information. Our
proposed model adopts the framework of radiologist-inspired
comprehensive information such that extra information can be
used as a supplement to produce the optimal results regardless
of structure and texture. Second, as illustrate in the red circle
of yellow box in Figure 6, our proposed model has the most
obvious observation for the lesion (diagnosed as Metastasis-
Esophageal), especially for the level of the grayscale. How-
ever, the lesion in RED-CNN and MAP-NN becomes very

fuzzy. The superiority of lesion region further proves the effect
of radiologist-inspired framework. Chest: As shown in the
yellow box of Figure 7, we can find that all models achieve the
preservation of lesion (within red circle). However, MAP-NN
has more easily observed noise points compared with RED-
CNN and our proposed model. RED-CNN losses the subtle
structure basically as shown in red circle of green box. In
summary, our proposed model has the most impressive visual
performance, which naturally obtains the best performance of
double-blind study as reported in Figure 4 and 5.
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The comparison of zoomed-in subtle structure The comparison of zoomed-in lesion (Metastasis-Esophageal) 

LDCT RED-CNN MAP-NN Ours NDCT

LDCT RED-CNN MAP-NN Ours NDCT LDCT RED-CNN MAP-NN Ours NDCT

Fig. 6. The visual comparisons for zoomed-in subtle structure and lesion, in term of an example of the abdomen. The green box and yellow box are the
region of zoomed-in subtle structure and the region of zoomed-in lesion, respectively. The red circles and arrows are the suggested region for comparison.

The comparison of zoomed-in subtle structure The comparison of zoomed-in lesion (Pulmonary Nodule) 
LDCT RED-CNN MAP-NN Ours NDCT LDCT RED-CNN MAP-NN Ours NDCT

LDCT RED-CNN MAP-NN Ours NDCT

Fig. 7. The visual comparisons for zoomed-in subtle structure and lesion, in terms of an example of the chest. The green box and yellow box are the region
of zoomed-in subtle structure and the region of zoomed-in lesion, respectively. The red circles and arrows are the suggested regions for comparison.

IV. DISCUSSION

Compared with existing deep learning-based LDCT denois-
ing methods, the superiority of our proposed method can
be summarized in four parts. First, our proposed model is
designed to imitate the behavior of radiologists and their work-
flow deeply, by comprehensively integrating the local, non-
local, and context information for LDCT image denoising. By
contrast, existing models lack the introduction of radiologist’s
behavior or workflow. Second, via the radiologist-inspired
workflow, the proposed model shows the best adaptive and
generalized capacity despite complex clinical environments
(As shown in Figure 4, our proposed model has the most com-
petitive performance under the challenge of dose mismatch
between training set and test set). Third, how to balance the
detail preservation and the level of noise removal is always a
dilemma for existing deep learning-based models. However,
our proposed model not only preserves the subtle structure
and the lesion but also achieves the closest texture to NDCT
(The texture can be regarded as the level of noise removal. If
the level of noise removal is very high, the texture of denoising

result will be very smooth). This adaptive capacity may benefit
from the introduction of graph convolution, which also can be
regarded as learnable Non-local Means [33] (that has perfect
adaptive ability as a non-deep-learning method). Fourth, our
double-blind study is completely based on the evaluations of
lesion region. We believe that this is more valuable for clinical
purposes.

To the best of our knowledge, we are the first to attempt
to integrate the radiologist-inspired workflow into a deep
neural network. In the future, we believe that more potential
radiologist’s behaviors should be considered to take further
improvements such as generalized capacity and robustness. In
addition, in real clinical environments, various scan conditions
(such as the differences of vendor, reconstruction type, and
imaging parameters) will inevitably present a huge challenge
for LDCT images denoising. We must be careful about this
and design some methods to address it. In practice, we highly
recommend using the double-blind reader study to evaluate
different denoising methods, because existing objective met-
rics such as Peak Signal-to-Noise Ratio (PSNR) and Structural
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Similarity Index Measure (SSIM) can not fully reflect the
quality of denoising results (For example, the over-smooth
result usually has a high PSNR score). However, the double-
blind study will take a lot of time for radiologists. We thus
need some better objective metrics, especially for the region
of lesion.

V. CONCLUSION

In this study, we propose a novel deep learning model
named radiologist-inspired deep denoising network (RIDnet)
to imitate the workflow of a radiologist reading LDCT images.
A double-blind reader study on a public clinical dataset shows
the effectiveness of proposed model. As a physicians-inspired
model, RIDnet gives a new research road map that takes into
account the behavior of physicians when designing decision
support tools for assisting clinical diagnosis.

REFERENCES

[1] T. M. Buzug, “Computed tomography,” in Springer Handbook of Med-
ical Technology. Springer, 2011, pp. 311–342. I

[2] C. Lischer, U. Walliser, P. Witzmann, M. W. Eser, and S. Ohlerth,
“Fracture of the paracondylar process in four horses: advantages of ct
imaging,” Equine veterinary J., vol. 37, no. 5, pp. 483–487, 2005. I

[3] D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling
polymer-coated gold nanoparticles as a contrast agent for in vivo x-
ray computed tomography imaging,” Journal of the American Chemical
Society, vol. 129, no. 24, pp. 7661–7665, 2007. I, II-D, II-D

[4] V. Rosso, N. Belcari, M. G. Bisogni, C. Carpentieri, A. Del Guerra,
P. Delogu, G. Mettivier, M. Montesi, D. Panetta, M. Quattrocchi et al.,
“Preliminary study of the advantages of x-ray energy selection in ct
imaging,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 572, no. 1, pp. 270–273, 2007. I, II-D1

[5] M. S. Pearce, J. A. Salotti, M. P. Little, K. McHugh, C. Lee,
K. P. Kim, N. L. Howe, C. M. Ronckers, P. Rajaraman, A. W.
Craft, L. Parker, and A. Berrington de González, “Radiation exposure
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APPENDIX A
THE OPTIMAL NUMBER OF RIDNET

It is very important to determine how many RIDnets are
optimal for denoising. To this end, we construct 5 models.
They have 1, 2, 3, 4 and 5 RIDnets, respectively. For evaluation
metrics, we use state-of-the-art Radiomics features, including
the contrast and the dissimilarity. The contrast reflects the
clarity of the image and the local feature of the texture. The
correlation measures the similarity of local gray level values.
We use the absolute loss between the contrast/correlation value
of NDCT images and that of denoising results to evaluate the
performance. For the contrast and correlation losses, the lower
the better.

As illustrated in Figure 8, we can find that the model with 3
RIDnets achieves the best performance compared with others.
Thus, in this paper, the adopted model is based on three
RIDnets, as shown in Figure 3.

APPENDIX B
THE OPTIMAL NUMBER OF K

In this paper, K denotes the number of non-local informa-
tion for a pixel. As shown in Figure 9 (a) and (b), we can find
that the contrast loss decreases gradually with the increasing
of K. The non-local information shows the effectiveness for
model. Meanwhile, too much non-local information may not
be useful. The losses of contrast and correlation generally
increases when the number of K is greater than 8. To this
end, the number of K is set to 8.

APPENDIX C
THE PROCESS OF MSE LOSS AND PERCEPTUAL LOSS WITH

TRAINING

As illustrated in Figure 10(a), we can observe that the
MSE loss converges gradually. The perceptual loss converges
oscillatingly, as shown in Figure 10(b).
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(a) (b)

Fig. 8. The results of optimal number of RIDnet. (a) The relation between contrast loss and the number of RIDnets. (b) The relation between correlation
loss and the number of RIDnets.

(a) (b)

Fig. 9. The results of optimal K. (a) The relation between contrast loss and the number of K. (b) The relation between correlation loss and the number of
K.

(a) (b)

Fig. 10. Analysis of model training(a) The process of MSE loss convergence (b) The process of perceptual loss convergence.
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