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Abstract

The pandemic by COVID-19 is causing a devastating effect on the health
of global population. There are several efforts to prevent the spread of the
virus. Among those efforts, cleaning and disinfecting public areas have be-
come important tasks. In order to contribute in this direction, this paper
proposes a coverage path planning algorithm for a spraying drone, a micro
aerial vehicle that has mounted a sprayer/sprinkler system, to disinfect ar-
eas. In contrast with planners in the state-of-the-art, this proposal presents
i) a new sprayer/sprinkler model that fits a more realistic coverage volume to
the drop dispersion and ii) a planning algorithm that efficiently restricts the
flight to the region of interest avoiding potential collisions in bounded scenes.
The drone with the algorithm has been tested in several simulation scenes,
showing that the algorithm is effective and covers more areas with respect
to other approaches in literature. Note that the proposal is not limited to
disinfection applications, but can be applied to other ones, such as painting
or precision agriculture.
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1. Introduction

The pandemic by COVID-19 is causing a devastating effect on global
public health. Because of that, various efforts have made to face it. Among
those efforts, cleaning and disinfection of public areas have been important.
Therefore, tools that facilitate the task are needed. For this purpose, in the
automation field some tools has been provided, example of that are the di-
agnostic systems using computer vision and artificial intelligence techniques,
human support robots for the cleaning and maintenance of door handles, and
robotic automation for distribution of food and essentials [1, 2, 3]. Another
example is the disinfection task, which involves spreading a liquid that cleans
surfaces. To carry out the disinfection task in an autonomous fashion, a po-
sitioning system or robot moves an active sprinkler in such a way all regions
of interest (ROI) are covered [4]. Within positioning systems, the Unmanned
Aerial Vehicles (UAVs), also known as drones, have the ability to move in
three dimensions while they have a relative low-cost. In consequence, relative
large areas such as buildings, courts or halls can be disinfected quickly. See
Fig. 1 as an example of the disinfection of a basketball court.

An autonomous disinfection requires to integrate several techniques into
one single application that is executed before flight and also during flight.
Among them, this paper focuses on the planning technique, which is carried
out before flying and receives as input the ROI, the sprinkler system and the
vehicle’s capabilities in order to to determine a set of waypoints that will be
loaded in the on-board controller, so that in a next stage, the vehicle will flight
autonomously following the planned path. The core problem in the planning
stage is the coverage path planning (CPP). Which is defined as determining
a path for a vehicle so that the ROI is covered [5]. In addition, planning for
disinfection requires an adequate modeling of the sprinkler system, otherwise
disinfection is compromised.

1.1. Related work

Literature dealing with CPP for UAVs is as follows. M.E et al. [6] devel-
oped a system for spraying pesticides and fertilizers in open crop fields. The
spraying UAV was controlled through manual flight plans. The UAV had
a camera to capture remote sensing images, with the purpose of identifying
green fields and the edges of the crop areas. The remote sensing images were
analyzed by QGIS software to generate a map of the area. Keller et al. [7]
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Figure 1: Software in the loop simulation of a basketball court disinfection using the
proposed method and Gazebo simulator.

planned G2 feasible paths for an UAV provided with a camera by concate-
nating C2 curves in order to achieve persistent surveillance missions. An
augmented A* algorithm was used to find a cycle sequence for the surveil-
lance area of interest. This sequence was used in a B-spline curve generation
algorithm to develop smooth paths that satisfy curvature constraints. For
the same task, Xiao et al. [8] proposed a path planning algorithm based
on the continuous updating of the virtual regional field and its local gradi-
ents. This virtual field incorporated a Boolean function which contains the
information of the target regions and the obstacle information that forms a
logical map. When a nonzero gradient at each point is in the regional field,
the UAV finds the following target regions. Also, Stefas et al. [9] intro-
duced an autonomous aerial system on a multi-rotor UAV navigating on an
orchard for crop inspection. With a stereo camera yield data was collected
from the area of interest. For this, components for the UAV navigation, ob-
stacle detection and avoidance based on vision, and CPP were developed.
The autonomous aerial system used a global planner to enter, exit, and nav-
igate to the next tree, also integrates a local planner to navigate on the tree
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rows. By their part, Freitas et al. [10] combined area coverage planning
with path planning for biological pest control by releasing capsules with an
UAV. The locations to release the capsules in the infected areas were calcu-
lated using the hexagon as base geometry. The capsule was placed only if
its center was within the infected areas. Then, a capsule was placed in the
center of mass of each remaining sub-polygon of the previous step. Whereas
the path planning was achieved with ant colony optimization, guided local
search, and Lin-Kernighan algorithms. Furthemore, Gao et al. [11] proposed
a method to solve CPP for precise spraying in peach orchards. For that,
a binocular color depth sensor was used to acquire video images. Then, a
color depth fusion segmentation method based on the leaf wall area of the
color depth images was proposed. Additionally, image erosion was used to
delineate the two largest leaf wall areas as a ROI. The path of the spraying
UAV was planned by detecting the midpoint of the ROI spacing as the end
of the spray path. Also, Dong et al. [12] proposed an artificially weighted
spanning tree coverage algorithm for the trajectory planning of flying robots.
The robots simultaneously built their spanning tree, which grew toward the
center of inertia of the uncovered area while stayed away from the trees of
its partners. To go forward the tree, each robot iteratively evaluates the dis-
covered cells and then selects the one having a maximum weight. According
with this weighting, the selected cell is added to the spanning tree covering
an area. Furthermore, Skorobogatov et al. [13] presented an algorithm open-
source to divide any convex and non-convex polygon area into multiple parts,
including any number of no-fly zones. Later, trajectories for the UAV were
assigned. For the task, the UAV took pictures that were joined to obtain a
complete map after a flight. The algorithm had as input a polygon defining
the area of interest, the initial positions of the UAV, the mission parame-
ters, and a con-vex divisor function based on Hert and Lumelsky algorithm.
Moreover, Tang et al. [14] introduced a CPP method based on a Region
Optimal Decomposition (ROD) using a multi-rotor UAV in a maritime port
for concave polygons. They applied the ROD to a Google Earth image of
a port and combining the resulting sub-regions through an improved depth-
first-search algorithm. Then, a genetic algorithm determined the traversal
order of all sub-regions and connect the coverage paths. By the part, Yao
et al. [15] proposed a mission assignment scheme for the farmland spraying
problem by using multi-quadcopters. To solve the problem a mathematical
model for the mission assignment and a sequential quadratic programming
method to obtain the optimal solution were used. Thus, quadcopters can
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spray pesticides covering the farmland, but spraying is prohibited over areas
covered by different quadcopters. Phung et al. [16] formulated the inspec-
tion path planning problem as an extended Travelling Salesman Problem
(TSP) for an UAV. They introduced a discrete particle swarm optimization
(DPSO) algorithm using deterministic initialization, random mutation, and
edge exchange to resolve the problem. The UAV has a CCD camera to detect
potential defects or damages in the inspected area and, then, find the shortest
path for the inspection of the planar surface. They used parallel computing
for the velocity, position, and aptitude of the particles. The parallel pro-
gram was implemented on a Jetson board mounted on the UAV using the
MAVLink protocol. Muliawan [17] et al. proposed a path planning approach
for an UAV to carry out the spraying process in a plantation. A Modified
Particle Swarm optimization (PSO) algorithm is used for the spraying task.
The spraying process is carried out depending on the severity of disease of
the plantation, which ranges from moderate to low. Recently, Gonzalez et
al. [18] presented an approach to CPP for zigzag paths performed by an
UAV in a three-dimensional environment. An optimization process based on
the Differential Evolution (DE) algorithm is used in combination with the
fast marching square scheduler. The UAV kept a fixed altitude to obtain
images of a terrain, maintaining a homogeneous pixel size without overlap-
ping. From the obtained images, a method to generate the zigzag path was
used. Then, the DE algorithm optimizes zigzag path so that the steering
angle of the UAV is optimal, ensuring a minimal distance cost. Campo et al.
[19] proposed a data acquisition system using a low-cost Lightweight UAV
(LUAV) with a camera to cover areas of interest and obtain a continuous
map in crops. The LUAV optimized the coverage paths using a heuristic
strategy, where a waypoint for the navigation of the LUAV agent was the
center of the footprint of the camera. Zuo et al. [20] introduced a linear
programming model to maximize coverage area and minimize coverage time
for intelligence, surveillance, and reconnaissance missions with UAVs. In the
first stage, a mission planner determined the search pattern, point of interest
(POI), and the area of interest (AOI) for each UAV. In the second stage, the
mission planner assigns some AOIs and flight paths for each UAV in the mis-
sion. Lastly, the aggregated mixed-integer linear programming for the path
planning problem is solved by using the branch-and-bound algorithm in the
CPLEX solver. Shang et al. [21] presented a co-optimal CPP approach to
generate an aerial inspection path that optimized coverage of a 3D surface
and quality of the captured images, and reduced the computational complex-
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ity of the solver. The approach found the feasible paths for complete visual
coverage. Later, a collection of the sampled paths were introduced in a PSO,
which integrated the quality and efficiency of a coverage path in an objective
function. Then, the calculated path was transferred to a flight trajectory us-
ing the rapidly exploring random tree to avoid obstacles. Tamayo et al. [22]
designed and implemented a software system to plan low-cost drone coverage
for surveillance in agricultural or forested polygonal areas. The user spec-
ifies a start location and charging station (CS) locations. Then, the drone
took a video of the area and creates a binary grid representation of the ob-
served field. To minimize time to loading stations and field configurations,
the branch-and-bound algorithm was implemented, which finds a minimal
set of CSs that minimized distance and decomposed the field into Voronoi
regions. After that, it computed a path using the modified TSP algorithm
and constructs the paths. More recently, Biundini et al. [23] presented a
framework for CPP for inspection with UAVs. They designed a metaheuris-
tic algorithm based on point cloud data to inspect structures and coupling
3D reconstructions. First, the camera of the UAV captured a moving image
of the surface or ROI. The data of the structure is imported in point cloud
or mesh format. Then, the data removed outliers and reduced the points
of the optimization algorithm to identify the surface shape. After that, a
genetic algorithm created a waypoint mission. Lastly, the path was sent to
the UAV to start the flight, avoiding the UAV to waste energy. Popescu et
al. [24] designed a remote system to determine flooded areas through image
processing with fixed-wing type UAVs. The system integrated terrestrial and
aerial components. The fist one is a coordinator at a distance of the UAV,
which has a ground control station that communicated with more ground
data terminals, via internet, through a network of nodes for data acquisition
and communication. The second component corresponded to mobile nodes
and the UAV, which must perform area coverage and image processing tasks
during the mission. Thus, a deep neural network was used for texture anal-
ysis, color extraction, selection, and classification to provide the segmented
image and the relative size of the flood. Liu et al. [25] presented a navigation
solution for UAVs working as a team. The UAVs were mobile base stations
that flew around a ROI, performed the coverage task, and provided data
services to a set of ground POIs. Each UAV needed to maintain connectivity
with at least another UAV to avoid being isolated in the network. Then, a
framework based on reinforcement learning was introduced to control each
UAV. The UAVs were trained using environment state information, with the
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objective being to maximize the coverage for each vehicle, maximize the geo-
graphical fairness of all considered POIs or service points, and minimize total
power consumption without leaving the edge of the area using a reward func-
tion. Godio et al. [26] introduced an approach based on bio-inspired neural
networks to solve a CPP problem for surveillance and exploration in critical
areas with a fleet of rotary-wing UAVs. The bio-inspired neural network was
based on the propagation of the neuron dynamics of unvisited areas in all
the map to guide the vehicles toward unexplored locations. Each neuron
had a local cost and connection with neighboring neurons, considering the
unvisited areas, obstacles, and UAV position in the fleet.

On the other hand, papers concerning to spraying UAVs without consid-
ering CPP are introduced in the following. Huang et al. [27] developed a low
volume spraying UAV to apply crop protection products on specific growing
areas indicated to the MAV through GPS coordinates or pre-programmed
locations. Qin et al. [28] developed a similar system to spray pesticides in
fields and mountainous areas. Suryawanshi et al. [29] introduced a system
for agricultural fields which included a water pump connected to a fertilizer
tank monitored with a sensor. When a certain threshold was reached the
user was notified to fill the tank. In the work of Rao et al. [30] a semi-
autonomous agricultural spraying system for pesticides was developed. The
spraying system was connected to a control board, which in turn was con-
nected to an Arduino board, which generates pulses to activate a DC motor
and thus spray the pesticide. By they part, Uddin et al. [31] designed a sys-
tem to clean windows of high-rise buildings with an UAV (Quadcopter) based
on open source autopilot software and a LIDAR sensor. The drone sprayed
water and a microfiber brush did the washing of the windows. Vempati et
al. [32] presented an UAV for painting 3D surfaces in desired locations with
a spraying gun. A virtual reality interface is used to operate the system in a
room, where the user could walk and interact with virtual objects. Zhang et
al. [33] used a four-rotor drone to spray pesticides on sugarcane crop. The
parameters took into account were spraying volume and height and speed of
the flight. Lastly, some trade spraying UAVs are described in Table 1.

Lastly, other important contributions associated with flight controllers
for UAVs and spraying methods are found in [39, 40, 41] and [42, 43, 44, 45],
respectively.
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Table 1: Main features of commercial sprinklers.

Sprinkler Features

Sprinkler SS600 Com-
mercial Agriculture
(Hexacopter) [34]

23 L tank. Covers up to 10 Ha/h. Integrates
4 nozzles. Flight time: 15-20min. 6 rotors of
100KV. Weight: 46.5kg. Payload: 24kg

Agras MG-1S Com-
mercial agriculture
(Octocopter)[35]

10 L tank. Covers up to 6 Ha/h. Integrates
4 nozzles. Flight time: 10-24min. 4 rotors of
130rpm. Weight: 8.0kg. Payload: 10kg

DJI Agras T16 Com-
mercial Agriculture
(Hexacopter)[36]

16 L tank. Covers up to 10 Ha/h. Integrates
8 nozzles. Flight time: 10-18min. 6 rotors of
75rpm. Weight: 18.5 kg. Payload:40.5kg.

DRONEHEXA-
AG Phytosani-
tary treatments
(Hexacopter)[37]

16 L tank. Covers up to 2 Ha/v. Integrates
4-8 nozzles. Flight time: 10-18min. Weight:
12.4 kg. Payload:32kg

Sprinkler GAIA
160AG Agriculture
(Hexacopter)[38]

22.5 L tank. Covers up to 10 Ha/h. Integrates
4 nozzles. Flight time: 18min. 6 rotors of
100KV. Weight: 24 kg. Payload:46.5kg.

1.2. Proposal

After reviewing the literature on CPP for UAVs and spraying UAVs, it
was found two fashions: i) The one focusing on solving the CPP problem
for UAVs, and ii) the second one concerning the spraying task without con-
sidering the CPP problem. However, the first fashion is mainly dedicated
to applications on surveillance, obstacle avoidance, inspection, mapping, and
reconnaissance of areas. Only four papers were dedicated to the CPP prob-
lem addressing the spraying task [6, 11, 15, 17]. In general, for crop areas,
they do not consider the model of the sprinkler neither the collisions that
may occur in the surrounding area. Also, those papers do not model the
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footprint of the sprinkler and some are limited to certain shape of the terrain
to perform the spraying task. In order to contribute in this direction, partic-
ularly to provide an spraying system for the autonomous disinfection useful
to face the pandemic by COVID-19, this paper integrates the aforementioned
fashions, developing a CPP method which allows disinfecting convex regions
with an UAV. The method consist on a polygonal decomposition through
an improvement of the algorithms introduced in [46, 47, 48]. The improve-
ment erodes the polygon area avoiding collisions and visits regions omitted
by the original method. For that, the sprinkler is modeled as a 3D paraboloid
whose intersection with the ground creates a disinfection footprint, which is
an input parameter of the CPP algorithm. Another inputs of the algorithm
are the kinematic model of the spraying, the shape of the terrain, and the
UAV parameters. Then, the CPP algorithm computes the waypoints of the
shortest coverage path including take-off and landing points for the area of
interest. Lastly, the computed path is sent to an on-board controller via
MAVLink to be executed by the UAV. To the authors’ best knowledge, this
is one of the first algorithms for automatically disinfecting urban areas that
avoids collisions with the surrounding building.

1.3. Paper organization

The rest of the article is presented as follows. In section, 2 we present our
novel method for path planning. Section 3 describes the experiments that
were carried out including a software in the loop simulation due to mobility
restrictions. Finally, section 4 presents our conclusion and future research
directions.

2. Coverage path planning.

In this section, we present our method for automatically disinfect a two
dimensional area with a unmanned aerial vehicle that carries a sprinkler. The
proposed method is composed by several parts, see Fig. 2. First, we compute
a sprinkler model using a regression approach that fits data obtained from
the drops distribution to a paraboloid shape. Then, the sprinkler model
the ROI shape and the vehicle’s capabilities are used to plan a path. The
path, given by a set of waypoints, is loaded to the on-board controller that
guides the vehicle through the set of waypoints. Below, we first introduce
the sprinkler modeling and then we present the coverage path planning.
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Sprinkler Model

Terrain Shape Coverage Planning Path On-board controller

UAV’s Capabilities

OFFLINE ONLINE

Figure 2: General workflow diagram of coverage path planning for area disinfection.

2.1. Sprinkler modeling

There are several ways to model a sprinkler system depending on the
application and system characteristics [49]. In this work, we assume that
only one sprinkler is mounted on the MAV and that the vehicle’s altitude is
relative small; for closed areas, the ceiling limits the altitude ; and for open
areas the flight altitude should be also small, otherwise the liquid effectiveness
can be compromised. See Fig. 3. Therefore, we model the kinematics of the
sprinkler’s coverage field as a rigid body governed by the equations of a
inverse paraboloid:

z = −Ax2 −By2 + h (1)

where h is the drone altitude and A and B are parameters that define the
amplitude of the paraboloid. Fig. 3 shows the proposed model.

This model is closer to the reality w.r.t. previous models such as squares
or cones. However, a deterministic model is still limited because in real sprin-
klers, the dispersion effect is much more complex given that many variables
contribute to the drop’s fall [49]. To insert such variability in our model,
we consider the drop’s fall as a stochastic process that affects the paraboloid
shape, in consequence, we update eq. (1) with a random noise.

z′ = −Ax2 −By2 + h+ εσ (2)

where εσ is a random error from a normal distribution with zero mean, µ = 0,
and standard deviation equal to σ. Fig. 4b shows an example of this noisy
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( r )

Nozzle

UAV

 Footprint

Disinfectant 
liquid

Figure 3: Paraboloid model of the disinfecting area. The footprint of the sprinkler is given
by a circle of radius equal to r.

model.
In many cases, the sprinkler is not characterized by the maker, however,

a model fitting can be carried out so that the parameters A and B can be
inferred using data from the drop’s fall for a given sprinkler. In this method,
we use the Levenberg-Marquardt Algorithm [50] for finding the paraboloid
parameters (Â, B̂). Fig. 4c shows an example of a fitted model for a given
set of observed drops.

Next, let us assume that the terrain is horizontal, therefore, given the
position of the vehicle, the spray footprint on the ground is determined by
the intersection of the fitted paraboloid, equation (1), and the floor plane.
In general, such footprint is described by an ellipsoidal shape. However, we
restrict the intersection between the paraboloid and the floor to a circle.
Look at Fig. 3. The circle is the biggest one that fits into the ellipsoidal
intersection. This restriction has several vantages: i) the plan is conservative,
meaning that in the worst case more area is disinfected, ii) the path planning
is simplified and iii) the processing efficiency is improved. A more detailed
plan considering irregular footprints is left for future work. In summary, the
footprint forms a circle, where its limit is given by the circumference with
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(c) Fitted paraboloid.

Figure 4: Sprinkler model based on paraboloid equations for a MAV at three meters. The
paraboloid bounds the volume covered by the sprinkler. Units are in meters. Figure best
seen in color.

equation:

r2 = (x− a)2 + (y − b)2 (3)

where r is the circle’s radius. The proof of the intersection between the
paraboloid and the plane is straightforward, so it is omitted. Then, from
now on, the area that is sprayed inside the circle will be called as the drone’s
footprint. Once the vehicle is moving, the footprint evolves to a disinfected
lane.

2.2. Path planning

Once the footprint has been stablished, the coverage path planning is de-
fined as computing a vehicle’s path in such a way that the ROI is completely
covered by the footprint. The ROI is defined as a convex polygon, whose
area is bigger than the footprint. Otherwise, the path is a single point. In
addition, a constraint is that the vehicle must stay inside the ROI, e.g., for
indoor scenes, the robot must avoid collision with doors and walls.

To solve the problem, we propose a method based on back and forth
paths. This strategy simplifies the problem to finding a path composed by
straight movements, called flight lines, in a similar way than a boustrophedon
covers a terrain [51]. The method is summarized in algorithm 1 and described
next. The requirements are the polygon (M), the footprint radius (r), the
takeoff point (s) and the landing point (e). First, the method establishes the
distance between flight lines, δ, as two times the foot print radius. By setting
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Algorithm 1: Coverage path planning for spraying drones.

Data: Polygon (M), radius (r), starting point or home (s), final
point(e), distance between lines (δ)

Result: Ruta (ρ)
δ ← 2r;
M ′ ← Erode(M ,r) ;
ρ← RCPP(M ′, δ, s, e);
ρ← ρ∪ Corners(M ′) ;

δ = 2r, we guarantee that there is no gaps between flight of lines. Unlike
previous literature [46], we do not require overlap between flight lines since
we assume that a single exposition to the spray is enough for disinfecting the
area. Second, the ROI’s polygon is eroded by a circular kernel of diameter
equal to r. See Fig. 5a. The new polygon is called M ′. M ′ facilitates
the planning given that its frontiers can be reached by the MAV without
colliding, in addition, the erosion diameter is equal to r because when the
drone reaches the frontier of M ′ the footprint is touching the frontier of
M . Then, we use a modified version of the rotating calipers path planner
(RCPP)[48] for computing a path, ρ, that covers M ′. See Fig. 5b. RCPP
optimizes the flight of lines direction so that it gets the optimal path in linear
time w.r.t. the number of vertices in the polygon. In our implementation, we
connect flight lines over the frontier of M ′, unlike the original method where
the flight lines are connected by perpendicular sections, such perpendicularity
might lead the MAV outside M ′, in consequence the drone could collide with
the environment. Finally, we modify the computed path by adding a tour of
the M ′ vertices before e, this tour covers some areas left in the path ρ which
is an implicit defect of the back-and-forth planners that deal with delimited
regions [5]. See Fig. 5c.

3. Experiments

In this section, we present several experiments for validating our method.
First, we test the method with several polygon shapes, then, we simulate the
execution of the paths using the Gazebo simulator. At the same time, we
compare the computed paths against the Torres’ algorithm [46].
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(a) Original polygon (blue)
and eroded polygon (red).

(b) First section of the cov-
erage path forming a back
and forth pattern.

(c) Second section of the
coverage path to fill missed
areas.

Figure 5: Illustrations of the path computed by the proposed algorithm.

3.1. Random polygons experiment

In this experiment, the proposed method is tested with six different poly-
gons, the polygons were constructed randomly but the planning parameters
were set by using close to reality parameters. The objective is to show that
the method can deal with several shapes. The polygons and computed paths
are displayed in Fig. 6. Additionally, the distance traveled and the flight time
in simulation are shown for each random polygon using the Torres’ algorithm
[46] which is a popular choice for CPP.

Table 2 summarizes the results of the method with six polygons that
have a different number of vertices and a constant sensor radius. The table
also includes the data obtained from SITL(software in the loop) simulation
with Gazebo. The colums in the table display the name of the polygon,
the number of vertices, the sensor radius, the distance between flight lines,
the total traveled distance of our method, the simulation flight time of our
method, the total traveled distance of the computed path by Torres and the
simulation flight time of the Torres’ path.

In Figure 6, we can see that the paths cover the polygons and that they
are oriented to reduce the distance traveled. The erosion function is carried
out on the polygon, represented by the border in blue, in order to avoid col-
lisions during the vehicle’s trajectory. The processing time for the proposed
approach is 0.06 seconds in average, while the time for Torres’s algorithm is
0.136 seconds.

The algorithm works for different shapes or different number of vertices.
It is also observed that to the right of each polygon are the polygons generated
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(a) Computed path. (b) Torres’ path. (c) Computed path. (d) Torres’ path.

(e) Computed path. (f) Torres’ path. (g) Computed path. (h) Torres’ path.

(i) Computed path. (j) Torres’ path. (k) Computed path. (l) Torres’ path.

Figure 6: Comparison of computed paths by Torres et al. [46] versus our proposed ap-
proach. Torres paths are displayed in blue lines and our computed paths are displayed in
red lines. Figure best seen in color.

with Torres’ algorithm [46], the paths are represented in lines in blue, flight
lines go outside of the area of the polygon, which would represent collisions
in a real environment.

3.2. 3D simulation

The objective of this experiment is to validate that the method works in
a more realistic simulation. See Fig. 7. Due to the current situation, it was
not possible to run the experiments in a real vehicle. However, the Gazebo
simulator was configured with closest to reality parameters. In addition, we
want to provide a qualitative display of the planned task.
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(a) Planned path. (b) Online excecution of the path.

Figure 7: Software in the loop simulation (SITL) where the vehicle in Gazebo simulator
is commanded through the MAVLink protocol. Once the path is loaded in the on-board
controller, it flights autonomously.

We draw a polygon on the edge of the area surrounding one of the Bi-
centennial Park basketball courts located in Mexico City using the Mission
Planner software. Later, the coordinates define the ROI. Next, the coor-
dinates are converted from geodetic coordinates (latitude, longitude, and
height) to NED coordinates (North, East, and Down). The erosion function
in the algorithm is in charge of reducing the border of the area that will
depend on the radius of the sensor, and once it has the area, it continues to
the creation of the flight lines. However, it is required to visit all the areas
so that as much as possible is covered. The algorithm adds the nodes of all
the polygon vertices to cover areas without visiting. Then a conversion from
NED coordinates to geodetic coordinates is performed again to add these
coordinates to a waypoints file. The Gazebo simulator uses the waypoints
file to carry out the path over the court.

Subsequently, for this simulation, SITL was used in collaboration with
the Gazebo 9 simulator to see the area in 3D. In this simulation, the Quad-
copter 3DR Iris was used. The height set during the simulation was 10
meters. The speed of the drone is 2m / s. The start takeoff set with the
coordinates 19.467468, -99.193345. Additionally, a basketball court model
made for Gazebo allows to evaluate the behavior of the UAV in a virtual
environment.
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Table 2: Results for each tested polygon. The columns indicate N for number of vertices,
r for sensor radius, δ for distance between flight lines, sim. t for simulation flight time and
d total for total traveled distance,

Polygon N r δ D to-
tal

sim. t D total
[46]

sim t [46]

A (6a) 3 1.5 3.0 91.4m 6:09 min 90.0m 6:20 min

B (6c) 4 1.5 3.0 91.8m 5:44 min 94.0m 5:26 min

C (6e) 6 1.5 3.0 138.2m 7:53 min 128.9m 8:11 min

D (6g) 8 2.0 4.0 144.7m 8:56 min 141.4m 9:20 min

E (6i) 9 2.0 4.0 158.7m 9:30 min 153.3m 9:36 min

F (6k) 10 2.0 4.0 167.6m 10:07 min 165.9m 10:17 min

It was observed in the experiment that the vehicle covered most of the
basketball court area without going out of the contour, thus avoiding some
collision. In total, it covered an area of 59.4966 meters in a time of 3:46
minutes. In the video, you can see the detailed simulation of this experiment.

3.3. Discussion

The distances computed by both methods are similar and it cannot be
declared that one algorithm is better in terms of total distance. Hosever,
our algorithm makes a final tour around the area, to cover missing areas, in
addition, this proposal, the vehicle does not go outside the ROI compared
versus Torres et al.[46]. This is an important characteristic, because our
method will avoid collisions in a real scene. About the simulation time, our
algorithm performs the path in less time, which represents an advantage.
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4. Conclusions

A method for planning a two dimensional area disinfection with a micro
aerial vehicle has been presented. Our method extends previous research by
including a more precise sprinkler modeling and restricts the vehicle flight
inside the region of interest. Through several experiments, we have validated
our method; in those experiments, we observed that the vehicle maximizes
the area of disinfection in despite of the area shape. The method has shown
to be efficient enough for being implemented in on-board systems with low
computational capacity. For future work, we plan to extend our method for
non-convex polygons and to carry out experiments with a physical platform.
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