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Abstract

Background and Objective: The new type of coron-
avirus is also called COVID-19. It began to spread at the
end of 2019 and has now spread across the world. Until
October 2020, It has infected around 37 million people and
claimed about 1 million lives. We propose a deep learning
model that can help radiologists and clinicians use chest X-
rays to diagnose COVID-19 cases and show the diagnostic
features of pneumonia.

Methods: The approach in this study is: 1) We propose
a data enhancement method to increase the diversity of the
data set, thereby improving the generalization performance
of the model. 2) Add a self-attention mechanism to the DPN
network. The addition of a self-attention mechanism has
greatly improved the performance of the network. 3) Use
the Lime interpretable library to mark the feature regions on
the X-ray medical image that are help doctors more quickly
diagnose COVID-19 in people.

Results: Under the same network model, the data with
and without data enhancement is put into the model for
training respectively. At last, comparing two experimental
result: among the 10 network models with different struc-
tures, 7 network models have improved their effects after
using data enhancement, with an average improvement of
1% in recognition accuracy. We propose that the accuracy
and recall rates of the DPN-SE network are 93% and 98%
of cases (COVID-19 vs. pneumonia bacteria vs. viral pneu-
monia vs. normal). Compared with the original DPN, the
respectively accuracy is improved by 2%. In terms of pic-
ture interpretability, our interpretability model can mark the
key feature areas of the X-ray image.

Conclusion: The data augmentation method we used
has achieved effective results on a small amount of data
set, showing that a reasonable data augmentation method
can improve the recognition accuracy without changing the
sample size and model structure. Our proposed network
model DPN-SE with increased attention mechanism struc-
ture can improve the recognition accuracy on the original
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basis. Overall, the proposed method and model can effec-
tively become a very useful tool for clinical radiologists.

1. Introduction

At the end of 2019, a series of new type pneumonia
cases was identified, which was caused by the novel coron-
avirus that was first discovered in 2019.This epidemic was
declared constitutes a Public Health Emergency of Inter-
national Concern in on January 2020 and it was officially
named as COVID-19 on February 2020 by WHO [1]. Then
COVID-19 began to spread worldwide. Until October 2020,
there are 37 million confirmed cases and 1 million people
have lost their lives.

Coronaviruses are a group of viruses that cause respira-
tory tract infections. These viruses are very common in an-
imals, but in some cases it can mutate to infect humans, and
then spread rapidly among people. SARS-CoV-2(The virus
cause the COVID-19]2]) is the seventh known coronavirus
that can infect humans. SARS-CoV-2 can cause respiratory
tract infections, Intestinal infections and fewer neurologi-
cal symptoms. Some infected person of SARS-CoV-2 may
faces various sequela after recovery.

After the outbreak of the epidemic, the confirmed cases
increased exponentially. As of 6:30 am September 22nd
in Beijing time, there are 31,452,367 confirmed cases re-
ported around the world, tragically 968,239 people around
the world have lost their lives to this virus and 96 coun-
tries confirmed more than 10,000 cases. In the Ameri-
cas, U.S. Covid-19 death toll approach 200,000. In Africa,
the epidemic in Morocco rebounded after loosening con-
trol measures.At present, the epidemic is still spreading all
over the world, and the risk of sporadic cases and local out-
breaks in China still exists. On September 18, 2020, at the
Zhongguancun Forum Global Science and life healthforum,
Zhong Nanshan, academician of the Chinese Academy of
engineering, revealed that the epidemic may still exists in
this winter and next spring. It also means that COVID-
19 and respiratory diseases such as influenza will come to-
gether with the advent of autumn and winter. The task of
prevention and control epidemic will be very difficult.



Current evidence suggests that the primary way the virus
spreads is by respiratory droplets[3l 4] among people who
are in close contact with each other. The incubation pe-
riod of COVID-19 is generally 1 to 14 days, and the longest
is 24 days. In order to effectively prevent and control the
epidemic, we not only need to wear masks, wash hands fre-
quently, measure body temperature every day, but also need
to trace the source of the virus.

In the early stage of the outbreak, due to the explosive
growth of the number of confirmed cases, the demand for
suspected case diagnosing also increased, which put great
pressure on the medical system with scarce medical re-
sources. The COVID-19 detection reagents currently ap-
proved for use mainly include two types, one is nucleic
acid detection reagent, and the other is antibody detec-
tion reagent. Nucleic acid detection is the main detection
method at present, but it takes at least a few hours and a
maximum of several days, and it has a high professional
threshold for operators. And a more fatal drawback is the
high probability of false negatives using nucleic acid test-
ing. The advantage of antibody detection is that it takes a
short time and the risk to medical staff is lower. However,
in the early stage of virus infection, antibody may not be
produced in human body, which makes the detection win-
dow period exist and there is the possibility of missing de-
tection. Therefore, antibody detection is generally used for
auxiliary detection of negative cases that test by nucleic acid
or rapidly screening potential cases in the population, but it
cannot replace nucleic acid detection.

The limitations of detection methods and the current
global epidemic situation encourage us to try to propose a
deep network learning model [4}|5.16]. We use self-attention
mechanism and advanced image classification algorithm to
intelligently diagnose and quantitatively evaluate X-ray im-
ages, and marked the severity of various pneumonia dis-
eases including local lesions, diffuse lesions and whole lung
involvement,which can help doctors identify lesions more
quickly and accurately. The model focus on the lesion site,
doctors can directly focus on the labeled part and make di-
agnosis quickly, which greatly shortens the diagnosis time
of COVID-19.

2. Related Work

With the rise of artificial intelligence, deep learning has
been gradually used in health-related fields, and its wide use
in other fields has proved that deep learning can help peo-
ple solve some basic problems. In this chapter, we review
and summarize the literature on the application of artificial
intelligence technology to detect chest diseases

With the global outbreak of covid-19, people in differ-
ent fields have made different contributions to against this
epidemic. The pioneers of artificial intelligence through the
technology of image classification to classify chest CT and

X-ray images(7, 8, 9, [10, [11} [12] . Each other put forward
different deep learning network architecture to diagnose pa-
tients. With the rapid development of artificial intelligence,
computer classification of images has been proven to have a
higher accuracy rate than human eye recognition [[13] (many
network models have better classification effects on Ima-
geNet data sets than ordinary people’s judgment effects).
Many researchers are committed to improving the detection
and analysis methods of various diseases by acquiring radi-
ology data sets and applying data science classifiers

Hemdan [14] used a deep learning model to diagnose
COVID-19 in X-ray images and proposed a COVIDX-Net
model with 7 convolutional layers. Wang and Wong [15]
proposed a deep model (COVID-Net) for COVID19 detec-
tion, which achieved 92.4% accuracy when classifying nor-
mal, non-COVID pneumonia and COVID-19. Ioannis de-
veloped a deep learning model using 224 COVID-19 im-
ages [16]. Their model achieved accuracy rates of 98.75%
and 93.48% in 2 and 3 categories, respectively. Narin used
chest X-ray images coupled with the ResNet50 model to
obtain 98% COVID-19 detection accuracy [17]. Sethy and
Behera used a support vector machine (SVM) classifier to
classify features obtained from various convolutional neu-
ral network (CNN) models using X-ray images [18]. It
shows that the ResNet50 model with SVM classifier has the
best performance. Finally, there are some recent studies on
COVID-19 detection. These studies use various deep learn-
ing models with CT images [19, 20} 21} 22} 23] [24]].

Li designed the COVNet neural network for COVID-19
detection to extract visual features from CT images [25].
Their model uses a RestNet50 network with input CT im-
ages. They performed 4,356 chest CT scans on 3,322 pa-
tients (1296 CT scans for COVID-19, 1,735 CAP and 1,325
non-pneumonia), with an accuracy equal of 0.96.

Fan et al. proposed an Inf-Net[26] segmentation model
to automatically identify infected areas from CT slices. In
Inf-Net, a parallel partial decoder is used to aggregate the
high-level features and generate a global map. Then, the
implicit reverse attention and explicit edge-attention are uti-
lized to model the boundaries and enhance the represen-
tations. The first model is a network based on ResNet18,
then the second model is designed on the first network to
construct a structure by connecting the location attention
mechanism in the fully connected layer, with the purpose
of improving the overall accuracy. Their dataset consists of
1,710 CT images, including 357 COVID-19, 390 influenza
A viral pneumonia, and 963 normal.

3. Method

In this section, we will discuss the data processing meth-
ods, the implementation of model architecture and training
methods.
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Figure 1 — Overview of the Data Augmentation. Stepl: Scale the narrow side of the image to size 224; Step2: Randomly tailoring a
picture of size [224, 224] from an image of [224, n] or [n,224]; Setp3: The [224, 224] size picture is processed by affine transformation:

flip, rotate, scale.

3.1. Data Augmentation

Because it is difficult to obtain chest X-ray images of
patients with new coronary pneumonia, we have collected
fewer chest X-ray images of patients with new coronary
pneumonia (the training set contains 1119 images, and the
test set contains 293 images, for a total of 1412 images).
Using a small number of data to train the network model
can easily cause the model to overfit, resulting in very low
recognition accuracy on the test set. In the field of com-
puter vision, image enhancement is a common implicit reg-
ularization technique to reduce overfitting in deep convolu-
tional neural networks, and is widely used to improve the
performance of benchmark datasets.[27, 28].

Common image enhancement methods include certain
variations and combinations of flipping, rotating, scaling,
and cropping. Different fields, imaging methods and tasks
may benefit from a variety of image transformations and
combinations [27]]. For example, in the medical image anal-
ysis done in this article, compared with natural images, the
data set is usually small and difficult to obtain, and the de-
tails in the image are very important, which may be the ba-
sis for doctors to distinguish diseases. So when we do data
enhancement, we should not modify the original image too
much, otherwise the details on the x-ray image will be elim-
inated. After many attempts in the experiments of this pa-

per, it is found that the data enhancement process shown in
Fig. [T] can achieve better results. The whole process goes
through three steps, stepl: Scale the narrow side of the im-
age to size 224; setp2: Randomly tailoring a picture of size
[224, 224] from an image of [224, n] or [n, 224] size; setp3:
The [224, 224] size picture is processed by affine transfor-
mation: flip, rotate, scale.

3.2. Network Model

In this section, we will discuss the whole network frame-
work, which is based on the convolutional neural network in
deep learning to classify covid19 x-ray images. The overall
framework is shown in Fig.[2] The main framework of the
network is the DPNNet [29], and the structure is shown in
Figure 1. This network combines the advantages of ResNet
[30] and DenseNet [31], and won the championship in the
2017 ImageNet classification competition [32]]. In this pa-
per, we use a 92-layer DPN network, which started with a
7*7 convolutional layer and maximum pooling layer. Then
there are 4 stages, each stage is composed of multiple sub-
stages. The core idea of substage is to integrate ResNet
and DenseNet. ResNet: focuses on the reuse of features
and the sharing of parameters; DenseNet: focuses on the
discovery of new features and Achieve complementary ad-
vantages and disadvantages. Followed by an average pool-
ing layer and a fully connected layer, and finally a softmax
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Figure 2 — Network overall framework diagram

layer. However, because DPN-92 is composed of a large
number of convolutional layers, and the convolution kernel,
as the core of the convolutional neural network, generally
can only obtain feature maps from the local receptive field,
which lacks the characteristics of the global receptive field.
So we introduced the attention mechanism network on the
basis of DPN-92.

The human attention visual mechanism uses limited at-
tention to quickly screen high-value information from a
large amount of information. The attention mechanism in
deep learning is essentially similar to the selective visual
attention mechanism of humans. Its core goal is to select in-
formation that is more critical to the current task goal from
a large number of information. At present, the attention
mechanism network has been widely used in various deep
learning applications such as natural language processing,
image recognition, and speech recognition. In this article,
we use the senet attention mechanism network.

Senet is mainly composed of three parts: compression
part, excitation part and reweight part [33]. The compres-
sion part compresses the features along the spatial dimen-
sion, turning each two-dimensional feature channel into a
real number. This real number has a global receptive field
to some extent, and matches the dimension of the input and
the number of feature channels of the input. It represents
the global distribution of the response on the feature chan-
nel. This part is implemented using global pooling.

The incentive part is similar to the gate mechanism in
a recurrent neural network [4]]. A weight is generated for
each feature channel through parameters, and a correlation
between feature channels is modeled by learning parame-
ters. The last part is reweight, and we regard the weight
of the output of the excitation part as the weight of each

feature after feature selection The degree of importance is
then weighted channel by channel by multiplication to the
first input feature to complete the recalibration of the input
feature in the channel dimension. The senet network is in-
troduced into the DPN- 92 network, and the network part
becomes the DPN- SE network, as shown in Fig. E[

3.3. Model Explanation

With the rapid development of artificial intelligence, ar-
tificial intelligence has also had a profound impact on all
walks of life. From Meitu software to facial recognition
in train stations, systems built around artificial intelligence
have had a huge impact on medical care, transportation,
criminal justice, financial risk management, and other areas
of society. Although artificial intelligence is widely used,
machine learning models are still black boxes. Although
these models show capabilities beyond humans, we are not
yet sure what specific information in the input data will
make them make decisions. Deep learning models usually
contain deeply nested non-linear structures, making them
less transparent. The lack of transparency is not a problem
for AlphaGo itself. However, in areas where interpretabil-
ity and transparency are critical (such as medical diagnosis,
military and combat operations), the opacity of the model
greatly hinders the expansion of AI/ML.

From a broad perspective, interpretability [34}35] means
that when we need to solve a thing or make a decision about
it, we need to obtain information from this thing that can
be understood enough to help us make a decision. There-
fore, in this article, we need to clearly mark the basis for
the model judgment on the chest X-ray image, so that the
doctor can quickly find the lesion area and judge whether
the marked part is the basis for judgment.



Figure 3 — Network overall framework diagram

In the study of local interpretability of machine learn-
ing models, a representative method is Local Interpretable
Model-Agnostic Explanation (LIME) [36] proposed by
Marco Tulio Ribeiro et al. The main idea of LIME is to
use interpretability models (such as linear models, decision
trees) to locally approximate the prediction of the target
black box model. This method does not go deep into the
model. By slightly perturbing the input, detecting changes
in the output of the black box model, and training an inter-
pretable model at points of interest (original input) based on
this change. It is worth noting that the interpretability model
is a local approximation of the black box model, rather than
a global approximation, which is the origin of its name. The
mathematical expression of LIME is as follows:

explanation(x) = argmin L(f, g, mz) + Q(g)
geG

For the interpretation model g, we compare the approxi-
mation between ¢ and the original model f by minimizing
the loss function, where €(g) represents the model com-
plexity of the explanation model g,and G represents all pos-
sible explanation models(If we use linear models to explain,
G means all linear models),7x defines the realm of z.We
make the model interpretable by minimizing L. Among
them, the domain size and complexity of the model need
to be defined.

Below is a brief description of LIME’s workflow. In or-
der to be independent of the model, LIME will not go deep
into the model. In order to find out which part of the input
contributes to the prediction result, we will make a slight
disturbance around the input value and observe the predic-
tion behavior of the model. Then we assign weights based
on the distance of these disturbed data points from the orig-
inal data, and learn an interpretable model and prediction
results based on them. The demonstration diagram of this

process is as follows. The decision function of the origi-
nal model is represented by a blue/pink background, which
is obviously non-linear. The bright red cross indicates the
sample being interpreted (called X). We sample around X
and assign weights according to their distance to X (where
weight means size) We use the original model to predict
these disturbed samples, and then learn a linear model (dot-
ted line) to approximate the model well near X. Note that
this explanation only holds near X and is invalid for the
whole world.

4. Experiment

In this section, we will introduce the basic information
of the data set and analyze the experimental data results ac-
cording to the following aspects:

(1) Detect the effects of using data enhancement and un-
used data enhancement;

(2) Use the DPN-SE network model to test the recognition
accuracy;

(3) Use an interpretable model to highlight the key areas of
the X-ray picture of the new crown.

4.1. Dataset

The accuracy of model training largely depends on the
data set. COVID-19 is a new disease. We need to select
a large number of chest X-rays to allow our model to fully
learn the characteristics of the lungs. The X-ray images of
COVID-19 are available on GitHub by Joseph et al. [37].

The author collected chest X-ray images of new coronary
pneumonia from various real sources of the Radiological
Society of North America. Our data set is a four-category
data set, which not only contains chest X-ray radiographic
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Figure 4 — Model trained using resnet52 network structure (a)
without using data augmentation method(b) using data augmen-
tation method

images of new coronary pneumonia, but also contains bac-
terial pneumonia, viral pneumonia and normal pneumonia
from the Kaggle repository "Chest X-Ray Images (Pneumo-
nia) [38] Chest X-ray image. This data set consists of 1203
normal chest radiographs, 660 bacterial pneumonia chest
radiographs and 931 viral pneumonia chest radiographs.
The data set for our model training comes from the data set
compiled by [39]. Among them, the new crown Pneumo-

nia pictures: 304 pictures, normal pictures: 375 pictures,
bacterial pneumonia: 379 pictures, viral pneumonia: 354
pictures. In order to avoid over-fitting problems in the later
stage, we used data enhancement technology. The four cat-
egories of pictures are shown in Fig.[3]

4.2. Results and Discussion

In this study, the chest X-ray dataset mentioned in Sec-
tion 4.1 was used to train the model. The network struc-
ture we use is VGG16, ResNet, InceptionV4, DenseNet,
DPNNet and our own DPN-SE network with channel self-
attention mechanism added. First, compare the trained net-
work after data enhancement with the directly trained net-
work (the method of data enhancement is introduced in
section 3.1). In the experiment, all the network models
were trained for 100 epochs, and the cost loss graph was
observed, and finally reached the convergence state. The
four performance indicators for evaluating the classification
model are:

) B TN +TP ”
Y = TN TP+ FN + FP
TP
Recall = m (2)
TP
Precision = ———
recision = oo s (3)

Precision x Recall
F1-8 =2 4
core % Precision + Recall (@)

TN, TP, TN, and FN in formulas (1)-(4) represent the
number of true, false positive, true negative, and false nega-
tive, respectively. TP is the proportion of model prediction
results that are correctly marked as positive; FP is the pro-
portion of incorrectly marked as positive; TN is the propor-
tion of correctly marked as false, and FN is the proportion of
incorrectly marked as false (COVID- 19 is the positive cat-
egory, and the other categories are the negative category).

In Fig. ], we present the recognition results trained by
the DPN131 network structure in the form of a confusion
matrix (CM), a) the image is the recognition effect with-
out image enhancement, and b) the image is the recognition
effect with image enhancement. In the comparison of con-
fusion matrix a) and b), we can observe that after adding
data enhancement, the average accuracy rate has risen from
0.8089 to 0.8328. The accuracy rate for the COVID-19 cat-
egory rose from 0.92 to 0.97, the recall rate rose from 97to
98, and the F1-score rose from 94% to 98%. Several other
categories of indicators have also increased. In order to add
more verification examples, we used other models for com-
parison. As shown in Table.1, a variety of different net-
work models are used to test the effects of data enhancement
and unused data enhancement. The evaluation indicators in-
clude accuracy, precision, recall, F value The calculation of
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the indicator counts the COVID-19 category as a positive
example, and the others as a negative example).

As can be seen from the data in Table. [T} we have used
10 network models such as ResNet, DenseNet, DPNNet,
VGG16, Inceptionv4, etc. to test. The recognition accu-
racy of most models is above 80%. Comparison of network
models using ResNet50. If the data set without data en-
hancement is used to train the network, the average accu-
racy obtained is 79%, the precision is 0.92, the recall rate
is 0.98, and the F-measure is 0.95. If the network is trained
on the data set processed by data enhancement, the average
accuracy obtained is 80%, the precision is 0.97, the recall
rate is 0.98, and the F-measure is 0.98. It can be seen from
the comparison that after data enhancement processing, the
trained network model can improve the recognition accu-
racy by 1%. Among the 10 network models displayed in to-
tal, the recognition effect of 7 network models has improved
after data enhancement processing, the recognition effect of
2 network models has decreased, and the recognition effect
of 1 network model has basically remained unchanged. Fi-
nally, we can infer that after processing the x-ray sample
data using data enhancement methods, training the network
model can effectively improve the recognition accuracy of
about 1%.

Our purpose is to improve the recognition accuracy of
the network. In addition to using data enhancement to in-
crease the recognition accuracy, we also want to modify the
network model to increase the recognition accuracy. The
main framework of the network is DPN network [29]. We
use a DPN-92 network, which starts with a 7 * 7 convolu-
tion layer and a maximum pooling layer, and then there are
four stages, each stage is composed of multiple substages.
On the basis of DPN-92, attention mechanism network is
introduced. The data set during training is processed by the
data enhancement described in Section 3.1

As shown in Fig. [f] we show the confusion matrix of
the recognition effect of the classic DPN network and the
modified DPN-SE network with the self-attention mecha-
nism added. Table [2] shows the accuracy, precision, re-
call rate and F-measure of DPN on the test set. Table [
shows the accuracy, precision, recall rate and F-measure of
DPN-SE on the test set. In the confusion matrix, it can be
seen that this test set has 64 cases of new coronary pneumo-
nia, 89 normal cases, 76 cases of viral pneumonia, and 64
cases of viral pneumonia. The classification performance
of viral pneumonia and bacterial pneumonia is lower than
that of the other two categories, resulting in a lower over-
all accuracy rate. If we combine bacterial pneumonia and



Model Data .E.nhancement Without I?a}ta Enhancement
Accuracy | Precision | Recall | Fl-score | Accuracy | Precision | Recall | Fl-score

Resnet18 0.77 0.96 0.80 0.87 0.78 0.90 0.93 0.92
Resnet50 0.79 0.92 0.98 0.95 0.80 0.97 0.98 0.98
Resnet101 0.81 0.94 0.97 0.95 0.78 0.98 0.90 0.94
DenseNet121 0.82 0.98 0.98 0.98 0.84 0.97 0.98 0.98
DenseNet201 0.87 0.98 1.00 0.99 0.86 1.00 1.00 1.00
DPN68 0.74 0.97 0.95 0.96 0.81 0.93 0.95 0.94
DPN92 0.80 0.89 0.98 0.94 0.80 0.94 1.00 0.97
DPN131 0.80 0.92 0.97 0.94 0.83 0.97 0.98 0.98
VGG16 0.79 0.91 0.95 0.93 0.81 0.93 0.95 0.94
InceptionV3 0.82 0.94 0.97 0.95 0.82 0.94 0.97 0.95

Table 1 — Use a variety of different network models to test the effects of data enhancement and unused data enhancement. The evaluation
indicators include accuracy, precision, recall, F value (precision rate, recall rate, F value and other indicators). -19 categories are regarded

as positive examples, others are false examples)

Class Precision | Recall | F-measure
COVID-19 0.98 0.98 0.98
Normal 0.92 0.95 0.94
Pneumonia Bacterial 0.1 0.87 0.78
Pneumonia Viral 0.72 0.51 0.60
Overall accuracy 0.82
Table 2 — Performance of DPNNet
Class Precision | Recall | F-measure
COVID-19 0.97 0.98 0.98
Normal 94 0.96 0.95
Pneumonia Bacterial 0.1 0.87 0.78
Pneumonia Viral 0.74 0.88 0.81
Overall accuracy 0.84

Table 3 — Performance of DPN-SE

viral pneumonia into pneumonia, the overall accuracy will
be significantly improved. The good news is that our de-
tection of new crowns and normal lungs has a high accu-
racy rate. The average accuracy rate on the DPN network
is 82%, the precision is 98%, the recall rate is 98%, and the
F-measure is 98%. On the DPN-SE network, the average
accuracy rate is 84%, the precision is 97%, the recall rate
is 98%, and the F-measure is 98%. The average accuracy
rate has improved by 2%. The positive results obtained in
the experimental data are about the high accuracy and recall
rate of the COVID-19 category. A higher recall rate means
a lower false negative (FN), and a lower number of false
negatives (FN) is the result we hope to get. This is very im-
portant because minimizing missed cases of COVID-19 is
an important goal of medical diagnosis. In general, when
the attention mechanism structure is added to the network

model, it can be observed that the average accuracy of the
DPN-SE network has increased by 2%, indicating that the
modified network model has played a role.

We need to clearly mark the features judged by the model
on the chest X-ray image, so that the doctor can quickly find
the lesion area and judge whether the marked part is the ba-
sis for judgment. Fig. [/| shows an example of activation
diagram that can explain model processing using lime. This
method does not go deep into the model. It detects changes
in the output of the black box model by slightly perturbing
the input, and trains an interpretable model at the point of
interest (original input) based on this change. Only x-ray
images and the model that has been trained can get the acti-
vation map. The decision of the Lime model is represented
by a red/blue background, in which the red area represents
the key feature that the classification model focuses on, and
the blue area is the area of unnecessary attention. It can be
observed from the figure that the red key feature areas are
basically distributed inside the chest cavity, which requires
special attention. The blue area is the non-pulmonary area
in the middle and edge of the body.

The environment we used for the experiment was
1080TiGPU, and it took 3s to analyze the category of a pic-
ture and visualize the activation map on a single GPU.

5. Conclusion

With the COVID-19 pandemic, the number of cases is
increasing. Many places are facing the challenge of short-
age of testing resources. In this article, we propose a deep
neural network model DPN-SE that uses chest X-rays to
identify COVID-19 cases. And for a small number of sam-
ples, data enhancement methods are used, and good results
have been achieved on the test set. Compared with DPN-
SE, DPN-SE has the same computational overhead as the
DPN network structure, but it improves the recognition ac-



coviD19

Normal

Bacterial

Viral

CcoviD19 Normal Bacterial Viral

(a)

coviD19

Normal

Bacterial

Viral

Bacterial

CcoviD19 Normal

(b) — 0.0

Figure 6 — (a) the results of DPNNet network model training (b)
the results of DPNN-SE network model training.

curacy by about 2%. When more training samples are used,
the performance can be further improved. The accuracy of
the recognition results of our model is very high, which is
believed to help radiologists have a deeper understanding of
case related to COVID-19.

(d)

Figure 7 — Examples of COVID-19 model activation maps.

Source code and dataset

In order for everyone to continue the research well, we
provide the code and data set for the experimental research.
The trained model and data can be obtained here:

https : //github.com/ChengBo5/covidl9 — X —
ray.git
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