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Abstract

The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives – cutting

across the boundaries of nation, wealth, religions or race. From the time of the first detection

of infection among the public, the virus spread though almost all the countries in the world in a

short period of time. With humans as the carrier of the virus, the spreading process necessarily

depends on the their mobility after being infected. Not only in the primary spreading process, but

also in the subsequent spreading of the mutant variants, human mobility plays a central role in

the dynamics. Therefore, on one hand travel restrictions of varying degree were imposed and are

still being imposed, by various countries both nationally and internationally. On the other hand,

these restrictions have severe fall outs in businesses and livelihood in general. Therefore, it is an

optimization process, exercised on a global scale, with multiple changing variables. Here we review

the techniques and their effects on optimization or proposed optimizations of human mobility in

different scales, carried out by data driven, machine learning and model approaches.
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I. INTRODUCTION

In the lack of any known treatment protocol or that of a cure, one of earliest responses

of the outbreak of SARS-CoV-2 or the COVID-19 disease [1] was to establish a boundary

around the epicenter of the outbreak (Hubei province in China) – a cordon sanitaire – on

January 23, 2020 to prevent the infection from spreading. It had, nevertheless, spread out,

triggering similar responses from various other countries at varying degree of duration and

scale of restrictions (see e.g., [2]). Many such restrictions exist till date, while some of it

were lifted either for a short or a longer time.

Indeed, cordon sanitaire is an old technique of infectious disease containment. The use

of the phrase goes back to 1821, when 30000 French troops were deployed by Duke de

Richelieu apparently to prevent yellow fever to spread from Barcelona to France [3], but its

first documented use dates even further back to 1523 in Malta [4]. With a varying degree of

successes in the past, the scale of its implementation has never been larger than the current

one – affecting almost the entire population on the planet. While it is still early to discuss

the full impact of such restrictions on different spheres of the society, it is possible to assess

some of the impacts of the restrictions on spreading of the disease, on early economic fallout

and the burdens placed on the health infrastructures.

It is possible to place the question of imposition and lifting of the cordon sanitaire as an

optimization problem. The gains it makes in terms of containing the spreading of infection,

the costs that need to be paid in terms of higher infections within the contained community

and the economic fallout due to halting of businesses and finally the constraints that the

corresponding health infrastructure is able to bear the burden of the growing infections,

are the parameters to be considered in the problem. We outline here the above mentioned

factors from the points of views of (a) early analysis of the data for COVID-19 and past

data of other epidemics, (b) study of compartmentalized models that capture the qualitative

picture in terms of few parameters, and (c) artificial intelligence (AI) and machine learning

(ML) approaches.

In the early stages of the spreading of COVID-19, data driven approaches were able to

trace the correlations of travel patterns and infection spreading (see e.g., [5]) in China. It

has a more well documented study for earlier epidemics (SARS [6], Ebola [7]) although in a

much smaller scale. Nevertheless, it is crucial to study these data driven approaches, given
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that the effects seen in the real data for the imposed restrictions were later used as inputs for

the various other approaches such as compartmentalized models and also as training sets for

ML approaches. Therefore, in sec. II we outline such studies that essentially correlate the

infection spreading with human traffic. The clear positive correlation in the early stages and

a subsequent anti-correlation [8] outlines the mechanisms of primary and secondary stages

of the infections, which are very useful insights for subsequent models.

The mathematical modeling of epidemic spreading also has a long history [9, 10]. It

was the pioneering physicist Daniel Bernoulli who first introduced the mathematical model

approaches of epidemic spreading [11] in 1766. Since then, the most used model have been

the Susceptible-Infected-Removed (SIR) model [12] and its other variants, generally called

compartmentalized models [13] – where the total population is divided into groups of pop-

ulations and the dynamics of the model proceeds through movements of the populations

between these compartments i.e., a susceptible individual can get infected and then subse-

quently recover and so on. Extensions of this model include introduction of other plausible

compartments e.g., exposed, representing individuals who came in contact with infected pop-

ulation but not yet showing symptoms. Even further divisions depending on the severity of

the infections can estimate the load of patients needing extensive medical attention. The

key parameters in these models are the rates at which the populations are relabeled from

one compartment to the other i.e., infection rate, recovery rate and so on. These parameters

are often estimated from the data driven approaches mentioned above. Also, the effects of

imposed restrictions are assumed to be mirrored in the variations in these parameters. The

models with such estimated parameters and their variations are then used to estimate the

spreading scale of the epidemic and the possible effects of movement restrictions. Further-

more, given the correlation of the scale of epidemic spreading and the negative impact on

economy (see e.g., [14]), it also gives an insight into the economic cost. Therefore, a dynam-

ical optimization of the imposed restrictions can be attempted. We outline these efforts in

sec. III.

Finally, a multidimensional set of data with many attributes is something that can used

for a systematic statistical trend analysis to gain insights that are not immediately apparent.

This brings in the machine learning approaches for the study of the real data for the pan-

demic. There are specific areas in which the AI-ML approaches can help in advancing our

understanding [17]. The early warning of the outbreak, the predictions for total infections
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FIG. 1. The figure on the left (reproduced from [8] with permission), depicts the relationship

between the human mobility and the rate of infection in China, before and after the imposition of

cordon sanitaire. There is a clear positive correlation between the two quantities before imposition

of restrictions. On the right hand side figure, simulations of SIR model with optimized mobility

of individuals among different regions of varying degree of risks (see [30]) are shown. For different

duration of travel restrictions (indicated by the start and end dates), the fraction of infected

individuals moved correlate strongly with total infection fraction.

and/or end-time for the pandemic, implementations of physical distancing are some such

areas. The outstanding challenge in these approaches is the lack of sufficient training data

sets that are reliable for a stable prediction. In the case of COVID-19, data from previous

epidemics (SARS, Ebola, Zika virus) were used in some cases with suitable adjustments (see

e.g., [18, 19]), in some other cases synthetic data from optimized parameters of a simplified

model [20] were also used. The successes and limitations of these approaches are discussed

in sec. IV.

II. DATA DRIVEN APPROACHES TO ASSESS EFFECTS OF TRAVEL RE-

STRICTIONS

In drawing any conclusion on the effectiveness of a mitigation strategy for an epidemic,

it is essential to analyze its effect on the real data. It is often challenging task to have a
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FIG. 2. A schematic representation of compartmentalized models of epidemic spreading. The

SEIRD model [31] depicted here divides the total population, which is assumed to be constant, in

different groups and the arrows indicate the directions in which the population can move from one

compartment/state to the other and the numbers indicate the corresponding rates. The numerical

values are estimated depending on the context of the model application (here from Baidu’s data)

and the mean-field governing equations are given in Eq. (2).

reliable set of data – not only due to the lack of testing or documentations, but also due to

the noise accumulations in news outlets to social media around a highlighted event [21].

Nevertheless, there have been many attempts to understand different aspects of the

COVID-19 pandemic, such as estimation of reproduction rate [22], forecasting of end-time

[23] to effectiveness of protective drugs [24], from the analysis of the available data,

In terms of the movement restriction strategies, at the early stage of the spread of COVID-

19, it was possible to trace the correlation between the travel pattern from the Hubei province

and the detection of infected individuals outside the province. Indeed until end of January,

2020, 80% of all cases were detected within the province [8] and only after that cases outside

the province started rising. Kraemer et al. [8] studied the human mobility pattern using the

data from Baidu Inc. and recorded the effects of imposing the cordon sanitaire from 23rd

January, 2020. Their finding suggests that the initial bias in the age group and gender in

the detected cases were due to the travel history of those individuals to the Hubei province.

Indeed, following the imposition of the restrictions, those biases eventually disappeared,

suggesting that the cases after that time were due to the secondary infections. Indeed, there

was a very clear positive correlation between the COVID-19 growth rate and other provinces
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in China and the human mobility from Wuhan, before the travel restriction was imposed

(see Fig. 1). The correlation started decreasing after a week of the imposed restrictions and

beyond that it showed negative correlation. This implies that an early imposition of the

travel restriction helps in containing the infection, but such restrictions are less useful when

the infection has spread outside a localized region. This was a key observation that formed

the basis of the input parameters of the mathematical modeling approaches that we discuss

in the next section.

III. COMPARTMENTALIZED MODELS AND MOVEMENT OPTIMIZATION

STRATEGIES

There are a myriads of factors that can influence a respiratory infection such as COVID-

19. First, the interaction patterns of humans, the carriers of the virus, is complex and highly

heterogeneous and to a large extent without much of accessible data. Second, especially

during the first months of the virus spreading, lack of testing facilities contributed to much

of the fluctuations in the data. Such fluctuations continue even till date, given that a

substantial portion of the infected individuals are not symptomatic [25] but can still be

infected and thereby can infect others. Third, the effective virulence of the infection is a

dynamic quantity. This is because of the mutation of the virus itself [26] and also because

of the various restrictive measures imposed. Both of these factors vary with time and as

well as space. Therefore, the complexity of the system and the noise in the available data

are both very high.

Nevertheless, attempts to formulate a mathematical model based description of epidemics

have been made for over several centuries [11]. This is partly because models provide us with

insights that are otherwise inaccessible by simply studying the data. In complex systems,

simplified model approaches have been very useful in gaining critical insight into the system,

even though the models in question ignored many realistic features of the system under study.

An outstanding example of success comes from the study of magnetism phenomena through

the Ising model [27]. While a drastic simplification over the actual ferromagnetic materials,

the model reproduces qualitative as well as quantitative features near the paramagnetic to

ferromagnetic phase transition point of magnetic materials. Even nearly a century after its

introduction, the model continues to provide critical insights into the theoretic understanding
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and practical applications for magnetic materials [28].

However, there are a few differences between the analogy of the simplified models for mag-

netism and that for epidemic spreading. First, accurate data are available from experiments

in the case of magnetism, which is not true here. While that could still be considered as a

noise, the second and the most important difference is that in the case of magnetism (and in

many other examples of tuned or self-organized criticality) the system is near a continuous

phase transition. This necessarily imply a scale-free behavior of he system, which broadly

means that all fluctuations that are of smaller scale than the system size are irrelevant in

a renormalization group (RG) sense. This is the precise reason for the universal nature of

the response statistics of magnetic systems near criticality and also the reason why a sim-

plified model devoids of such ‘small scale’ details works for such systems near the critical

point. Now, in the models of epidemic spreading, there exists no such critical point. Nor do

the dynamics of epidemic spreading are known to produce universal quantitative numbers

(similar to, say, the critical exponents) for different instance of epidemics. Therefore, the

arguments of irrelevant parameters in the RG [28] sense do not hold.

While the above mentioned criticisms are applicable for epidemic spreading models, there

are two points to note before we proceed into the specific modeling approaches. First, the

goals of epidemic spreading models and that of (laboratory scale) physical systems can vary.

With just a model alone, without inputs from real data, no epidemic model attempts in

making quantitative predictions. Second, although a critical point does not exist in epidemic

spreading models in itself, it has been shown using spatial pattern of the spreading data for

COVID-19 pandemic that it follows a fractal growth [29]. Indeed, it was also shown recently

[20] that if a simple model is to make predictions having least errors with the real data, the

parameters in the model is to be set in such a way as to have the resulting spreading pattern

in fractal form. Although not arising out of a criticality in the epidemic model, there exist

scale free characteristics in such fractal geometry. With this in mind, we discuss the various

models and the results of incorporating movement restrictions in those models for the case

of COVID-19 spreading.
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A. SIR and related models

Bernoulli first proposed such an attempt in 1766 [11]. This class of models are some-

times termed as compartmentalized models, since the basic idea involves dividing the total

population into groups, based on their exposure (or lack of it) to the virus. The most used

and the most simple version of the model involves dividing (at any instant of time t) the

entire population into three groups: Susceptible S(t), Infected I(t) and Removed R(t). First

proposed in 1927 [12], the model assumes that the total population S(t) + I(t) +R(t) = N

is constant throughout the dynamics. At t = 0, of course, N = S0+ I0, where S0 and I0 rep-

resent the initial infection and susceptible population respectively. A susceptible individual,

while coming in contact with an infected individual, can get infected with a certain rate r,

and an infected individual is removed (due to recovery or death) with a rate α. There is no

scope of re-infection in this model, although other variants exist [9, 10] where such scenarios

are considered.

A mean-field treatment of the model is straightforward, which involves writing down the

differential equations governing each of the three groups:

dS(t)

dt
= −rI(t)S(t)

dI(t)

dt
= rI(t)S(t)− αI(t)

dR(t)

dt
= αI(t). (1)

The temporal evolution of the infected number I(t) from this model in mean-field and

in compact lattices behaves in a way similar to a wave of infection in COVID-19 (and

other epidemic) spreading. In this form, the model does not give multiple peaks in infec-

tions. Indeed, it is easy to see that the maximum value of the infection will be Imax =

I0 + S0 −
1

q
(1 + ln(qS0)), where q = r/α = R0/N , where R0 is the reproduction rate. The

quantity Imax is important because, this gives the estimate of the maximum load the health-

care infrastructure needs to support. SIR models were used in studying effects of optimal

migrations (see e.g., [30]). Indeed, in more realistic variants of the model, this is quantity

that were estimated for various different countries in order to make the above mentioned load

and also to design optimization strategies of implementing mitigating responses, including

travel restrictions.

The above mentioned variant is the simplest one that gives the qualitative features of the
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current pandemic. However, there are multiple other variants of the model that includes

more realistic features. These still fall under the category of the compartmentalized models,

since the basic feature of dividing the population into different compartments/states still

exists. Among these variants, one is the SEIR model, where the additional state E(t) denotes

the part of the population that are exposed to the virus, but not yet infectious i.e., a finite

incubation time is incorporated in the model (see Fig. 2). This is an important extension,

particularly when the maximum case load is to be estimated. In Xing et al. [31] effects of

migrations were explicitly included. The dynamics evolved following the equations:

dS

dt
= −

β1SE + β2SI

N
+ (a− b)

dE

dt
=

β1SE + β2SI

N
− δE + (a− b)E

dI

dt
= δE −mI + (a− b)I

dQ

dt
= mI − γQ

dR

dt
= γQ, (2)

where Q denotes the confirmed cases, δ is the infection rate, γ is the recovery rate, m

is the confirmation rate, β1, β2 denote the transmission incidence rates and a, b denote the

immigration and emigration rates respectively. The model parameters can then be estimated

from actual data and effects of travel restrictions can be studied.

Another variant of the compartmentalized model is the SIRD mode, where the final state

refers to death due to the disease. Other than these, there are more case specific variants

that, for example, consider various severity of health conditions following an infection (see

e.g., [32]). Such details of the model requires additional input from the real data, which are

done for some specific countries/regions.

Apart from adding different states in the original SIR model, another direction of realistic

extensions have been to incorporate the effects of the model topology. The above mentioned

mean-field nature of the dynamics can prevail only under well homogeneous mixing of the

population, which is certainly not the case particularly when travel restrictions are imposed.

Also, the overly restrictive fixed lattice arrangements, where the infections can only spread

through nearest or next nearest neighboring individuals, is unrealistic. For both of these

limits (lattice models and mean-field), one way to reach the intermediate realistic scale is

to tune the infection rate. Another way to achieve the intermediate state is to modify the
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topology in which the model is studied. This can involve pruning the fully connected graph

to, say, an Euclidean topology [33], or to introduce disorder in the lattice models, say, in

terms of site dilution [20].

B. Control strategies to reduce population mixing and its early lifting

As mentioned before, Tuite et al. [32] studies a SEIR type model for estimating health

infrastructure load in Ontario, Canada. The model is structured in 5-year age group layers.

The interactions within the age groups [34], the presence of comorbidities (hypertension,

heart diseases, asthma, stroke, diabetes and cancer) were also considered in estimating the

severity of the infection (e.g., required ICU care). The dynamics was initiated with uniformly

distributed initial infections and then the effects of control strategies such as extensive

testing and physical distancing measures were studied using a fixed duration and also in a

dynamically tuned manner depending on required ICU cares. It was found that dynamically

introduced restriction measures were more effective than a fixed duration restriction, with

potentially shorter period of physical distancing.

In the US also such compartmentalized model (SEAIR) approach was taken to find opti-

mal control in the outbreak [35]. The additional state A(t) represents the estimated 20-40%

of the asymptomatic cases, who can still be carriers of the infection. Here also it was

concluded that the effect of interventions (testing, isolation, physical distancing) are more

effective in the early stages of the dynamics than at later stages, even if the measures are

more drastic later on. Also, a periodic on-off strategy, similar to ref. [32], is found to be

more effective in controlling the spreading and also conjectured to be more palatable.

A similar approach was taken by Prem et al. [36] for the spreading of infection in

Wuhan, China. As in Ref. [35], a SEIR model with different age groups having different

rates of infections were studied. The effects of imposing continued restrictions, modeled by

taking the corresponding interaction matrices between different age groups, seen to lower

the total infection rate. Also, an early lifting of such restrictions leads to secondary peaks

(see also [30]). With a similar SEIR type model, it was shown in ref. [37] that the effective

reproduction index Rt decayed 2.35 on January 16 (one week before cordon sanitaire) to

1.05 on January 31 (one week after cordon sanitaire). This also reinforce the benefit of early

imposition of restrictions.
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C. Cordon sanitaire as an optimization problem

As discussed above, there is a general consensus regarding the benefit of early imposition

of cordon sanitaire in reducing the load on healthcare systems. A subsequent dynamical

(on-off) interventions (travel restrictions), rather than a prolonged period of restriction,

also seem to work better in reducing the total spreading. However, the optimization needs

to consider the relative rates in which the cordoned-off and the remaining population gets

affected. Also, while relaxing the restrictions, the optimization function for an individual

may not be the same as the global optimized state.
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FIG. 3. Simulations of SIR model with optimized movements between communities of different

risks (reproduced with permission from [30]). It is seen that the infected fraction in the high-risk

region Ii(t)/N shows a secondary peak once the travel restrictions are lifted early (time period

indicated in the figures). However, the overall (relative) size of the second-wave peak (Itot/N) is

seen to be larger (see also [36, 38]).

Espinozo et al. [38] noted that when unrestricted movements are allowed between two low

risk communities, the chances of secondary infections increase in those communities, but the
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overall epidemic size is reduced. On the other hand, imposition of cordon sanitaire around a

high risk community – the original practice of such type – reduces secondary infections, but

increases the overall epidemic size, since the infection greatly affects the high risk community.

Therefore, it is not straightforward to asses the benefits of such travel restrictions and also

the time of removal of such restrictions. Indeed, the overall process of implementing the

mitigation strategies can be viewed from the point of view of control theory [39] with a

limit on the maximum active cases as a constraint that represent the load on health care

infrastructure. In the following section, we will discuss whether a machine learning approach

can optimize the restriction times, so as to limit the spreading of epidemic. Before that,

however, it is also interesting to note that while the objective of the governments would be

to optimize the travel restrictions so as to minimize the epidemic size at a reduced economic

fallout, from the point of view of an individual, that objective may not match. Particularly,

given a chance, an individual would travel to a lower risk community rather than to stay in a

higher risk community. But given that many other individuals might also try the same, the

said low risk community might not remain low risk due to spreading of secondary infections.

This situation can be viewed from a game theory perspective [30], where the situation is that

of a set of coupled minority games, played in parallel. It was seen that a restriction on the

number of travel upon an individual is more effective than imposing a full stoppage of travel.

But similar to what is noted in ref. [36], for example, an early lifting of the restrictions can

bring a second wave of infections (Fig. 3).

IV. MACHINE LEARNING APPROACHES

Here we aim to revisit the recent scientific contributions based on Artificial Intelligence

(AI) to the fight against COVID-19 pandemic. In recent past applications of AI in different

aspects of epidemiology is instrumental in policy and medical analysis measuring the cost

of the pandemic in terms of lives and economic damage (see e.g., [15, 16]) etc. The recent

literature ranges from early warning, tracking and prediction to social control which often

influence the migration of the people to avoid the viral disease (see e.g., [17]). In January

2020 China imposed very strict lockdown to contain the very first Covid-19 outbreak, which

were in place till April 2020. During that period researchers were speculative about the

impact of these policies on virus spreading. The AI based techniques are primarily used to
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predict the duration of social restrictions in different geographical regions as it helped in

reducing the number of infections significantly. In this direction Yang et al. [40] employed

a modified susceptible-exposed-infected-removed (SEIR) epidemiological strategy to predict

the epidemic progression by including the people’s migration data prior to and after the

January 2020 along with the COVID-19 epidemiological at that point of time. The authors

used the Long-Short-Term-Memory (LSTM) model of recurrent neural network (RNN) to

estimate the number of newly infected people by processing various time-series problems.

The 2003 SARS outbreak statistics is used to train the devised model. The devised model

fed with the COVID-19 spreading parameters, such as the rate of spreading, infection prob-

ability, recovery rate etc. This SEIR based approach was useful in estimating peaks and

sizes of the COVID-19 epidemic. The model constrained by the inadequate data set which

results in relatively simple network configuration and may suffer from overfitting problem.

In a similar study Xing et al. [31] studied the impact of migration of people using Baidu’s

migration data of Guangdong and Hunan provinces. As mentioned before, the author de-

veloped a three-stage dynamical model. It uses SIER, where a time variant function is used

for susceptible S(t), infected I(t), exposed E(t) and removed R(t) individuals (see Fig. 2).

In the first stage i.e., early stage of the epidemic spreading the model assumes that the

confirmed individuals Q(t) are not migrating. And the COVID-19 transmission dynamical

modeling is represent using Eq. (2). The model parameters were estimated using mobility

data from Baidu.

Further, very similar models were used for the remaining two stages to characterize the

imposition of the social curbs and resumption of the regular life respectively. Afterwards the

mathematical analysis of only first stage is carried out and reproduction rate is calculated.

The other parameters values were calculated from Baidu’s data and using the methodolo-

gies such as least-square method. The result shows that scale of infection is low in the

province which emigrated the population. However, the province receives the population

is exactly the opposite. And the authors predicted that the province which emigrated the

population in the first stage may suffer after the easing of the social curbs (see also [30] in

this context). However, this work suffers from many shortcomings such as limited and erro-

neous data availability, not considering the asymptomatic population and spatial diffusion

characteristics.

To study the health and economic impact Khadilkar et al. [41] devised an AI-based
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system. It predicts the best possible lockdown policies to control Covid19 spreading and

minimize its economic impact. The reinforcement learning based approach learns from

different policies which are represented as a function of disease and population parameters.

The disease progression model is primarily based on SIER as depicted in the Fig. 2. Where S

is susceptible, E represents exposed, IS represents infected, IA indicates asymptomatic, D is

dead, and R indicates recovered individuals. Further the number indicates the probabilities

in the transitions from one state to another. The The approach exposes the limitations

of the imperfect lockdowns and it can be utilized to investigate various policies by using

tunable parameters. Further, the model may be useful to determine more fine-grained social

curbs to prevent the COVID-19 spreading.

In another reinforcement learning based approach by Ohi et al. [42] demonstrated how an

agent’s actions may have different possible outcome based on the spreading of the disease and

economic conditions. A virtual pandemic is similar to the COVID-19 is simulated to train

the system. Afterwards the training the agent chooses the optimal strategy which reduces

epidemic spreading in a financially viable manner. The analysis of the results shows that, to

reduce the first surge of infections the system opted for a longer period of lockdown. Again,

to curb the successive waves of infections the system chooses a combination of recurrent

lockdowns and shorter periods of lockdowns. Although, the model is able to provide a

middle ground between epidemic spreading and economic gains. However, a comparative

study between humanitarian loss and economic gains when total lockdown is imposed and

when recurrent lockdown would have been interesting.

V. DISCUSSIONS

The first response of the governments in most of the countries to the outbreak of COVID-

19 have been to impose restrictions on human mobility from high infected regions. Following

the spreading of the virus in most countries in the world, the subsequent response have

been to quarantine the infected population and also to impose local restrictions on human

mobility. Those restrictions, while helpful in limiting the maximum number of active cases,

did have and will continue to have severe societal and economic impacts. Here we reviewed

the multiple facets of such restrictions on mobility in different countries, based on the analysis

of data, study of models and machine learning approaches. The emerging picture seems to
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be that while an early imposition of restrictions are useful, for the subsequent period, a

periodic relaxations of the restrictions is a more effective strategy than to have a prolonged

imposition of restrictions.

The process of optimizing the restriction period is not straightforward and likely to differ

among different countries, based on their socio-economic activities and healthcare infras-

tructure. A major challenge in finding such optimized strategy has been to gather noise-free

data regarding the spreading dynamics of the virus. Due to the complex nature of the

human interactions, compartmentalized modeling approaches are also hard to implement.

However, we have discussed various efforts that address these issues. For example, an age-

based hierarchy in the models seem to help the optimization process, given that the nature

of interactions and required health-care vary among different age groups. Also, in using data

driven machine learning approaches, use of earlier epidemic data for training can be a useful

strategy.
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