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Abstract

Despite many studies on the transmission mechanism of the Severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), it remains still challenging to efficiently reduce mortality. In this

work, we apply a two-population Susceptible-Infected-Removed (SIR) model to investigate the

COVID-19 spreading when contacts between elderly and non-elderly individuals are reduced due

to the high mortality risk of elderly people. We discover that the reduction of connections between

two populations can delay the death curve but cannot well reduce the final mortality. We pro-

pose a merged SIR model, which advises elderly individuals to interact less with their non-elderly

connections at the initial stage but interact more with their non-elderly relationships later, to re-

duce the final mortality. Finally, immunizing elderly hub individuals can also significantly decrease

mortality.

Keywords— COVID-19 pandemic, Mortality reduction, Two-population SIR model, Complex networks

1 Introduction

In many countries, the first wave of the Coronavirus disease 2019 (COVID-19) appeared in early 2020. In the

summer of 2020, the spread of COVID-19 was significantly reduced due to strict restrictions [1] and weather

effects [2]. At that time, the majority of the population and politicians were hoping for the end of the COVID-

19 pandemic. At the beginning of autumn, students went back to school, which marked the beginning of the

second wave. However, rising infections were not taken seriously because infections were mainly among the

young population and no significant hospitalization and deaths were observed [3]. Simultaneously, the high

decease rate and self-preservation have caused that many elderly individuals reduced their contact with young

people [4]. In October 2020, the hospitalization rates in many countries started increasing and the second

COVID-19 wave was born. At the beginning of 2021, more contagious mutations of the coronavirus marked the

third wave in many countries [5]. Even though there are COVID-19 vaccines, the distribution in many countries

is painfully slow. Moreover, SARS-CoV-2 viral mutations lead to uncertainty about the effectiveness of recent

vaccines. The third wave might not be the last COVID-19 pandemic and efficient strategies to reduce mortality

will remain on the agenda.

The Susceptible-Infected-Removed (SIR) model [6, 7] and its variations are commonly applied to describe the

COVID-19 pandemic [8, 9, 10, 11, 12] and to forecast the number of infected and deceased cases in a population

[13, 14, 15, 16, 17, 18]. The ratio of new deceased elderly cases to new deceased non-elderly cases each day is

expected to be constant over time in classic epidemic models but is time-varying in reality. Recent works start

to consider the age-structured SIR model to describe the COVID-19 pandemic more realistic [19, 20, 21, 22, 23].

The age-structured SIR model divides the whole population into several age groups and the infection rates are
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age-dependent. Real data reveal that the elderly infected had a 30- to 100- fold higher risk of dying than younger

individuals in many European countries [24]. Here, elderly and non-elderly individuals are respectively defined

as individuals who are < 65 years old and ≥ 65 years old [24]. The elderly population accounts for a proportion

of around 20% in many European countries [25]. Since the main difference in the COVID-19 pandemic is

between elderly and non-elderly individuals, we construct a two-population SIR model [26] as follows:

1. There are two sub-populations: non-elderly and elderly individuals uniformly distributed over the social

contact network. The virus spreading in a region is likely to start from non-elderly individuals because

the virus can be carried into a community from other areas by commuters [27] and most commuters are

non-elderly individuals.

2. There are four infection rates between and within non-elderly and elderly individuals. We believe that the

highest infection rate is among elderly people. Elderly individuals are advised to a kind of self-isolation to

protect themselves [28]. Staying in relative isolation from non-elderly people could be feasible, but some

strong connections among elderly individuals, e.g., couples and people in the same nursing home, cannot

be cut off. Conversely, the ties among elderly individuals will be stronger when their connections with

non-elderly individuals are significantly reduced. The second highest infection rate is among the non-

elderly population. The inter-group infection rates are the smallest since elderly individuals are afraid of

being infected by non-elderly individuals. The infection rates between non-elderly and elderly individuals

are low, but not zero, as elderly people still depend on younger people one way or another.

This article first investigates the features of fatality curves in the two-population SIR model when the

connection between two populations is reduced. It shows that non-elderly deceased cases are prone to occur at

the initial stage and most elderly deceased patients appear more often at a later stage. The difference in infection

probability between non-elderly and elderly individuals is significant when the inter-population infection rates

are low and the infection rate among elderly individuals is slightly above the epidemic threshold. The final

mortality, however, cannot be reduced by only limiting the connection between two populations. Moreover,

reducing the infection rate among non-elderly individuals, e.g., closing schools, can also not efficiently reduce

mortality. In this work, we propose a merged SIR model to reduce the final mortality significantly. There are

two stages in the merged SIR model: in the first stage, the model is the same as the two-population SIR model

of Magal et al. [26] and in the second stage, the merged SIR model reduces to the standard SIR model. The

physical meaning of the merged SIR model is that elder people are advised to reduce their connections with

non-elderly individuals at the beginning of the pandemic and interact more with non-elderly individuals later.

The merged SIR model benefits the mortality reduction since many recovered non-elderly people can protect

the susceptible elderly individuals.

Compartmental epidemic models assume that social contact networks are homogeneous with an infinite

network size, but the actual network size is finite and the degree distributions of many real social networks

follow a power law [29] with an exponent γ ∈ [2, 3]. We thus simulate the two-population SIR model on a

scale-free network with a realistic network size to investigate the effect of network topology on the reduction of

mortality. By comparing the simulation results of the two-population SIR model for the scale-free network and

the Erdős–Rényi random network [30], the epidemic spreading in the heterogeneous network is much faster due

to the star (or super spreader) effect. The reduction of connections between elderly and non-elderly individuals

cannot decrease mortality in the compartmental epidemic model, but can reduce the mortality in the two-

population SIR epidemic on the scale-free network. The merged SIR model is the best strategy to efficiently

mitigate the mortality. Finally, we illustrate that mortality can be efficiently reduced by only immunizing rare

elderly hub individuals.
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2 Two-population SIR model

The two-population SIR model was first proposed by Magal et al. [26]. Similar models, that incorporate the

underlying contact graph, are the networked SIR model proposed by Youssef and Scoglio [31], that was later

entirely generalized to GEMF in [32]. Our work here applies the two-population SIR model to a realistic scenario

related to the COVID-19 pandemic, systematically analyzes the death-related curve features, explores the effect

of restrictions on mortality reduction and proposes an improved model to reduce the final mortality.

Suppose that the elderly and non-elderly populations are well-mixed and large enough, then the fractions

of susceptible individuals S(t), infectious individuals I(t) and removed (recovered or deceased) individuals R(t)

at time t are reasonably well modeled by the following well-known differential equations:





dS(t)

dt
= −diag(S(t))BI(t),

dI(t)

dt
= diag(S(t))BI(t) − EI(t),

dR(t)

dt
= EI(t),

(1)

where the vectors of fractions S(t), I(t) and R(t) are respectively,

S(t) =

(
Sn(t)

Se(t)

)
, I(t) =

(
In(t)

Ie(t)

)
, R(t) =

(
Rn(t)

Re(t)

)
,

and the matrices E (removed rates) and B (infection rates) are respectively

E =

(
δn 0

0 δe

)
, B =

(
βnn βne

βen βee

)
,

where βne denotes the infection rate from elderly infectious individuals to non-elderly susceptible individuals, βen

denotes the infection rate from non-elderly infectious individuals to elderly susceptible individuals, βnn denotes

the infection rate among non-elderly individuals, βee denotes the infection rate among elderly individuals, δn

denotes the removed rate for non-elderly infectious individuals and δe denotes the removed rate for elderly

infectious individuals. To simplify, we let the infection rates between two populations be equal, βne = βen =

ǫβnn, and thus the matrix B can be rewritten as

B = βnn

(
1 ǫ

ǫ κ

)
. (2)

For the COVID-19 pandemic, it holds that ǫ ≪ 1 and κ ≥ 1. Furthermore, we have that the non-elderly

fractions Sn(t) + In(t) + Rn(t) = Nn and the elderly fractions Se(t) + Ie(t) + Re(t) = Ne, where Nn denotes

the fraction of non-elderly population and Ne denotes the fraction of elderly population. The two-population

SIR model assumes that the total population is unchanged and thus Nn + Ne = 1. We denote the initial

state by v[0] = (Sn[0], In[0], Rn[0], Se[0], Ie[0], Re[0]). A schematic depiction of the two-population SIR model

is shown in Fig. 1. The infectious individuals will turn to be immune with a recovery rate (ξn for non-elderly

individuals and ξe for elderly individuals) or deceased with a fatality rate (ηn for non-elderly individuals and

ηe for elderly individuals). It holds that the removed rates δn = ηn + ξn and δe = ηe + ξe. This work focuses on

the fractions of new deceased non-elderly and elderly cases that are ηnIn(t) and ηeIe(t), respectively. We are

also interested in the fractions of deceased non-elderly and elderly cases that are Dn(t) = ηnRn(t)/δn and

De(t) = ηeRe(t)/δe.

By numerical solving Equations (1), we analyze the effect of infection rates on the following four death-

related curve features,

1. maximum of ηnIn(t) and ηeIe(t): max
t≥0

ηnIn(t) and max
t≥0

ηeIe(t),
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Figure 1: Schematic depiction of the two-population SIR model. There are two populations in the

model: non-elderly individuals (highlighted in orange) and elderly individuals (highlighted in green).

There are four different infection rates βnn, βne, βen and βee between and among the populations and

two different removed rates δn and δe for each population.

2. time points at which the maximum of ηnIn(t) and ηeIe(t) occur: argmax
t≥0

ηnIn(t) and argmax
t≥0

ηeIe(t),

3. time difference between two arguments of the maxima: argmax
t≥0

ηeIe(t)− argmax
t≥0

ηnIn(t),

4. fractions of final deceased non-elderly cases Dn(∞) and elderly cases De(∞).

In this work, we set the fraction of non-elderly individuals as Nn = 0.8, the fraction of elderly individuals as

Ne = 0.2 and the removed rates as δn = δe = 0.1. The fatality rates for non-elderly and elderly infections are set

to be ηn = 0.0001 and ηe = 0.01, respectively. The initial state is set as v[0] = (0.7999, 0.0001, 0, 0.2, 0, 0). These

parameters are set based on real data. The elderly population makes up around 20% of the whole population

in many European countries [25]. Elderly people who were infected had 30- to 100- fold higher risk of dying

than younger people in several European countries [24]. The time to recovery or death is on average around 10

days [33]. We also investigate various parameter settings and find that the changing of these parameters has no

much effect on the main conclusions drawn in this paper.

There are three parameters in matrix (2), which are βnn, ǫ and κ. We first set ǫ = 0.001 and κ = 4 and

study the effect of the infection rate βnn on death-related curves. Figure 2 reveals that both the non-elderly

related curves and elderly related curves are significantly affected by the parameter βnn. The time difference

argmax
t≥0

ηeIe(t) − argmax
t≥0

ηnIn(t) is positive and increases with the infection rate βnn deceasing. The final

non-elderly deceased fraction Dn(∞) and elderly deceased fraction De(∞) increase with the infection rate βnn.

We further set parameters βnn = 0.15 and κ = 4 and study the effect of parameter ǫ on death-related curves.

Figure 3 shows the death-related fractions with different parameter ǫ. It indicates that the parameter ǫ has

almost no effect on non-elderly related curves. The final deceased fractions are little affected by the parameter

ǫ. The effect of smaller ǫ is approximately to delay the elderly related curves and there will be larger time

difference argmax
t≥0

ηeIe(t)− argmax
t≥0

ηnIn(t) when ǫ is smaller.

We finally set parameters βnn = 0.15 and ǫ = 0.001 and study the effect of parameter κ on death-related

curves. Figure 3 shows the death-related fractions with different parameter κ. The parameter κ has little effect

on non-elderly curves but has large impact on elderly related curves. The time difference argmax
t≥0

ηeIe(t) −

argmax
t≥0

ηnIn(t) is the largest when the parameter κ = 3.5 in three considered parameters κ. The final elderly

deceased fraction De(∞) increases as the parameter κ.

To better understand the effect of parameters βnn and κ on death-related curves, we plot the heatmaps

as shown in Fig. 5. It indicates that there are large time difference argmax
t≥0

ηeIe(t) − argmax
t≥0

ηnIn(t) when the
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t t

nn 0.25  non-elderly fractions

nn 0.25  elderly fractions

nn 0.2  non-elderly fractions

nn 0.2  elderly fractions

nn 0.15  non-elderly fractions

nn 0.15  elderly fractions

Figure 2: Death-related curves of the two-population SIR model with different infection rates βnn.

The left figure is about the fractions of new deceased cases ηnIn(t) for non-elderly individuals (dashed

curves) and ηeIe(t) for elderly individuals (solid curves). The right figure is about the fractions of

deceased cases Dn(t) for non-elderly individuals (dashed curves) and De(t) for elderly individuals

(solid curves). Parameters ǫ and κ are set as 0.001 and 4, respectively. Three different infection rates

βnn are considered: βnn = 0.25 (red curves), βnn = 0.2 (blue curves) and βnn = 0.15 (black curves).

0.0001  non-elderly fractions

0.0001  elderly fractions

0.001  non-elderly fractions

0.001  elderly fractions

0.01  non-elderly fractions

0.01  elderly fractions

t t

nn

Figure 3: Death-related curves of the two-population SIR model with different parameters ǫ. Pa-

rameters βnn and κ are set as 0.15 and 4, respectively. Three different parameters ǫ are considered:

ǫ = 0.0001 (red curves), ǫ = 0.001 (blue curves) and ǫ = 0.01 (black curves).
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t t

3.7  non-elderly fractions

3.7  elderly fractions

3.5  non-elderly fractions

3.5  elderly fractions

3.3  non-elderly fractions

3.3  elderly fractions

nn

Figure 4: Death-related curves of the two-population SIR model with different parameters κ. Param-

eters βnn and ǫ are set as 0.15 and 0.001, respectively. Three different parameters κ are considered:

κ = 3.7 (red curves), κ = 3.5 (blue curves) and κ = 3.3 (black curves).

infection rate βee is around the epidemic threshold. Specifically, suppose that the infection rate between two

populations βen → 0, the epidemic threshold for elderly individuals is βee = δe/Ne (shown as the black curves

in Fig. 5). The mortality cannot be significantly reduced by only reducing the infection rate among non-elderly

individuals βnn, e.g., closing schools, given that the infection rate βee is above the epidemic threshold. The

only efficient way to well reduce the mortality in the two-population SIR model is to keep the infection rate βee

among elderly individuals below the epidemic threshold.

In conclusion, we observe the following interesting curve properties: 1) the death-related curves for non-

elderly individuals ηnIn(t) are mainly affected by the infection rate βnn, 2) the time difference argmax
t≥0

ηeIe(t)−

argmax
t≥0

ηnIn(t) will be large if the inter-population infection rates βne and βen are small and the infection rate

βee is slightly above the epidemic threshold, 3) the fraction of eventually deceased cases Dn(∞) +De(∞) will

be small if the infection rate among elderly individuals βee < δe/Ne, 4) only reducing the infection rates among

non-elderly individuals cannot significantly reduce mortality.

The above observations are theoretically explained in Appendix A.

Although mortality can be well reduced by reducing the infection rates among elderly individuals βee,

this strategy is not realistic since elderly people necessitate a sufficient amount of social interaction. This

work discusses possible strategies to reduce mortality considering the social needs of all the people. Elderly

people reduce their social connections with non-elderly individuals and increase their interactions with elderly

relationships. Thus their interaction frequency [34], which is the total number of social interactions per unit

time, is unchanged. We study the effect of reducing connections between elderly and non-elderly individuals on

mortality reduction by comparing the mortality in the standard SIR model and the two-population SIR model.

To keep the interaction frequency in the standard SIR model and the two-population SIR model to be at the

same level, the equivalent infection rate in the standard SIR model is

β = βnnN
2
n + βeeN

2
e + (βne + βen)NnNe.

It holds that β = βnnNn = βeeNe when βne → 0, βen → 0 and βnnNn = βeeNe. Figure 7a indicates that the

fractions of the final deceased individuals for the standard SIR model and the two-population SIR model are

the same. The effect of reducing the connection between elderly and non-elderly groups is only to delay the
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Figure 5: Curve features for the two-population SIR model with different parameters βnn and κ. The

parameter ǫ is set to be ǫ = 0.001. The black curves show the parameters when the infection rate βee

is at the epidemic threshold δe/Ne. The time difference argmax
t≥0

ηeIe(t)− argmax
t≥0

ηnIn(t) will be large

when the infection rate βee is slightly above the epidemic threshold. The fraction of total deceased

individuals will be small when the the infection rate βee < δe/Ne.
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deceased curve, but not to effectively reduce mortality.

3 Merged SIR model to reduce mortality

To effectively reduce mortality, we propose a merged SIR model in which the epidemic spreading follows the two-

population SIR model in the first stage and follows the standard SIR model in the second stage. The illustration

of the merged SIR model is shown in Fig. 6. The reduction of the connection between two populations can delay

the pandemic among elderly people. The reconnection of these two populations further protect elderly people

due to the herd immunity effect of recovered non-elderly individuals. Figure 7 shows that the merged SIR model

can significantly reduce the final deceased fractions and there is the best switch time point to minimize the

final mortality. Heatmaps in Fig. 8 show the effect of parameters βnn and ǫ on the best switch time point and

reduced rate of the final mortality. The reduced rate of the final mortality is defined as

De(∞) +Dn(∞)− D̃e(∞)− D̃n(∞)

De(∞) +Dn(∞)
,

where De(∞) and Dn(∞) are respectively the elderly and non-elderly mortality for the two-population SIR

model and D̃e(∞) and D̃n(∞) are respectively the elderly and non-elderly mortality for the merged SIR model.

Figure 8 reveals that the first stage (reducing the connection between non-elderly and elderly people) should

take a longer time if parameters βnn and ǫ are smaller. Besides, the final mortality can be reduced more

significantly for smaller parameters βnn and ǫ.

Figure 6: Schematic depiction of the merged SIR model. This model has two stages: the first stage

follows the two-population SIR model and the second stage follows the standard SIR model. The

physical meaning of this model is to reduce the connection between the elderly and non-elderly popu-

lations initially and reconnect these two populations after many non-elderly infected individuals have

been recovered. There is a switch time point between these two stages.

4 Two-population SIR epidemic on large complex networks

We apply the Monte Carlo method [35] to simulate the two-group SIR epidemic on complex networks. In this

work, we consider large networks with network size N = 105 generated by the configuration model [36] and

8



Standard SIR model

Two-population SIR model

Merged SIR model

t

Stage 1 Stage 2

Switch time point in the merged SIR model

Best switch time point

Figure 7: The fractions of deceased individuals in the standard SIR model, the two-population SIR

model and the merged SIR model. The parameters for the two-population SIR model are βnn = 0.15,

ǫ = 0.0001 and κ = 4. We set the infection rate β = 0.12 for the standard SIR model to keep the

interaction frequency the same among models. The left figure reveals that the two-population SIR

model cannot, but the merged SIR model can efficiently reduce mortality. The right figure shows the

final deceased fractions with different switch time points, indicating that there is the best switch time

point to minimize the final mortality.

n
n n
n

Figure 8: The best switch time point and reduced rate of the final mortality. We choose different

parameters βnn and ǫ and a fixed parameter κ = 4 for the two-population SIR model. The best switch

time point will be larger and the final mortality will be reduced more significantly if parameters βnn

and ǫ are smaller.
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the simulation starts from 100 non-elderly infected individuals. We first compare the simulation results on

the scale-free network and the Erdős–Rényi random network to analyze the effect of network heterogeneity on

epidemic curves. The network size N and mean degree E[D] of the Erdős–Rényi random network are the same

as the scale-free network. Figure 9a and Fig. 9b indicate that the epidemic spreading in the scale-free network

is much faster than the spreading in the Erdős–Rényi random network due to the super spreaders. Figure 9c

and Fig. 9d illustrate that the epidemic spreads quicker when the mean degree E[D] is higher.
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Figure 9: Fractions of infectious cases In(t) + Ie(t) and daily deceased cases ηnIn(t) + ηeIe(t) for

the two-population SIR epidemic on the scale-free network and the Erdős–Rényi network with the

network size N = 105. The infection parameters are set to be βnn = 0.015, κ = 4 and ǫ = 0.001. The

spreading in the scale-free network is much faster than the spreading in the Erdős–Rényi network.

Figures c and d show the effect of mean degree E[D] of the scale-free network on the two-population

SIR epidemic. With the increase of the scale-free networks’ link density, there are more individuals

infected and deceased. The exponent in the scale free networks is set as γ = 2.5. The minimum degree

of the scale-free network is set to be 5.

We simulate the standard SIR model, the two-population SIR model and the merged SIR model on the scale-

free network as shown in Fig. 10. Different from the results as demonstrated in Fig. 7, for the epidemic spreading

on complex networks, the final mortality for the two-population SIR model is lower than the standard SIR model

since a part of susceptible elderly people can be protected by their recovered non-elderly relationships. This

type of local immunity, which differs from the herd immunity, can only be observed in the epidemic spreading

on networks. The merged SIR model is the best strategy to reduce mortality.

Given that there have been COVID-19 vaccines but the vaccine is still insufficient, it is valuable to study
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Figure 10: Fractions of daily deceased cases ηnIn(t) + ηeIe(t) and deceased cases Dn(t) + De(t) for

the standard SIR epidemic, the two-population SIR epidemic and the merged SIR epidemic on the

scale-free network with the network size N = 105. The infection rate in the standard SIR model is

β = 0.012. The infection rates in the two-population SIR model are the same as Fig. 9. Different from

the result in Fig. 7, the final deceased fraction for the two-population SIR model is lower than the

standard SIR model. The final deceased fraction for the merged SIR model is the smallest, indicating

that the merged SIR model is the best strategy to reduce the mortality.

the strategy to reduce mortality by immunizing specific population. There are rare elderly hub individuals in

social networks, e.g., the priests, which are the virus’s primary route of transmission from non-elderly to elderly

people. Figure 11a and Fig. 11b reveal that the final mortality can be significantly reduced by only immunize

20 elderly hub individuals in 105 population assuming that the vaccines are 100% effective. In reality, the

COVID-19 vaccine efficacy cannot reach 100% and thus we analyze the situation when the vaccines are 80%

effective. Figure 11c and Fig. 11d illustrate that more elderly hub individuals require to be immunized to reduce

mortality efficiently.
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Figure 11: Effect of immunizing rare elderly hub individuals on reducing the final mortality. Fig-

ures a and b respectively show the fractions of daily deceased cases ηnIn(t) + ηeIe(t) and deceased

cases Dn(t) + De(t) for the two-population SIR epidemic with and without immunizing elderly hub

individuals. We immunize 20 elderly individuals with the largest degree in the simulation of the two-

population SIR model on the scale-free network with 105 population assuming that the vaccines are

100% effective. The mortality can be significantly reduced by immunizing such rare specific individu-

als. Figures c and d show the fractions when the vaccines are 80% effective. It requires more vaccine

doses to effectively reduce the mortality if the vaccines are less effective.
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5 Conclusions

Since early 2020, scientists have found that COVID-19 is substantially more dangerous for the elderly. Elderly

people’s interactions with their non-elderly relationships are reduced to lower the risk of being infected and

deceased. This work applies the two-population SIR model to describe the COVID-19 pandemic when the

connections between elderly and non-elderly individuals are significantly reduced. We analyze how the reduction

of connections between two populations can affect the COVID-19 pandemic, especially the mortality. It reveals

that severing ties between two populations can postpone the pandemic but not effectively cut mortality. We

further find that reconnecting two populations at an appropriate time can significantly lessen the final mortality.

Assuming that rare vaccines are available, this study recommends immunizing elderly hub individuals first to

better decrease mortality.
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needs in France. medrxiv, 2020.
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[34] Georg Simmel. Über sociale Differenzierung: sociologische und psychologische Untersuchungen, volume 10.

Duncker & Humblot, 1890.

[35] David Juher, Jordi Ripoll, and Joan Saldaña. Analysis and monte carlo simulations of a model for the

spread of infectious diseases in heterogeneous metapopulations. Physical Review E, 80(4):041920, 2009.

[36] Mark E.J. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256, 2003.

[37] Robert Schaback. On COVID-19 modelling. Jahresbericht der Deutschen Mathematiker-Vereinigung,

122(3):167–205, 2020.

A Theoretical explanation of the death-related curve features

In Equations (1), we have that

dIn(t)

dt
= βnnSn(t)In(t) + βenSn(t)Ie(t)− δnIn(t)

= (βnnIn(t) + βenIe(t))Sn(t)− δnIn(t).

Since non-elderly individuals are the majority in the whole population and the virus spreads from non-elderly

individuals, it holds that In(t) ≫ Ie(t) at the initial stage of the spreading. Moreover, the infection rates hold

that βnn ≫ βen and thus we have βnnIn(t) ≫ βenIe(t), which indicates that elderly infections have little impact

on the non-elderly susceptible individuals and the initial infection curve In(t) for non-elderly individuals is close

to the result in standard SIR model:




dSn(t)

dt
= −βnnSn(t)In(t),

dIn(t)

dt
= βnnSn(t)In(t)− δnIn(t),

dRn(t)

dt
= δnIn(t).

This explains why curve features for non-elderly individuals are little affected by parameters ǫ and κ. When

time t → 0 and the inter-population infection rate βne → 0, the fraction for non-elderly infectious individuals

is close to the exponential function

In(t) ≈ In(0)e
(βnnSn(0)−δn)t. (3)
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Substitute (3) into the equation dIe(t)/dt = βneSe(t)In(t) + βeeSe(t)Ie(t)− δeIe(t) in (1) and we have that,

dIe(t)

dt
≈ βneSe(t)In(0)e

(βnnSn(0)−δn)t + βeeSe(t)Ie(t)− δeIe(t)

≈ βneSe(0)In(0)e
(βnnSn(0)−δn)t + (βeeSe(0)− δe)Ie.

We simplify the above equation by letting a = βneSe(0)In(0), b = βeeSe(0)− δe and m = βnnSn(0)− δn:

dIe
dt

≈ aemt + bIe(t).

By solving the above equation and combining the fact that Ie(0) = 0, the fraction of elderly infectious individuals

when time t → 0 is

Ie(t) ≈
a(emt − ebt)

m− b
.

This equation is the difference of two exponential functions, indicating that the initial curve for elderly in-

dividuals cannot be well described by an independent SIR model. Besides, at the initial stage of spreading,

the growth rate of Ie(t) decreases with the deceasing of βne. A slower growth of Ie(t) at the initial stage

will delay the further curve and peak position. Figure 12 shows the values βeeIe(t) and βneIn(t) in equation

dIe(t)/dt = βneSe(t)In(t)+βeeSe(t)Ie(t)− δeIe(t). It reveals that the value βneIn(t) dominates only at the very

initial stage and the value βeeIe(t) dominates the later stage. When the infection rate between two groups is

relatively small, the later curve for elderly people will be close to the independent SIR model:




dSe(t)

dt
= −βeeSe(t)Ie(t),

dIe(t)

dt
= βeeSe(t)Ie(t)− δeIe(t),

dRe(t)

dt
= δnIe(t).

12 n t

22 e t

t

Figure 12: The curves of βeeIe(t) (the green curves) and βneIn(t) (the orange curves) for the two-

population SIR model with parameters βnn = 0.2, ǫ = 0.01 and κ = 4. The value βeeIe is much larger

than βneIn after the very initial stage.

Robert Schaback [37] proved that, for the independent SIR model, when the initial value Se(0) ≈ Ne and

Se(0)βee > δe, the upper bound of the peak position for the fraction of infectious individuals is

δe
Ie(0)βee

log

(
Se(0)βee

δe

)
.

The largest peak position can be obtained when βee is slightly larger than δe/Ne(0).
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