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Abstract

Lockdowns are one of the most effective measures
for containing the spread of a pandemic. Unfor-
tunately, they involve a heavy financial and emo-
tional toll on the population that often outlasts
the lockdown itself. This article argues in favor
of “local” lockdowns, which are lockdowns focused
on regions currently experiencing an outbreak. We
propose a machine learning tool called CoviHawkes
based on temporal point processes, called Cov-
iHawkes that predicts the daily case counts for
Covid-19 in India at the national, state, and dis-
trict levels. Our short-term predictions (< 30
days) may be helpful for policymakers in identify-
ing regions where a local lockdown must be proac-
tively imposed to arrest the spread of the virus.
Our long-term predictions (up to a few months)
simulate the progression of the pandemic under
various lockdown conditions, thereby providing a
noisy indicator for a potential third wave of cases
in India. Extensive experimental results validate
the performance of our tool at all levels.

1 Introduction

We live in strange times. The Covid-19 pandemic
has disrupted the lives and livelihood of people in
unfathomable, if not unprecedented, ways. It has
brought the devastating effects of social isolation
to the center stage and challenged the very fabric
of our society and its economy. While public safety

measures like lockdowns help arrest the spread of
the virus, unless imposed early on, their primary
purpose is to delay the inevitable to allow health-
care systems to prepare themselves for the looming
crises. As such, these lockdowns should be treated
as strategic decisions, and data-aware methodolo-
gies should guide their implementation. This ar-
ticle provides technical details of a deep learning-
based tool called CoviHawkes1 that forecasts India’s
daily case counts at the national, state, and district
levels. The predictions made by our tool may help
the policymakers identify vulnerable regions to en-
act “local” lockdowns proactively.

Lockdowns have a disproportionate impact on
different people. For example, while employees
working in an IT firm can often continue their job
remotely, taxi drivers and food delivery personnel
lose their daily livelihood. The spending power of
the consumers reduces as more people lose their
income, which damages the overall economy and
leads it into a vicious circle. The consequences
of these lockdowns often outlast their duration by
a wide margin. Combined with the fact that the
infection outbreaks are almost always localized, it
arguably makes more sense to enforce lockdowns in
regions experiencing an outbreak instead of impos-
ing nationwide or statewide lockdowns. We refer to
these more focussed lockdowns as local lockdowns.

For local lockdowns to be effective, it is crucial
to enforce them at an early stage while the infec-

1https://sml.csa.iisc.ac.in/covihawkes
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tions are still contained within the region of inter-
est. This requires not only continuous monitoring
of the daily case counts but also accurate forecasts
to help local administration take appropriate ac-
tion in advance. CoviHawkes uses a deep learning
model to make such predictions at the national,
state, and district level. The proposed tool learns
from: (i) historical patterns in the case counts,
(ii) information about the average movement of
people in the region (hereafter referred to as mo-
bility features), and (iii) the region’s demographic
information. The data used by our tool is publicly
available and aggregated at an appropriate level to
ensure that it cannot be traced back to individuals,
thus preserving their privacy.

At the heart of CoviHawkes is a well-known
stochastic process known as the Hawkes pro-
cess (Hawkes, 1971). Loosely speaking, a Hawkes
process characterizes the rate at which such events
happen. (Here, A person getting infected with the
virus can be thought of as an event). It defines
a probability distribution over the occurrences of
these events in a way that makes future events
more likely if the rate has been high in the recent
past. In other words, it models a scenario where fu-
ture infections are more likely if many people have
caught the disease in the recent past. For this rea-
son, the Hawkes process is known as a self-exciting
process. Due to the nature of the spread of infec-
tious diseases, a Hawkes process is a leading can-
didate for modeling such a phenomenon (Chiang
et al., 2021; Garetto et al., 2021). Our tool Cov-
iHawkes uses deep neural networks to model the
parameters of the Hawkes process as a function of
the input features mentioned in the previous para-
graph.

The remainder of this article is organized as fol-
lows: Section 2 describes the underlying mathe-
matical framework and our deep learning model in
detail. Section 3 establishes the validity of short-
term forecasts generated by our tool using standard
machine learning procedures for model validation.
Section 4 describes our approach for generating
long-term forecasts and presents the correspond-
ing results under various lockdown conditions. We
wish to emphasize that CoviHawkes can notably
predict short-term forecasts at the level of each dis-
trict that makes it especially useful for policymak-
ers in devising strategies for local lockdowns. We
hope that such an approach would minimize the

negative consequences of blanket lockdowns while
still effectively containing the spread of the disease.

2 CoviHawkes Model

In this section, we describe our method for a re-
gion of interest R that can be a district, state, or
nation. Let C(t) ∈ N denote the number of new
Covid-19 cases in the region R at time t. We use
m(t) ∈ Rdm to denote a vector of mobility features
for region R that describes the percentage change
in various activities such as “going to work”, “stay-
ing at home”, “grocery shopping”, etc, in this re-
gion on day t. Additionally, we will use H(t) to
refer to the history of observed data till time t,
i.e., H(t) = {(C(s),m(s))}s≤t.

Conditioned on the history H(t− 1), our model
assumes that C(t) is a Poisson distributed random
variable with mean λ(t). Therefore, for all c =
0, 1, 2, . . . ,

P (C(t) = c | H(t− 1)) =
λ(t)c exp(−λ(t))

c !
.

Following the discrete-time Hawkes process litera-
ture, we model λ(t) as

λ(t) = µ+

L∑
i=1

w(L− i)R(t− i)C(t− i).

Here, µ ∈ [0,∞) is the base count rate for the re-
gion of interest, L is the length of the time window
within which past case counts affect the present
case count, R(t) is the reproduction number of
the virus, and w(1), . . . , w(L) are weights assigned
to the previous L days such that w(i) ≥ 0 and∑L

i=1w(i) = 1.
In other words, infections occur on day t with

a base rate of µ. However, a person may also
catch the virus from another person infected i days
ago (i ≤ L). The probability of such a infec-
tion is proportional to the weight w(L − i) as-
signed to that day and the reproduction number
R(t− i) of the virus i days ago. The parameters µ,
w(1), . . . , w(L), and R(t) are learned directly from
the data by maximizing the log-likelihood of the
observations. We model R(t) as a function of the
past mobility data using an LSTM as described in
Section 2.1.

In the real world, a region has a finite popula-
tion and it is rare for people to get infected twice.
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Moreover, vaccinated people are also less likely to
get infected, and hence can be removed from the
set of susceptible population members for modeling
purposes (Rizoiu et al., 2018). To consider these
factors, we use a discounted value of λ(t) as shown
below:

λ̃(t) =

(
1− N(t− 1) + V (t− 1)

N

)
λ(t).

Here, N(t−1) =
∑t−1

s=1C(s) is the total number of
people that have already been infected before time
t, V (t−1) is the number of vaccinated people, and
N is the total size of the population in the region.
As N(t− 1) and V (t− 1) increase, the discounted
rate λ̃(t) decreases. All parameters including the
parameters of the LSTM that computes R(t) are
learned via maximum-likelihood estimation.

2.1 Estimating the value of R(t)

R(t) measures the rate at which the virus repro-
duces itself. A higher value of R(t) entails faster
spread of the disease and vice versa. Owing to
the emergence of variants of the virus, the value
of R(t) changes over time and must be estimated
periodically using recent trends in the data. To do
so, we use an LSTM (Hochreiter and Schmidhuber,
1997). Let x(t) ∈ R(L+1)dm be a vector obtained
by concatenating the mobility vectors m(t− i−∆)
for i = 1, . . . , L, and the vector of case counts in
the previous L days [C(t − L), . . . , C(t − 1)]. The
mobility features used at time t at delayed by an
additional gap ∆ > 0 to take the incubation pe-
riod of the disease into account. We use dm = 6,
L = 28, and ∆ = 14 in our experiments. R(t) is
then computed as:

h(t) = LSTM(h(t− 1),x(t))

R(t) = ln(1 + exp(wᵀh(t) + b)).

Here, h(t) ∈ Rd is the hidden state of the LSTM
at time t, and w ∈ Rd and b ∈ R are learnable
parameters.

3 Short-term predictions

For validating our short-term predictions, we use
case counts C(t) and mobility features m(t) col-
lected between March 2, 2020, and July 20, 2021.
We divide this data into two subsets: training data

Figure 1: Country-Level MAPE scores for different
sizes of forecasting window.

(March 2, 2020 to April 27, 2021) and validation
data (April 27-July 20, 2021), and validate our
model for forecasting windows of three sizes: 7,
14, and 28 days.

The validation period has 84 days. To validate
the model for a forecasting window of size w, we
divide the validation period into n possibly over-
lapping intervals of size w each. Let Iw1 , I

w
2 , . . . , I

w
n

be these intervals, then:

Iwi = {ts + 7(i− 1) + k}w−1k=0 ,

where ts marks the start of the validation period.
To make predictions for interval Iwi , we indepen-
dently train a model using all available data till
the start of Iwi and compute our predictions for
this interval. Let Ĉw

i (t) be the prediction made by
such a model at time t. The error for interval Iwi
is calculated as:

ψ(Iwi ) =
|
∑

t∈Iwi
C(t)−

∑
t∈Iwi

Ĉw
i (t)|∑

t∈Iwi
C(t)

× 100.

The error metric above is known as the Mean Abso-
lute Percentage Error (MAPE). The process above
is repeated for all i = 1, . . . , n, and the error of the
model on a window of size w is given by:

E(w) =
1

n

n∑
i=1

ψ(Iwi ).

Figure 1 shows E(w) for w = 7, 14, and 28 for
the nation-level model that forecasts case counts

3



(a) w = 7 (b) w = 14 (c) w = 28

Figure 2: MAPE for models trained at the state level for different states and values of forecast window
size w.

(a) w = 7 (b) w = 14 (c) w = 28

Figure 3: Histogram of MAPE scores for models trained at district level for different values of forecast
window size w.
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for the country as a whole. Figure 2 shows the
same data for state-level models. As the number
of districts is very large (> 500), we use histograms
in Figure 3 to show the number of districts on the
y-axis that have the corresponding MAPE scores
on the x-axis. As before, Figure 3 has histograms
for different values of w. The latest forecasts based
on this model are available on our website https:

//sml.csa.iisc.ac.in/covihawkes.

4 Long-term predictions

Recall that our model uses mobility features
{m(t − ∆ − i)}Li=1 and case counts {C(t − i)}Li=1

from the last few days to forecast the future value
at time t. Thus, we can only generate a forecast
at time t if these feature values are available. To
make predictions over a longer time horizon, we
need appropriate proxies for the values of these
features. The case counts can be boot-strapped,
i.e., the model can treat its own past predictions
as observed ground truth values. However, simu-
lating the mobility values is much harder. Instead,
we take a simplified approach as explained below.

We first identify four time intervals in the past
that correspond to different lockdown conditions.
The first interval, Is = [March 25-April 14, 2020],
covers the time when there was a strict nationwide
lockdown. The second interval, Im = [December
13-19, 2020], falls in the seventh unlock phase in In-
dia where most, though not all, of the restrictions,
were lifted. The third interval, In = [February 15-
March 3, 2020] corresponds to the time before the
pandemic when there was no lockdown. Finally,
Ic = [August 13-19, 2021], corresponds to the cur-
rent mobility conditions. Table 1 summarizes the
conditions under these intervals.

We generate four long-term forecasts, one each
for the mobility conditions from the intervals Is,
Im, In, and Ic. To generate forecasts correspond-
ing to Ix (x ∈ {s,m, n, c}), we compute the av-
erage value of mobility features for each weekday
i = 1, . . . , 7 in Ix. Let D(i) be the set of all ith

weekdays between February 14, 2020 and August
20, 2021. For example, D(1) will be the set of all
Sundays in this interval. Then, define mx(i) as,

mx(i) =
1

|Ix ∩D(i)|
∑
t∈Ix

1{t ∈ D(i)}m(t).

Whenever we require the mobility value for a day
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Figure 4: Heatmap showing average mobility
values under various lockdown conditions. The
columns correspond to the six mobility features
that we use. Negative values indicate less mobility
(the values represent percentage change as com-
pared to a pre-pandemic baseline).

t in the future that has not been observed, we use
mx(i) for an appropriate i chosen based on the
day of the week at time t. This, together with
bootstrapped count values, enables us to use our
model to generate long-term forecasts.

Figure 4 shows the average mobility values
1
7

∑7
i=1mx(i) for various lockdown conditions and

Figure 5 shows the long-term forecast at the
nation-level under these conditions. One can see
from Figure 4 that the current conditions have a
higher mobility value as compared to the seventh
unlock phase, despite the restrictions being similar
in these two phases (see Table 1). Consequently,
the model predicts a sharper rise in cases under
Ic as compared to Im. One can also see that the
model predicts a significant third wave if the mo-
bility returns to the pre-pandemic conditions (In).
Interestingly, the model also indicates that a mild
lockdown (as in Im) would be almost as good as a
very strict lockdown (as in Is).

As is the case with every statistical model, Cov-
iHawkes also makes several assumptions. For ex-
ample, we train models independently for states
and districts and do not consider the movement
of people across these regions due to the lack of
this data. Similarly, the model does not consider
breakthrough infections, reinfections, or emergence
of new variants of the virus in the long term. While
our short-term forecasts are rigorously validated,

5
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Interval Allowed Not Allowed

Is Essential government services like defence,
police, and power generation. Health-
care systems, related industries, and emer-
gency services. Banks. Shops selling ra-
tion, meat, dairy, and animal fodder. In-
ternet services. E-commerce. Media.

All non-essential offices, shops, and indus-
tries. All transport (except for essential
goods). All educational institutes, places
of worship, and gatherings of any kind.
Hospitality services.

Im All businesses, some at limited capac-
ity. Graded reopening of schools. Cin-
ema/Theaters at 50% capacity. Gather-
ings of up to 100 people in closed spaces
with maximum occupancy of 50%. Trans-
portation.

Large gatherings in indoor spaces. Differ-
ent states have different restrictions.

Ic Same as Im, but with higher mobility values (see Figure 4)

In Everything open, business as usual

Table 1: Lockdown conditions. Is: Strict lockdown, Im: Unlock Phase 7, Ic: Current conditions, In: No
lockdown. See Section 4 for details about these conditions.
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Figure 5: Nation-level long-term forecast.

validating long-term forecasts can be challenging.
In particular, long-term forecast uses proxy values
for the features as described above, and hence the
errors compound over time. Moreover, usage of av-
erage mobility features ignores events like festivals
and/or other unforeseen mass gatherings that are
likely to trigger an uptick in the infection rate. As
such, one must keep these caveats in mind while
using these long-term predictions.

5 Conclusion

In this article, we introduced an AI tool for fore-
casting Covid-19 case counts in India at nation,
state, and district levels. This model is based on
Hawkes process, which is suitable for modeling the
spread of infectious diseases due to its self-exciting
nature. We rigorously validated the short-term
predictions made by our model using standard val-
idation procedures for time-series data. We also
used our model to generate long-term forecast at
the national level to provide an indication of case
counts under different lockdown conditions. We
hope that this model, especially its short-term fore-
casts at the district level, will be useful for policy-
makers in developing strategies for local lockdowns.
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