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Summary paragraph: The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, 

has led to a wide range of non-pharmaceutical interventions being implemented around the 

world to curb transmission1–3. However, the economic and social costs of some of these 

measures, especially lockdowns, has been high. An alternative and widely discussed public 

health strategy for the COVID-19 pandemic would have been to ‘shield’ those most 

vulnerable to COVID-19, while allowing infection to spread among lower risk individuals 

with the aim of reaching herd immunity3–6. Here we retrospectively explore the effectiveness 

of this strategy, showing that even under the unrealistic assumption of perfect shielding, 

hospitals would have been rapidly overwhelmed with many avoidable deaths among lower 

risk individuals. Crucially, even a small (20%) reduction in the effectiveness of shielding 

would have likely led to a large increase (>150%) in the number of deaths compared to 

perfect shielding. Our findings demonstrate that shielding the vulnerable while allowing 

infections to spread among the wider population would not have been a viable public health 

strategy for COVID-19, and is unlikely to be effective for future pandemics. 

 

  



Main Text:  

 

The COVID-19 pandemic has caused unprecedented health, economic, and societal 

challenges. As of August 2021, over 200 million cases and more than 4 million deaths have 

been confirmed, although the true numbers are thought to be far higher7. Prior to (and during) 

the rollout of vaccines, most countries introduced a range of non-pharmaceutical 

interventions (NPIs) to bring infections under control, including social distancing, travel 

restrictions, and lockdowns. While the effectiveness of different NPIs has varied within and 

between populations and over time, they have been largely effective at bringing outbreaks 

under control1–3. A widely discussed alternative approach would have been to limit most 

NPIs to the most vulnerable subpopulations while allowing those at lower-risk to live with 

few or no restrictions3–5. ‘Shielding’ (or ‘focused protection’), appeared to offer the 

possibility of avoiding the various societal costs of universal NPIs by leveraging the uneven 

risk profile of COVID-19, which is heavily skewed towards the elderly and those with certain 

pre-existing conditions8,9. In theory, by allowing infections to spread among the lower-risk 

population during a temporary shielding phase, the higher-risk population would 

subsequently be protected by herd immunity10. Several countries either openly or reportedly 

embraced this strategy during the early stages of the pandemic. Sweden, for example, chose 

to impose few restrictions on the general population while banning visits to long-term care 

(LTC) facilities11, and the UK initially appeared to opt for a shielding strategy12 before 

implementing a national lockdown. In the autumn of 2020, many countries experienced a 

resurgence in infections following the lifting of NPIs, leading to a renewed debate about the 

merits of shielding, driven in part by the Great Barrington Declaration which called for 

“focused protection of older people and other high-risk groups”6. 

It is important to retrospectively assess the feasibility of shielding as a public health 

strategy, not only for public inquiries into COVID-19 and future pandemic preparedness, but 

also for countries where levels of vaccination remain low. Moreover, new variants may yet 

emerge which substantially escape immunity, thus requiring a renewed choice between 

lockdowns and shielding while vaccines are updated. Although superficially appealing, 

serious practical and ethical concerns have been raised about shielding as a strategy to 

mitigate the impact of COVID-1913. Yet there has been little mathematical modelling to 

determine the effectiveness of shielding under realistic conditions3–5. Crucially, the combined 

consequences of imperfect shielding, uneven distributions of immunity, and changes in 

contact behaviour among lower-risk individuals have yet to be explored. 

Here, we use a mathematical model to evaluate whether shielding the most vulnerable 

while allowing infections to spread among lower-risk members of the population would have 

been an effective strategy to combat COVID-19. Our simulations are intended as illustrative 

examples of how shielding would have likely performed during the early stages of the 

pandemic, with the aim of informing future pandemic preparedness. We employ a stochastic 

SEIR model (see Methods; Supplementary material Fig. S1) where the population is 

structured by risk of mortality (higher or lower risk) and location (community or LTC 

facilities). Our model is loosely based on an idealized large city in England (although our 

qualitative results would apply to similar countries) consisting of 1 million people, 7% of 

whom are at higher-risk of mortality from COVID-19, with 10% of higher-risk individuals 

situated in LTC facilities14,15. We compare epidemics under no shielding, with imperfect 



(partial reduction in contacts for higher-risk individuals) and perfect shielding (no contacts 

for higher-risk individuals), with shielding restrictions lifted when cases fall below a given 

threshold (see Methods). 

 An unmitigated epidemic with no shielding (NS) would have represented the worst-

case scenario (Fig. 1, col. 1), with an estimated peak incidence of 4149.0 ± 274.1 (mean ± 

standard deviation) cases per 100,000 and a total of 415.1 ± 6.5 deaths per 100,000, 

equivalent to 230,795 ± 3,615 total deaths in England. This is likely a conservative estimate, 

as hospitals would have been rapidly overwhelmed, with intensive care unit (ICU) capacity 

exceeded by a factor of approximately 18 at the peak of the epidemic (Fig. 1D). In contrast, 

perfect shielding (PS) would have been the best-case scenario (although unattainable) (Fig. 1, 

col. 3), with a peak incidence of 3470.5 ± 456.1 cases per 100,000 but only 87.6 ± 3.4 

deaths per 100,000. Perfect shielding represents a substantial improvement on an unmitigated 

epidemic (79% reduction in deaths), but almost all deaths would have been among lower-risk 

members of the population. In England, this would have equated to nearly 50,000 deaths 

among lower-risk individuals. As in the no shielding scenario, this is likely a conservative 

estimate as hospital capacity would have been rapidly overwhelmed: assuming an average 

duration of treatment of 10 days, ICU bed capacity in England would have been exceeded by 

over a factor of 10 at the peak of the epidemic with perfect shielding (see Methods). 

 However, shielding would have been impossible to implement perfectly. LTC 

residents, for example, have contact with staff, and many higher-risk individuals in the 

community live with or receive care from lower-risk individuals. Between 14 May and 16 

July 2020, only 58-63% of CEV people in England were able to follow guidelines to avoid 

contact completely15, and despite strict restrictions on LTC facilities in Sweden and England 

during the first wave of the pandemic, a high proportion of COVID-19 deaths were LTC 

residents (15). Imperfect shielding therefore represents a more realistic scenario. If shielding 

had been only 80% effective while an otherwise unmitigated epidemic spread through the 

lower-risk population, we estimate that there would have been large outbreaks among higher-

risk individuals both in the community and in LTC facilities (Fig. 1, col. 2) leading to a much 

higher death rate of 221.7 ± 3.8 per 100,000. Even a relatively small reduction in shielding 

effectiveness (20%) would have therefore led to a sharp increase in deaths (>150%) 

compared to perfect shielding (Fig. 2). Higher-risk individuals in the community would have 

been disproportionately affected due to imperfect shielding, with 200% higher death rates 

compared to LTC residents. Again, these figures are likely to be conservative as we estimate 

that hospital capacity would have been exceeded by a factor of 9.5 at the peak of the 

epidemic. 

 In theory, herd immunity would have been achieved primarily through infection of 

lower risk members of the population, conferring indirect protection to higher-risk 

individuals by preventing large outbreaks following the lifting of restrictions. However, since 

herd immunity only confers indirect protection, many vulnerable members of the population 

would have remained at risk of infection from residual transmission in the community or 

from externally imported (EI) infections (e.g., due to international travel; Fig. 3). Herd 

immunity would not have prevented small outbreaks seeded by imported index cases, 

especially among clusters of higher-risk individuals (e.g., in LTC facilities). A key weakness 

of the shielding strategy is the heterogeneous distribution of immunity that would have arisen 

in the population, with LTC facilities remaining highly susceptible to local outbreaks once 



restrictions were lifted (Fig. 3). If the shielding phase were to end prematurely while 

community transmission was still occurring or if infections were imported from other areas, 

local outbreaks would have likely still occurred in LTC facilities even if the population was 

above the herd immunity threshold. Similar effects have been observed for other pathogens, 

notably measles outbreaks in communities with low vaccination rates17.  

 A third critical weakness of the shielding strategy is that it relies on large numbers of 

lower-risk individuals becoming infected to build up immunity in the population. Yet many 

people would have likely changed their behaviour to avoid infection, leading to smaller, 

longer outbreaks with fewer infections and potentially leaving immunity levels below the 

threshold needed to prevent subsequent outbreaks10. Prior to England’s first national 

lockdown, mobility data shows that movement dropped by as much as 70%18, and many 

people continued to take precautions, such as mask wearing and working from home, even 

after restrictions were fully lifted in July 202119. A resurgence in cases leading to a second, 

deadlier wave, occurs in our modelling when reduced contact (50%) among lower risk 

individuals is combined with shielding, whether imperfect (IS+RC, 321.2 ± 11.5 deaths per 

100,000) or perfect (PS+RC, 299.5 ± 7.5 deaths per 100,000) (Fig. 4, cols 2-3). Reduced 

contact among lower-risk individuals leads to much smaller peaks in incidence and 

hospitalizations, although ICU surge capacity would still likely have been exceeded without 

further restrictions (Fig. 4). Furthermore, behaviour change would likely have been 

exacerbated if healthcare services were overwhelmed. 

 Our results demonstrate critical epidemiological weaknesses in shielding strategies 

that aim to achieve herd immunity by isolating the vulnerable while allowing infections to 

spread among lower-risk members of the population. Even in the best-case scenario, our 

model estimates that there would have been tens of thousands of avoidable deaths among 

those deemed to be at lower risk, even without accounting for the rapid depletion of 

healthcare capacity. A significant reduction in contact rates would have been required to 

avoid overwhelming healthcare capacity during shielding20, but the population would have 

then failed to achieve herd immunity, allowing a second, deadlier wave to occur following 

the lifting of restrictions. Under more realistic assumptions of imperfect shielding, our model 

estimates that deaths would have been 150% to 300% higher compared to perfect shielding. 

Breaking down deaths by risk category and location reveals contrasting effects of the 

scenarios on different groups (Table S2). In some cases (+RC), LTC residents fare have 

disproportionately higher death rates than similar individuals in the community, and in others 

the converse is true (IS). This occurs because LTC residents are clustered together within 

facilities, whereas higher-risk individuals outside of LTC facilities are assumed to mix 

randomly in the community. Clustering of susceptible contacts means that higher-risk 

individuals in LTC facilities are more adversely affected than those in the community when 

herd immunity is not reached during the shielding phase, as LTC facilities remain vulnerable 

to large outbreaks once restrictions are lifted. This effect is not seen in previous models 

which do not account for the clustering of higher risk members of the population5. 

Our model demonstrates that shielding would have only worked well under 

practically unrealizable conditions. If any of these conditions had not been met, then 

significant outbreaks would have occurred in higher-risk subpopulations, leading to many 

more deaths than if shielding were perfect. To be effective, shielding would have also 

required those who were at higher risk to not only be rapidly and accurately identified, but 



also to shield themselves for an indefinite period. If higher-risk individuals were to be 

misdiagnosed or were unable to fully isolate this would have decreased the effectiveness of 

shielding. For example, shielding would have been especially difficult for households that 

contained both higher- and lower-risk individuals (e.g., 74% of CEV people in England live 

with other people, and 15% live with children aged under 16 years (21)). The large number of 

multi-risk households suggests that either shielding would have been far from perfect, or a 

significant proportion of lower-risk individuals would have also had to shield, in which case 

it would have been harder (or perhaps impossible) to achieve herd immunity during the 

shielding phase. 

 The present study focuses on three critical epidemiological weaknesses in shielding 

strategies, but there are many additional epidemiological, logistical, and ethical problems 

with shielding that are not captured by our model10,22. Notably, even if perfect shielding had 

been possible, there would have been major issues associated with the large number of 

infections required to achieve herd immunity. Long-term sequalae of infection, known 

collectively as ‘long COVID’, are thought to affect between 5 and 10% of those infected23,24, 

which would have left many otherwise healthy people with significant long-term health 

problems. A large epidemic would have also potentially allowed new variants to emerge, 

which may have been more transmissible, more deadly, or able to escape immunity. We 

made the conservative assumption of no pathogen evolution, but novel variants would have 

rendered shielding an even less effective strategy.  

Our model also made conservative assumptions regarding infection fatality rates 

(IFRs; see Methods) and immunity, but more realistic assumptions are likely to make the case 

for shielding far worse. For example, we used relatively low estimates for the IFRs and 

assumed that these were fixed even though healthcare capacity would have been significantly 

overwhelmed under all shielding scenarios. The model also did not capture the impact of 

healthcare burden on mortality from other causes. We also assumed that immunity from 

infection was perfect and long-lasting (‘best-case’ assumptions for shielding), but neither is 

likely to be true in reality25. These additional considerations, in combination with the clear 

flaws indicated by our modelling, suggest that, while an idealized shielding strategy may 

have allowed populations to achieve herd immunity with fewer deaths, they are likely to have 

failed catastrophically in practice. 
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Figures 

 
Fig. 1. Simulations of no (NS), imperfect (IS) and perfect (PS) shielding. Lines 

correspond to means for groups at: lower-risk (black), higher-risk in the community (blue) 

and in LTC facilities (red), with shading indicating ± 1 SD. Green shading indicates the 

shielding phase. Top row: daily number of new cases per 100,000 members of each group 

(i.e., new cases in each group multiplied by 100,000 and divided by group size). Second row: 

percentage of surge capacity ICU beds in demand (horizontal dashed line indicates full 

capacity). Third row: cumulative number of deaths per 100,000 members of each group (i.e., 

total deaths in each group multiplied by 100,000 and divided by group size). Bottom row: 

cumulative number of deaths per 100,000 members of the total population (i.e., total deaths 

multiplied by 100,000 and divided by total population size). Data averaged over 100 

identically initialized stochastic repeats (see Materials and methods). 

 

 
Fig. 2. Relative deaths under varying levels of imperfect shielding (compared to perfect 

shielding). Red dots and labels correspond to figures showing these scenarios, and vertical 

bars indicate ± 1 standard deviation. 



 

 
Fig. 3. Simulations of the three shielding scenarios with external infections (+EI). All 

other descriptions as in Fig. 1. 

 

 
Fig 4. Simulations of the three shielding scenarios with 50% reduced contact (RC). RC 

occurs prior to the vertical dashed line. All other descriptions as in Fig. 1. 

  



Methods 

Model formulation 

We simulate the spread of COVID-19 through the population of a large hypothetical city in 

England (𝑁 = 1,000,000). We consider a closed population (no births, non-disease related 

death or immigration) that is divided into three groups: a proportion ℎ of higher-risk 

individuals, with a proportion 𝑐ℎ of those living in the community (𝐻𝐶) and (1 − 𝑐)ℎ living in 

𝑛 long-term care (LTC) facilities (𝐻𝐹
𝑖 ) (for 𝑖 = 1,… , 𝑛), with the remaining fraction of the total 

population, 1 − ℎ, being lower-risk individuals living in the community (𝐿). We define the 

number of people in each of the subpopulations to be 𝑁𝐿 , 𝑁𝐻𝐶 and 𝑁𝐻𝐹𝑖
 for the lower-risk 

community, higher-risk community, and long-term care residents in facility  𝑖 (for 𝑖 = 1,… , 𝑛), 

respectively. Using approximate figures for those classed as clinically extremely vulnerable 

(CEV) in England, we set ℎ = 0.07 (7% at higher risk of mortality from COVID-19) and 𝑐 =

0.897 (around 90% of higher-risk individuals live in the community). To reflect variation in 

the sizes of LTC facilities in England, we assume that LTC residents are distributed evenly 

over small, medium and large facilities: there are 120 small LTC facilities, each with 20 

residents; 48 medium LTC facilities, each with 50 residents each, and 24 large LTC facilities, 

each of which house 100 residents. 

We define the infection fatality ratio (IFR) for those at lower risk to be 𝛼𝐿, and for those at 

higher risk to be 𝛼𝐻, with (𝛼𝐿 < 𝛼𝐻). While many studies consider age stratified IFRs8,9,20, 

there is comparatively little data on the IFR for CEV individuals. We assume that the lower-

risk group consists of healthy people who are generally younger. IFR estimates for younger 

age groups range from 0.000097 9 for the under 25s to 0.0052 9 or 0.0094 8 for the 45-64 age 

group. Conservatively, we choose a value towards the lower end of these estimates at 0.001 for 

the lower-risk group. For the higher-risk populations, we need to consider not only age, but 

also risk factors associated with being CEV. The majority of LTC residents are elderly, and so 

we look at the IFR for elderly populations as a proxy for this group. IFRs for over 75s have 

been estimated to be as high as 0.1164 by 8 and 0.147 by 9, and previous modelling has assumed 

IFRs of 0.051 and 0.093 for the 70-79 and 80+ age groups, respectively 26. We again choose a 

conservative estimate, setting the IFR for higher-risk individuals both in the community and in 

LTC facilities at 0.05. Our choice of IFRs are only approximations with the intention of 

illustrating how different shielding scenarios affect changes in cumulative deaths. Other 

reasonable choices of IFR for the different risk subcategories in our model do not qualitatively 



affect our conclusions. We set the average incubation period (1/𝜎) to be 5 days26 and the 

average infectious period (1/Γ) to be 2 days26, which are assumed to be the same for all 

individuals, and the basic reproduction number, 𝑅0, to be 327 (see below for derivation). These 

parameters yield an unmitigated doubling time of around 3.2 days. For further simulations with 

𝑅0 = 2.5 and 𝑅0 = 3.5, see Supplementary material “Sensitivity analysis”. 

Each individual in the population is assigned one of five epidemiological states: 𝑆 for those 

susceptible to the disease, 𝐸 for those exposed but not yet infectious, 𝐼 for those infected and 

able to transmit the disease, 𝑅 for those who have recovered (recovery is assumed to lead to 

full lifelong immunity), and 𝐷 for those who have died from the disease. We then define 

𝑆𝑖, 𝐸𝑖 , 𝐼𝑖, 𝑅𝑖 and 𝐷𝑖 for 𝑖 ∈ {𝐿, 𝐻𝐶 , 𝐻𝐹
1, … , 𝐻𝐹

𝑛} to be the total number of susceptible, exposed, 

infected, recovered, and dead individuals in subpopulation 𝑖. Susceptible individuals can 

become exposed through two pathways. Firstly, they may be “externally” infected from a 

member outside the population (for example, from another city or country), which we assume 

occurs at a rate 𝜂𝑖(𝑡) for subpopulation 𝑖 at time 𝑡. Alternatively, infected individuals of type 

𝑗 may transmit the disease to susceptible individuals of type 𝑖 with rate 𝛽𝑖𝑗 = 𝛽0𝑟𝑝𝑖𝑗, where 𝛽0 

is the transmission probability per contact, 𝑟 is the average number of contacts in the absence 

of restrictions, and 𝑝𝑖𝑗 is the proportion of contacts that a person of type 𝑖 has with a person of 

type 𝑗. Written as a transmission matrix 𝜷, we have: 

𝜷 = 𝛽0𝑟

(

  
 

𝑝𝐿𝐿 𝑝𝐿𝐻𝐶 𝑝𝐿𝐻𝐹1 ⋯ 𝑝𝐿𝐻𝐹𝑛

𝑝𝐻𝐶𝐿 𝑝𝐻𝐶𝐻𝐶 𝑝𝐻𝐶𝐻𝐹1 ⋯ 𝑝𝐻𝐶𝐻𝐹𝑛

𝑝𝐻𝐹1𝐿 𝑝𝐻𝐹1𝐻𝐶 𝑝𝐻𝐹1𝐻𝐹1 ⋯ 𝑝𝐻𝐹1𝐻𝐹𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝑝𝐻𝐹𝑛𝐿 𝑝𝐻𝐹𝑛𝐻𝐶 𝑝𝐻𝐹𝑛𝐻𝐹1 ⋯ 𝑝𝐻𝐹𝑛𝐻𝐹𝑛)

  
 
. (1) 

We assume that there is no direct contact between each of the LTC facilities, that a proportion 

𝜆 of an LTC resident’s contacts occur within the same LTC facility, and that this proportion is 

the same for all LTC facilities. This yields: 

𝑝
𝐻𝐹
𝑖𝐻𝐹

𝑗 = 𝜆𝛿𝑖,𝑗 , (2) 

 



where 𝛿𝑖,𝑗 is the Kronecker delta, which takes the value 1 if 𝑖 = 𝑗 and is 0 otherwise. The 

remainder of an LTC resident’s contacts will occur with individuals in the community, 

normalised by the proportion of the population that is in the community: 

𝑝𝐻𝐹𝑖 𝐿
=
(1 − ℎ)(1 − 𝜆)

1 − ℎ(1 − 𝑐)
, (3a) 

𝑝𝐻𝐹𝑖𝐻𝐶
=

𝑐ℎ(1 − 𝜆)

1 − ℎ(1 − 𝑐)
, (3b) 

 

which holds for every 𝑖 ∈ {1,… , 𝑛}. The proportion of contacts that the lower- and higher-risk 

communities have with each care home is calculated as follows: 

𝑝𝐿𝐻𝐹𝑖
=
𝑁𝑖+2
𝑁

𝑝𝐻𝐹𝑖 𝐿

1 − ℎ
, (4a) 

𝑝𝐻𝐶𝐻𝐹𝑖
=
𝑁𝑖+2
𝑁

𝑝𝐻𝐹𝑖𝐻𝐶
ℎ𝑐

, (4b) 

where we have multiplied the contact rate in the opposite direction by the proportion of 

individuals that live in LTC facility 𝑖, and divide through by the proportion in each community 

group. We can calculate the remaining values in a similar way to 𝑝𝐻𝐹𝑖 𝐿
 and 𝑝𝐻𝐹𝑖𝐻𝐶

 (i.e. by 

multiplying the remaining 1 − 𝑝𝐻𝐹𝑖 𝐿
 (and 1 − 𝑝𝐻𝐹𝑖𝐻𝐶

) by the corresponding proportion of each 

subpopulation in the community), yielding the following transmission matrix: 

𝜷 = 𝛽0𝑟

(

 
 
 
 
 
 

(1 − ℎ) (1 − ∑ 𝑝𝐿𝐻𝐹𝑖𝑖 )

1 − ℎ(1 − 𝑐)

𝑐ℎ (1 − ∑ 𝑝𝐿𝐻𝐹𝑖𝑖 )

1 − ℎ(1 − 𝑐)
𝑝𝐿𝐻𝐹1 ⋯ 𝑝𝐿𝐻𝐹𝑛

(1 − ℎ) (1 − ∑ 𝑝𝐻𝐶𝐻𝐹𝑖𝑖 )

1 − ℎ(1 − 𝑐)

𝑐ℎ (1 − ∑ 𝑝𝐻𝐶𝐻𝐹𝑖𝑖 )

1 − ℎ(1 − 𝑐)
𝑝𝐻𝐶𝐻𝐹1 ⋯ 𝑝𝐻𝐶𝐻𝐹𝑛

𝑝𝐻𝐹1𝐿 𝑝
𝐻𝐹
1𝐻𝐶

λ ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
𝑝𝐻𝐹𝑛𝐿 𝑝𝐻𝐹𝑛𝐻𝐶 0 ⋯ λ )

 
 
 
 
 
 

. (5) 

We implement non-pharmaceutical interventions (NPIs) by multiplying the transition matrix 

𝜷 elementwise by a shielding matrix 𝑸, whose entries lie between 0 and 1. A value of 𝑄𝑖𝑗 = 1 

denotes that interventions, if any, do not impact the contact rates between subpopulation 𝑖 and 

subpopulation 𝑗, so that contacts between the two occur as normal, while a value of 𝑄𝑖𝑗 = 0 



ceases all contacts between subpopulations 𝑖 and 𝑗. The matrix 𝑸 is characterised by six 

different values and takes the following form: 

𝑸 =

(

 
 

𝑞1 𝑞4 𝑞5 ⋯ 𝑞5
𝑞4 𝑞2 𝑞6 ⋯ 𝑞6
𝑞5 𝑞6 𝑞3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
𝑞5 𝑞6 0 ⋯ 𝑞3)

 
 
. (6) 

We consider three different shielding scenarios: no shielding (NS), imperfect shielding (IS), 

and perfect shielding (PS). In the imperfect and perfect shielding scenarios, shielding begins at 

the start of each simulation and ends once incidence falls below a threshold of 60 new cases 

per 100,000 in the population per week. Once shielding ends it does not start again if cases rise. 

Coupled to each of these shielding scenarios, we include modifiers: reduced contact of the 

population during the shielding phase (RC) and the addition of an external force of infection 

post shielding (EI). The RC modifier is motivated by Apple mobility data, which shows that in 

the week leading up to the first full lockdown in England on the 23rd March 2020, levels of 

movement may have dropped by around 70%18, as measured by the number of requests for 

directions using Apple Maps. This indicates that members of the population may voluntarily 

reduce their contact when faced with an emerging pandemic. When there is no shielding 

strategy and the RC modifier is applied, we assume that all subpopulations reduce their contact 

equally. When either perfect or imperfect shielding is applied, the reduced contact is applied 

to the lower-risk population only as the higher-risk population already has reduced contact due 

to shielding. The second modifier, which introduces external infections, is motivated by those 

who enter the population and have the potential to infect those in the focal population. We 

assume that during the shielding phase, the population is closed, and so this modifier is only 

applied after shielding ends. Table S1 shows values for the entries of 𝑸 for the ten scenarios in 

the main text. 

To evolve the model system, we employ the Gillespie stochastic simulation algorithm (SSA)28 

(The code for the implementation can be found online29). The transition rates between the 

different states of the system are defined using the numbers of individuals in each of the 

subpopulations. Let 𝑌𝑖
𝑡 = (𝑆𝑖, 𝐸𝑖 , 𝐼𝑖, 𝑅𝑖, 𝐷𝑖) be the state variable for the 𝑖th subpopulation at time 

𝑡. Then we can define the transition probabilities between states over a small time interval 

(𝑡, 𝑡 + 𝛿𝑡) to be as follows: 



ℙ(𝑌𝑖
𝑡+𝛿𝑡 − 𝑌𝑖

𝑡 = (−1,1,0,0,0)) = (𝜂𝑖(𝑡)𝑆𝑖 +∑
𝑄𝑖𝑗𝛽𝑖𝑗𝑆𝑖𝐼𝑗

𝑁𝑗
𝑗

)𝛿𝑡, (7a) 

ℙ(𝑌𝑖
𝑡+𝛿𝑡 − 𝑌𝑖

𝑡 = (0,−1,1,0,0)) = 𝜎𝐸𝑖𝛿𝑡, (7b) 

ℙ(𝑌𝑖
𝑡+𝛿𝑡 − 𝑌𝑖

𝑡 = (0,0, −1,1,0)) = 𝛾𝐼𝑖(1 − 𝛼𝑖)𝛿𝑡, (7c) 

ℙ(𝑌𝑖
𝑡+𝛿𝑡 − 𝑌𝑖

𝑡 = (0,0, −1,0,1)) = 𝛾𝐼𝑖𝛼𝑖𝛿𝑡, (7d) 

which holds for every subpopulation 𝑖, whilst holding each of the other 𝑌𝑗
𝑡s constant for every 

𝑗 ≠ 𝑖. Each of the above probabilities is associated with the transition of an individual between 

successive disease states. The first is the conversion of a susceptible to an exposed individual 

through coming into contact with an infected individual from any of the other subpopulations 

𝑗 ∈ {𝐿, 𝐻𝐶 , 𝐻𝐹
1, … , 𝐻𝐹

𝑛}. Note that the first term in the bracket is the external infection term, 

which is always 0 during the shielding phase, and when included, is non-zero only in the lower-

risk and higher-risk subpopulations in the community. The second characterises the transition 

from being exposed to infectious, the third the recovery of an infected individual and the fourth 

the death of an infected individual. We run each of our stochastic simulations for 600 days and 

calculate averages and variances over 100 independent repeats, initialised with 10 lower-risk 

individuals in the infected class. We remove any instances of immediate stochastic die out from 

our analysis (this is a rare occurrence). 

Basic reproduction number 

To approximate the basic reproduction number for our simulation, we employ the mean field 

ordinary differential equations (ODEs) for each subpopulation, for which we combine all LTC 

facility residents into one large subpopulation. The mean-field equations (assuming no 

interventions) are: 

𝑑𝑆𝐿
𝑑𝑡

= −
𝛽𝐿𝐿𝑆𝐿𝐼𝐿
𝑁𝐿

−
𝛽𝐿𝐻𝐶𝑆𝐿𝐼𝐻𝐶
𝑁𝐻𝐶

−
𝛽𝐿𝐻𝐹𝑆𝐿𝐼𝐻𝐹
𝑁𝐻𝐹

,  (8a) 

𝑑𝑆𝐻𝐶
𝑑𝑡

= −
𝛽𝐻𝐶𝐿𝑆𝐻𝐶𝐼𝐿

𝑁𝐿
−
𝛽𝐻𝐶𝐻𝐶𝑆𝐻𝐶𝐼𝐻𝐶

𝑁𝐻𝐶
−
𝛽𝐻𝐶𝐻𝐹𝑆𝐻𝐶𝐼𝐻𝐹

𝑁𝐻𝐹
, (8b) 



𝑑𝑆𝐻𝐹
𝑑𝑡

= −
𝛽𝐻𝐹𝐿𝑆𝐻𝐹𝐼𝐿

𝑁𝐿
−
𝛽𝐻𝐹𝐻𝐶𝑆𝐻𝐹𝐼𝐻𝐶

𝑁𝐻𝐶
−
𝛽𝐻𝐹𝐻𝐹𝑆𝐻𝐹𝐼𝐻𝐹

𝑁𝐻𝐹
, (8c) 

𝑑𝐸𝐿
𝑑𝑡

=
𝛽𝐿𝐿𝑆𝐿𝐼𝐿
𝑁𝐿

+
𝛽𝐿𝐻𝐶𝑆𝐿𝐼𝐻𝐶
𝑁𝐻𝐶

+
𝛽𝐿𝐻𝐹𝑆𝐿𝐼𝐻𝐹
𝑁𝐻𝐹

− 𝜎𝐸𝐿 , (8d) 

𝑑𝐸𝐻𝐶
𝑑𝑡

=
𝛽𝐻𝐶𝐿𝑆𝐻𝐶𝐼𝐿

𝑁𝐿
+
𝛽𝐻𝐶𝐻𝐶𝑆𝐻𝐶𝐼𝐻𝐶

𝑁𝐻𝐶
+
𝛽𝐻𝐶𝐻𝐹𝑆𝐻𝐶𝐼𝐻𝐹

𝑁𝐻𝐹
− 𝜎𝐸𝐻𝐶 , (8e) 

𝑑𝐸𝐻𝐹
𝑑𝑡

=
𝛽𝐻𝐹𝐿𝑆𝐻𝐹𝐼𝐿

𝑁𝐿
−
𝛽𝐻𝐹𝐻𝐶𝑆𝐻𝐹𝐼𝐻𝐶

𝑁𝐻𝐶
−
𝛽𝐻𝐹𝐻𝐹𝑆𝐻𝐹𝐼𝐻𝐹

𝑁𝐻𝐹
 − 𝜎𝐸𝐻𝐹 , (8f) 

𝑑𝐼𝐿
𝑑𝑡
= 𝜎𝐸𝐿 − Γ𝐼𝐿 , (8g) 

𝑑𝐼𝐻𝐶
𝑑𝑡

= 𝜎𝐸𝐻𝐶 − Γ𝐼𝐻𝐶 , (8h) 

𝑑𝐼𝐻𝐹
𝑑𝑡

= 𝜎𝐸𝐻𝐹 − Γ𝐼𝐻𝐹 . (8i) 

 

The recovered and death classes have been omitted here because they are not required for the 

calculation. We employ the next generation matrix method30 in order to find the basic 

reproduction number. We linearise the infected state ODEs (𝐸𝑖 and 𝐼𝑖) in system (8) about the 

disease-free equilibrium 

𝑆0 = (𝑆𝐿 , 𝑆𝐻𝐶 , 𝑆𝐻𝐹 , 𝐸𝐿 , 𝐸𝐻𝐶 , 𝐸𝐻𝐹 , 𝐼𝐿 , 𝐼𝐻𝐶 , 𝐼𝐻𝐹) = (𝑁𝐿 , 𝑁𝐻𝐶 , 𝑁𝐻𝐹 , 0,0,0,0,0,0), (9) 

by writing 𝑥 = (𝐸𝐿 , 𝐸𝐻𝐶 , 𝐸𝐻𝐹 , 𝐼𝐿 , 𝐼𝐻𝐶 , 𝐼𝐻𝐹)
𝑇
 (where the superscript 𝑇 denotes the transpose) and 

obtaining an ODE  𝑥̇ = 𝑨𝑥, where: 



𝑨 =

(

 
 
 
 
 
 
 
−𝜎 0 0 𝛽𝐿𝐿 𝛽𝐿𝐻𝐶

𝑁𝐿
𝑁𝐻𝐶

 𝛽𝐿𝐻𝐹
𝑁𝐿
𝑁𝐻𝐹

0 −𝜎 0 𝛽𝐻𝐶𝐿
𝑁𝐻𝐶
𝑁𝐿

𝛽𝐻𝐶𝐻𝐶 𝛽𝐻𝐶𝐻𝐹
𝑁𝐻𝐶
𝑁𝐻𝐹

0 0 −𝜎 𝛽𝐻𝐹𝐿
𝑁𝐻𝐹
𝑁𝐿

𝛽𝐻𝐹𝐻𝐶
𝑁𝐻𝐹
𝑁𝐻𝐶

𝛽𝐻𝐹𝐻𝐹

𝜎 0 0 −Γ 0 0
0 𝜎 0 0 −Γ 0
0 0 𝜎 0 0 −Γ )

 
 
 
 
 
 
 

. (10) 

We split matrix (10) into components 𝑻 and 𝚺 which contain the transmission terms (or the 

terms relating to the mechanism by which individuals enter this truncated system) and all other 

terms respectively, so that: 

𝑻 =

(

 
 
 
 
 
 
 
0 0 0 𝛽𝐿𝐿 𝛽𝐿𝐻𝐶

𝑁𝐿
𝑁𝐻𝐶

 𝛽𝐿𝐻𝐹
𝑁𝐿
𝑁𝐻𝐹

0 0 0 𝛽𝐻𝐶𝐿
𝑁𝐻𝐶
𝑁𝐿

𝛽𝐻𝐶𝐻𝐶 𝛽𝐻𝐶𝐻𝐹
𝑁𝐻𝐶
𝑁𝐻𝐹

0 0 0 𝛽𝐻𝐹𝐿
𝑁𝐻𝐹
𝑁𝐿

𝛽𝐻𝐹𝐻𝐶
𝑁𝐻𝐹
𝑁𝐻𝐶

𝛽𝐻𝐹𝐻𝐹

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 
 
 
 

,  

(11) 

𝚺 =

(

  
 

−𝜎 0 0 0 0 0
0 −𝜎 0 0 0 0
0 0 −𝜎 0 0 0
𝜎 0 0 −Γ 0 0
0 𝜎 0 0 −Γ 0
0 0 𝜎 0 0 −Γ)

  
 
. 

(12) 

  

The next generation matrix 𝑲 is then given by 𝑲 = −𝑻𝚺−𝟏: 



𝑲 = −𝑻𝚺−1

=

(

 
 
 
 
 
 
 

𝛽𝐿𝐿
Γ

𝛽𝐿𝐻𝐶
Γ
 
𝑁𝐿
𝑁𝐻𝐶

𝛽𝐿𝐻𝐹
Γ

𝑁𝐿
𝑁𝐻𝐹

𝛽𝐿𝐿
Γ

𝛽𝐿𝐻𝐶
Γ

𝑁𝐿
𝑁𝐻𝐶

𝛽𝐿𝐻𝐹
Γ

𝑁𝐿
𝑁𝐻𝐹

𝛽𝐻𝐶𝐿

Γ

𝑁𝐻𝐶
𝑁𝐿

𝛽𝐻𝐶𝐻𝐶
Γ

𝛽𝐻𝐶𝐻𝐹
Γ

𝑁𝐻𝐶
𝑁𝐻𝐹

𝛽𝐻𝐶𝐿

Γ

𝑁𝐻𝐶
𝑁𝐿

𝛽𝐻𝐶𝐻𝐶
Γ

𝛽𝐻𝐶𝐻𝐹
Γ

𝑁𝐻𝐶
𝑁𝐻𝐹

𝛽𝐻𝐹𝐿

Γ

𝑁𝐻𝐹
𝑁𝐿

𝛽𝐻𝐹𝐻𝐶
Γ

𝑁𝐻𝐹
𝑁𝐻𝐶

𝛽𝐻𝐹𝐻𝐹
Γ

𝛽𝐻𝐹𝐿

Γ

𝑁𝐻𝐹
𝑁𝐿

𝛽𝐻𝐹𝐻𝐶
Γ

𝑁𝐻𝐹
𝑁𝐻𝐶

𝛽𝐻𝐹𝐻𝐹
Γ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 
 
 
 

. 
(13) 

The basic reproduction number, 𝑅0, is given by the leading eigenvalue of 𝑲. To simplify the 

resulting characteristic polynomial, we note that the matrix 𝜷 takes the following form, 

calculated in an analogous way to the Model formulation section above: 

𝜷 = (

𝛽𝐿𝐿 𝛽𝐿𝐻𝐶 𝛽𝐿𝐻𝐹
𝛽𝐻𝐶𝐿 𝛽𝐻𝐶𝐻𝐶 𝛽𝐻𝐶𝐻𝐹
𝛽𝐻𝐹𝐿 𝛽𝐻𝐹𝐻𝐶 𝛽𝐻𝐹𝐻𝐹

) = (

𝑏1 𝑏2 𝑏3
𝑏1 𝑏2 𝑏3
𝑏4 𝑏5 𝑏6

), (14) 

where: 

𝑏1 = 𝛽0𝑟
(1 − ℎ)(1 − 𝑏3)

1 − ℎ(1 − 𝑐)
, (15a) 

𝑏2 = 𝛽0𝑟
𝑐ℎ(1 − 𝑏3)

1 − ℎ(1 − 𝑐)
, (15b) 

𝑏3 = 𝛽0𝑟
ℎ(1 − 𝑐)(1 − 𝜆)

1 − ℎ(1 − 𝑐)
, (15c) 

𝑏4 = 𝛽0𝑟
(1 − ℎ)(1 − 𝜆)

1 − ℎ(1 − 𝑐)
, (15d) 

𝑏5 = 𝛽0𝑟
𝑐ℎ(1 − 𝜆)

1 − ℎ(1 − 𝑐)
, (15e) 

𝑏6 = 𝛽0𝑟𝜆. (15f) 

 

Substituting equations (15) into (13) and simplifying, we find the characteristic polynomial, 

𝑃(𝑠), to be: 



𝑃(𝑠) =  𝑠4 [𝑠2 −
1

Γ
(𝑏1 + 𝑏2 + 𝑏6)𝑠 +

1

Γ2
(𝑏6(𝑏1 + 𝑏2) − 𝑏3(𝑏4 + 𝑏5)) ]. (16) 

Employing the fact that 𝑏1 + 𝑏2 + 𝑏3 = 𝑏4 + 𝑏5 + 𝑏6 = 𝛽0𝑟, we obtain the form: 

𝑃(𝑠) = 𝑠4 (𝑠 −
𝛽0𝑟

Γ
) (𝑠 −

𝑏1 + 𝑏2 + 𝑏6 − 𝛽0𝑟

Γ
). (17) 

The largest of the two eigenvalues that result from setting the characteristic polynomial to zero 

is 𝛽0𝑟/Γ, and hence: 

𝑅0 =
𝛽0𝑟

Γ
. (18) 

Hospitalisation 

To calculate the impact of our interventions on the capacity of intensive care units (ICUs) 

during the epidemic, we utilise data from26 on the age distribution of patients requiring ICU 

treatment (Table S2). To calculate the probability of requiring ICU treatment given that an 

individual is symptomatic in the lower-risk group (assumed to be 66% of our infected class), 

we take a weighted average over all ages up to and including 64 (in a similar way to the 

calculation of IFR values), while the higher-risk subpopulations use ages 65 and over as a 

proxy. This yields probabilities of requiring ICU treatment for the lower- and higher-risk 

(community and LTC facilities) subpopulations, 𝜋𝐿 and 𝜋𝐻, of: 

𝜋𝐿 = ∑ 𝑝𝑜𝑝ℓ × 𝐼𝐶𝑈ℓ
ℓ∈𝒜𝐿

, 

𝜋𝐻 = ∑ 𝑝𝑜𝑝ℓ × 𝐼𝐶𝑈ℓ
ℓ∈𝒜𝐻

, 

where 𝒜𝐿 is the set of age categories below the age of 64, and 𝒜𝐻 is the set of age categories 

bigger than 65. Each individual admitted to ICU is assumed to stay for ten days26. 
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Sensitivity analysis 

In this section, we present additional results which demonstrate that the qualitative results presented 

in the main text are robust to reasonable variations in parameters. Specifically, we vary the 

effectiveness of shielding (Figure S2) and investigate the effect of changing the reduction in contact 

by lower-risk individuals during the shielding phase (Figure S3 and Figure S4), the basic reproductive 

number (Figure S5 and Figure S6) and the proportion of contacts within LTC facilities (Figure S7 and 

Figure S8). 

We begin by varying the effectiveness of shielding in the imperfect shielding scenario by 10% either 

side of the baseline of 80% employed in the main text (Figure S2). Unsurprisingly, decreasing the 

effectiveness of the shielding increases the number of deaths in the higher-risk subpopulations, while 

increasing the effectiveness of shielding has the opposite effect. The qualitative epidemiological 

dynamics results are broadly similar, however.  

We next vary the contact reduction among the lower-risk population, from the 50% employed in the 

main text, to a 40% and 60% reduction in both the perfect shielding (Figure S3) and imperfect shielding 

(Figure S4) cases. In the perfect shielding case, a greater reduction in the contact rate among lower-

risk members of the population during shielding is associated with a longer shielding phase (420 days 

on average for 60% reduction, 300 days on average for 50% reduction, 200 days on average for 40% 

reduction) and a larger second wave, particularly in the higher-risk in the community. We see the same 

broad pattern when considering the imperfect shielding scenario (Figure S4).   

Next, we investigate the effects of varying the basic reproduction number from 𝑅0 = 3 (employed in 

the main text scenarios) to 𝑅0 = 2.5 or 𝑅0 = 3.5. We conduct these simulations on both the imperfect 

shielding (IS; Figure S5) and imperfect shielding with reduced contact (IS + RC; Figure S6) scenarios, as 

there is very little effect on the results for perfect shielding. For the IS scenario (Figure S5), we see an 

increase in deaths and infections as the basic reproduction number increases, however the qualitative 

behaviour remains unchanged. When reduced contact among lower-risk individuals is included (Figure 

S6), we see that increasing 𝑅0 results in a larger and shorter first wave, and a smaller second wave. 

When 𝑅0 is decreased, the first wave is much longer with very few cases, but a notable increase in 

cases during the second wave. 

Finally, we vary the value of 𝜆, the proportion of contacts that an LTC resident has within their LTC 

facility. Again, we conduct this analysis on both the imperfect shielding (IS; Figure S7) and imperfect 

shielding with reduced contact (IS + RC; Figure S8) scenarios. In both cases there are no qualitative 

effects on the results. 



 

Figure S1: Schematic for the model. Top left: Population structure, with lines indicating contacts between subpopulations, 

each of which are well-mixed. Top right: Transitions through the different infection states in the SEIR model. Bottom: 

Description of the shielding scenarios and modifying assumptions. 

 

Figure S2: Effectiveness of imperfect shielding. Baseline figure (reproduced from Fig. 1 in the main text) is in the central column 

(80% effective), with a 10% difference on either side (70% for column 1 and 90% for column 3). All colours and descriptions 

are the same as Fig. 1 of the main text. 

 



 

Figure S3: The effects of altering the reduction in contacts among lower-risk individuals during the shielding phase under 

perfect shielding. The case from the main text (50% reduction, reproduced from Fig. 3) is shown in the second column, with a 

change of -/+ 10% either side in columns 1 and 3 respectively. All colours and descriptions are the same as Fig. 1 of the main 

text. 

 

Figure S4: The effects of altering the reduction in contacts among lower-risk individuals during the shielding phase under 

imperfect shielding. The case from the main text (50% reduction, reproduced from Fig. 3) is shown in the second column, with 

a change of -/+ 10% either side in columns 1 and 3 respectively. All colours and descriptions are the same as Fig. 1 of the main 

text. 



 

Figure S5: Altering 𝑅0 under the imperfect shielding scenario. The second column is reproduced from Fig. 1. Column 1 

represents a reduction in R0  to 2.5 and column 3 and increase to 3.5. All colours and descriptions are the same as Fig. 1 of the 

main text. 

 

Figure S6: Altering 𝑅0 under the imperfect shielding scenario with reduced contact. The second column is reproduced from 

Fig. 4. Column 1 represents a reduction in R0  to 2.5 and column 3 and increase to 3.5. All colours and descriptions are the 

same as Fig. 1 of the main text. 

 



 

Figure S7: Altering 𝜆 under the imperfect shielding scenario. The third column is reproduced from Fig. 1. Column 1 represents 

a reduction in 𝜆  to 0.7 and column 2 and decrease to 0.8. All colours and descriptions are the same as Fig. 1 of the main text. 

 

 

Figure S8: Altering 𝜆 under the imperfect shielding scenario with reduced contact. The third column is reproduced from Fig. 

4. Column 1 represents a reduction in 𝜆  to 0.7 and column 2 and decrease to 0.8. All colours and descriptions are the same 

as Fig. 1 of the main text. 

  



 

Scenario 
Shielding parameter 

q
1
s  q

2
S  q

3
S  q

4
S  q

5
S  q

6
s  

NS 1 1 1 1 1 1 

NS + RC 0.5 0.5 0.5 0.5 0.5 0.5 

PS 1 0 0 0 0 0 

IS 1 0.2 0.2 0.2 0.2 0 

PS + RC 0.5 0 0 0 0 0 

IS + RC 0.5 0.2 0.2 0.2 0.2 0 

PS + EI 1 0 0 0 0 0 

IS + EI 1 0.2 0.2 0.2 0.2 0 

Table S1: Parameter values for the different shielding scenarios and modifiers. 

 

Scenario 

Deaths per 100,000 (± 1 standard deviation) 

Lower-risk 
Higher-risk 

(community) 

Higher-risk 

(LTC residents) 
Overall 

NS 

(Fig. 1, col. 1) 

93.7 

(90.3, 97.1) 

4702.1 

(4615.9, 4788.3) 

4532.6 

(4280.0, 4785.2) 

415.1 

(408.5, 421.6) 

IS 

(Fig. 1, col. 2) 

92.4 

(89.4, 95.5) 

2090.9 

(2038.0, 2143.8) 

613.6 

(478.4, 748.8) 

221.7 

(217.8, 225.5) 

PS 

(Fig. 1, col. 3) 

92.5 

(89.4, 95.7) 

18.6 

(0.0, 38.3) 

54.3 

(0.0, 123.3) 

87.6 

(84.2, 91.1) 

NS + EI 

(Fig. 3, col. 1) 

96.8 

(93.2, 100.4) 

4849.3 

(4766.6, 4932.1) 

4612.9 

(4352.3, 4873.6) 

427.8 

(422.2, 433.3) 

IS + EI 

(Fig. 3, col. 2) 

96.3 

(92.8, 99.8) 

3450.5 

(3376.0, 3524.9) 

1868.5 

(1654.2, 2082.7) 

319.7 

(313.5, 325.9) 

PS + EI 

(Fig. 3, col. 3) 

96.3 

(93.4, 99.2) 

2487.2 

(2426.7, 2547.7) 

2023.9 

(1756.9, 2290.9) 

260.3 

(255.2, 265.5) 

NS + RC 

(Fig. 4, col. 1) 

74.2 

(71.4, 77.0) 

3712.8 

(3633.0, 3792.6) 

3336.5 

(3114.1, 3558.8) 

326.2 

(319.8, 332.5) 

IS + RC 

(Fig. 4, col. 2) 

80.3 

(77.4, 83.3) 

3491.5 

(3337.7, 3645.3) 

3783.7 

(3516.2, 4051.2) 

321.2 

(309.7, 332.7) 

PS + RC 

(Fig. 4, col. 3) 

81.2 

(78.2, 84.3) 

3114.4 

(3010.8, 3218.0) 

3944.2 

(3695.7, 4192.6) 

299.5 

(292.0, 307.1) 

Table S2: Deaths per 100,000 (normalised by group) for the main text scenarios. The darker the colour in a column, the higher 

the number of deaths. 

  



Reference 2011 Census Report 9 26 (* indicates interpolated data) 

Age group Population (%) 

Symptomatic 

requiring hospital 

treatment (%) 

Hospitalised 

requiring ICU 

support (%) 

Symptomatic 

requiring ICU 

support (%) 

0-9 11.8 0.1 5.0 0.005 

10-19 12.1 0.3 5.0 0.015 

20-29 13.6 1.2 5.0 0.060 

30-39 13.1 3.2 5.0 0.160 

40-49 14.6 4.9 6.3 0.309 

50-59 12.2 10.2 12.2 1.244 

60-64 6.0 15.0* 23.6* 3.722* 

65-69 4.8 18.5* 31.4* 6.036* 

70-79 7.1 24.3 43.2 10.498 

80+ 4.7 27.4 70.9 19.356 

Table S3: The values used for the hospitalisation calculations. The population breakdown is from the 2011 census, while the 

data in the final three columns is taken from 26. An asterisk denotes data that has been interpolated. 

References for supplementary material 

26. Ferguson, N. M. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-

19 mortality and healthcare demand. (2020) doi:10.25561/77482. 

 


