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Abstract

The COVID-19 pandemic is yet again on the verge of escalating,
despite a hopeful case decrease recorded during spring and summer
2021, due to successful vaccination roll-outs. Together with the emer-
gence of new variants, the potential waning of the vaccination immu-
nity could pose threats to public health. It is tenable that the timing
of such a gradual drop in the immunity of most of the vaccinated
population would synchronize with the near-complete restoration of
normalcy. Should also testing be relaxed, we might witness a poten-
tially disastrous COVID-19 wave in winter 2021/2022. In response to
this risk, many countries, including the U.S., are opting for the admin-
istration of a third vaccine dose, the booster shot. Here, in a projected
study with an outlook of six months, we explore the interplay between
the rate at which boosters are distributed and the extent to which
testing practices are implemented. Projections are based on a highly
granular agent-based model that provides a close, one-to-one digital
reproduction of a real, medium-sized U.S. town. Focusing on the dom-
inant Delta variant, we contemplate the waning immunity provided by
the locally available Johnson&Johnson, Pfizer, and Moderna vaccines.
Theoretical projections indicate that the administration of boosters at
the rate at which the vaccine is currently administered could yield a
severe resurgence of the pandemic, even worse than the first wave expe-
rienced in spring and summer 2020. Our projections suggest that the
peak levels of mid spring 2021 in the vaccination rate may prevent the
occurrence of such a scenario. Our study highlights the importance of
testing, especially to detect infection of asymptomatic individuals in
the very near future, as the release of the booster reaches full speed.

Winter and spring 2021 marked a long-awaited massive vaccination cam-
paign against COVID-19, starting approximately one year after the incep-
tion of the outbreak. As of the mid-September 2021, 42.6% of the World
and 63.8% of the U.S. population took at least one dose of the vaccine, while
30.8% and 54.5%, respectively, are fully vaccinated [1]. However, approaching
fall 2021 brings to light a new unknown: the possibility of waning vaccination
immunity and the consequent need for a third dose of vaccine —the booster
shot [2]. There is evidence that the booster shot would not only restore the
original protection, but would also enhance people’s immunity against the
most recent variants, including the widely dominant and highly transmittable
Delta variant [3,4]. Many countries, including the U.S., are starting their re-
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vaccination campaigns, in an attempt to prevent new outbreaks accompanied
by socially and economically disastrous restrictions [3, 5, 6].

In the next few weeks (tentatively, starting September 20th, 2021), booster
shots will become available to all the adults in the U.S. eight months after
they took their second vaccine dose, with plans for expansion to people tak-
ing the one-dose Johnson&Johnson vaccine [2]. At the same time, despite a
surge in new infection cases [7] and the nationwide dominance of the Delta
variant [8], non-pharmaceutical interventions (NPIs) are gradually being re-
laxed [9], and preparations for a return to full-time in-person education and
work are underway [1,10,11]. Following mass vaccinations, COVID-19 testing
is continuously reduced [1], with the enforcement of mandatory testing slowly
abandoned by public health authorities [12] and contact-tracing quarantine
no longer required for fully vaccinated individuals [9, 13]; not to mention
the ongoing trend in encouraging indoor gatherings (e.g., restaurants, bars,
gyms) for the fully vaccinated. In this evolving scenario, scientifically backed
policy-making is of paramount importance.

Mathematical modeling has played a key role in assisting public health
authorities to combat the COVID-19 pandemic [14, 15]. Since COVID-19
onset, mathematical models are being routinely used to forecast the course
of the pandemic and guide policymakers’ decisions on several chief issues,
including the enforcing of NPIs [16–20], the design of testing policies [21,22],
the implementation of contact tracing [23–26], and the implementation of
vaccination campaigns in light of the concurrent uplifting of NPIs [27–34].

Mathematical modeling can also play a critical role in the present sce-
nario, where vaccine-induced immunity seems to be waning, testing coverage
is being lowered, and a booster shot campaign is going to be implemented.
The interplay of these critical issues has received only limited attention so
far. Layton et al. [4] have simulated the emergence of new virus strains, in-
cluding hypothetical deadlier variants in Ontario, Canada, in light of realistic
vaccination and booster campaigns implemented in the region. Their results,
projected until the end of 2021, point out the need of vigilance and readiness
to reinstate severe NPIs, as well as the possible importance of a large-scale
campaign of booster shots. Over longer time horizons, other studies have
been carried out to evaluate the potential benefits of annual re-vaccination
campaigns against COVID-19. In particular, Song et al. [35] have simulated
different scenarios in the loss of immunity, spanning until 2029. Their findings
indicate that an annual re-vaccination campaign could avoid future COVID-
19 outbreaks if the vaccine is sufficiently efficacious and provides at least
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six months of protection. Sandmann et al. [36] have compared the economic
burden of introducing a regular vaccination program in the U.K. to the cost
associated with implementing social distancing measures for the next decade.
Their work highlights the benefits of re-vaccination schemes, evidencing that
they would allow to avoid large outbreaks and consequent restrictions. Lastly,
Li et al. [37] have compared different re-vaccination strategies in 15 countries
over the next 20 years in terms of long-term efficacy. Their findings identify
a public health benefit in alternating re-vaccination between fragile older
strata and highly active portions of the population, who habitually generate
a high number of contacts.

All of these studies evidence that re-vaccination campaigns are key to
reduce potential COVID-19 upsurges. However, none of these efforts provide
detailed insight into the short-term roll-out of booster shots, which is rapidly
turning into a dire issue as fall is approaching and the immunity of many
people is waning. Moreover, the long-term predictions of most of these studies
are limited to coarse-grained considerations, which cannot take into account
granular details of the population.

Here, we fill in this gap by providing a systematic study of the effec-
tiveness of a re-vaccination campaign in the upcoming 2021–2022 fall/winter
season, considering as key factors the rate of administration of booster shots
and the population coverage of testing policies implemented during this phase.
We perform our study by means of a high-resolution agent-based model
(ABM), which faithfully provides a one-to-one digital reproduction of a real,
medium-sized U.S. town. As a test case, we simulate COVID-19 spreading
in the town of New Rochelle, NY, for the next six months, expanding on our
previous efforts [22, 33]. The digital town closely mirrors the geography and
demographics of the actual one, including household distribution, lifestyles,
and mobility patterns of its residents. The progression model is expanded
to incorporate salient features of the predominant Delta variant [8], booster
shot campaign, and co-existence of three vaccines (Johnson&Johnson, Pfizer,
and Moderna) providing different levels of protection over time. The level of
detail in the model allows us to closely study the combined effect of booster
shot administration and testing practices in this stage of the pandemic.
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Materials and Methods

Our computational framework consists of two components: a detailed database
of the town of New Rochelle, NY, and a high-resolution ABM that repro-
duces the spread of COVID-19 at a one-to-one granularity level that includes
mobility patterns among households, schools, workplaces, and non-essential
locations (including leisure locations).

The database of the town contains geographical coordinates of every build-
ing, residential and public. It includes any workplace and non-essential loca-
tion, identified using SafeGraph [38], explicitly distinguishing schools, retire-
ment homes, and hospitals. Town population is recreated using U.S. Census
data on residents age, household and family structure, education, and em-
ployment characteristics. Residents can work and gather in New Rochelle,
and in its vicinity, including New York City. They commute to work via
common means such as public transit, cars, or carpools, and visit each other
in private.

Each resident of New Rochelle is mapped into an agent in the ABM. In the
ABM, agents are characterized by a health state that can change according to
a disease progression model detailed in the following, and they can take two
types of tests — safe, contact-less car tests, and more risky ones performed
in a hospital. If infected, agents may undergo three types of treatment —
home isolation, routine hospitalization, and hospitalization in intensive care
unit (ICU). The ABM was originally proposed in Truszkowska et al. [22],
while a later extension of the work incorporated a simplified version of the
vaccination campaign [33].

For this projective study, we tailored the ABM to capture the scenario
as of fall 2021, thereby introducing realistic and time-dependent vaccination
effects, booster shots, increased mobility of fully vaccinated agents, and CDC-
compliant contact-tracing measures [13, 39, 40]. In the following, we detail
these new features. For details on the other features of the model, the reader
should refer to our previous publications [22, 33]. Figure 1 schematically
illustrates major components of our computational framework.

COVID-19 progression model

In our model, all the agents who are not infected, with exception of those
recently recovered, are susceptible to COVID-19. Once infected, agents can
undergo testing and treatment. Agents who are not symptomatic can get
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Fig 1. Schematic outline of the ABM computational framework.

The database of New Rochelle, NY, includes geographical information of
every residential and public building in the town. It also incorporates
workplaces and non-essential venues in the area as many town residents
work outside of town and some frequent non-essential locations locations in
its vicinity. Each resident is represented as an agent. The population
faithfully mirrors the sociodemographic profile of the actual one. The
top-right panel shows the age distribution of agents, as registered in the
U.S. Census data. The pie chart represents the percentage of households
with the indicated size, also in close agreement with the Census (values
omitted for clarity). COVID-19 spreads through contacts at different
locations associated with the agents, and infected agents can be tested and
treated. Positive test result triggers contact tracing, resulting in
CDC-compliant quarantine of potentially exposed individuals. Finally, the
platform models imperfect, realistic vaccines, which grant a number of
benefits, and wane with time. After 8 months, vaccinated agents become
eligible for a third vaccine dose, the booster shot.
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vaccinated, and anyone can be contact-traced and quarantined.
The progression model is shown in Fig 2. A susceptible agent (S) can

be vaccinated (Sv), may be home isolated, irrespective of their vaccination
status, as a result of a quarantine order due to a contact with an agent with
a confirmed COVID-19 infection (ICT ). Isolation may also be triggered if a
susceptible agent has COVID-19-like symptoms due to some other disease,
such as seasonal influenza (IHm). Agents can be tested, via one of the two
available testing types, in a car (Tc) or in a hospital (THs). The former type
is considered contact-less and safe, while the latter carries infection risks.

Upon infection, a susceptible agent becomes exposed (E), not showing
symptoms of the disease. The exposed agent can also get vaccinated (Ev)
as long as their infection status is not known. Even without any symptom,
exposed agents can be tested and home isolated. Agents can either recover
after being asymptomatic (R), or develop symptoms after the latency period
and transition to the symptomatic state (Sy). Symptomatic agents cannot
get vaccinated, which is also the case for agents with symptoms similar to
COVID-19 due to another disease. However, vaccinated agents can become
symptomatic as a result of an infection (Syv), potentially leading to milder
symptoms.

Agents with symptoms can test and subsequently receive treatment through
home isolation (IHm), normal hospitalization (HN), or hospitalization in an
intensive care unit, ICU (HICU). Agents can either recover or die (D). Symp-
tomatic and exposed agents can also get contact traced, and home isolated on
that account. A contact-traced symptomatic agent will undergo treatment
regardless of their testing status. Recovered agents are temporarily immune
to COVID-19 and, after a certain period of time, they can also be vaccinated.
Once their natural immunity is lost, these agents transition to the vaccinated
susceptible category (Sv).

Contact-traced agents cannot be vaccinated, and even if susceptible, they
become vaccine-eligible only after some period of time. These restrictions
hold for the booster shots as well. The booster shot, modeled as a third
vaccine dose, becomes available to agents starting from the day they are
supposed to be subject to immunity waning. Present policies suggests that,
on average, individuals are in this status after eight months from vaccination
[2]. An agent receiving a booster shot follows the same progression as any
vaccinated agent.

All the parameters that characterize the transitions in the COVID-19 pro-
gression model are listed in Table 4. An explicit expression of the contagion
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probability for each agent i, pi(t), depending on the agent’s characteristics
(including lifestyle, workplace or school, household in which they live) can be
found in Truszkowska et al. [33]. The main elements of novelty of the present
modeling extension include realistic treatments of the effect of vaccination
and contact tracing and are detailed in the following.

Vaccinations

An agent can get vaccinated with one of the three vaccine types distributed in
the area according to their availability. We considered one vaccine mirroring
the one-dose Johnson&Johnson (abbreviated as J), and two vaccines with the
characteristics of the two-dose Pfizer and Moderna vaccines (abbreviated as P
and M , respectively). The probability of being administered a given vaccine
type was computed based on data collected manually on actual vaccine offer
in the town, as of late July 2021, see Table 5 [41].

Once agent i is vaccinated, five of the model parameters related to the
individual are modified accordingly. Specifically, four quantities decrease
upon vaccination: (1) the probability of being infected by COVID-19, (2)
the transmission rate if infected, (3) the probability of requiring hospitaliza-
tion, and (4) of dying if infected. Conversely, (5) the probability of being
asymptomatic when infected increases upon vaccination.

To model such a temporal effect, for each vaccine α = J, P,M and for
each model parameter k = 1, . . . , 5, we introduce a function γα,k(s), which
models the effect of vaccine α on parameter k as a multiplicative coefficient,
s time steps after vaccine administration. As an example, the probability of
COVID-19 infection pvi (t) for agent i vaccinated with vaccine α at time ti is
reduced compared to the original probability in the absence of vaccination
pi (t) to

pvi (t) := γα,1 (t− ti) pi (t) . (1)

Similar expressions can be written for the other four properties (see S1 Appendix
for more details).

The shape of these functions is estimated from efficacy data on vaccines.
Specifically, they are all defined as piece-wise linear functions. For the one-
dose vaccine, they increase up to their most favorable values two weeks after
the shot (smaller than one for property k = 1, . . . , 4 and greater than 1 for
property 5). In case of two-dose vaccines, the functions linearly interpolate
efficacy values collected at the time of the first shot, of the second one, and at
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Fig 2. Diagram of the COVID-19 epidemic progression. Agents’
health states are susceptible (S), exposed (E), and symptomatic (Sy).
Since a vaccination does not grant 100% immunity, and exposed agents can
be vaccinated, the progression distinguishes those three health states in
their vaccination version, Sv, Ev, and Syv. Susceptible and exposed agents
can be tested and home isolated (IHm). Testing can take place in a
contact-less form in a car (Tc) or in a hospital (THs). All the agents can be
subject to contact tracing and subsequent quarantine (ICT ). Exposed agent
may recover without ever developing symptoms (R), or become
symptomatic after a latency period. Symptomatic agents can undergo
testing and subsequent treatment through home isolation (IHm), normal
hospitalization (HN), or hospitalization in an intensive care unit, ICU
(HICU). They can either recover or die (D). A recovered agent, if not
already vaccinated, can vaccinate as well (Rv). Recovered agents are
temporarily immune to the disease and after some period of time they
become susceptible again, regardless of their vaccination status.
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the attainment of full immunity. The second dose is always contemplated in
the model, following local vaccination campaign that sets the appointment
for the second shot at the time the first shot is administered, one month
later [42]. The peak benefits for all three vaccine types last for an eight-
month period following CDC booster shots recommendations [2]. In this
period, the functions have a constant value. Once that period is over, the
benefits linearly drop toward 1, assuming full loss of immunity over the course
of six months. We assume that the booster restores peak vaccination benefits
in 24 hours after its administration and that that they remain constant for a
period that is longer than the simulation horizon (that is, six months). The
exact expressions of all these functions and all the details on their estimations
are reported in S1 Appendix.

Agents 12 years and older can vaccinate. We model local vaccine hes-
itancy through an upper bound on vaccination coverage in the town. An
agent is considered fully vaccinated two weeks after their shot of a one-dose
vaccine, or two weeks after the second shot of a two-dose vaccine. A fully vac-
cinated agent is more socially active, and is more likely to visit other agents
or non-essential venues, as detailed in Table 4.

Contact tracing

Contact tracing implemented in the model is compliant with local guide-
lines [13, 39, 40] following their stricter version from winter 2021. When an
agent is tested positive to COVID-19 (we contemplated a realistic quota of
false positives), their household members and frequent/recent contacts are
quarantined. This is modeled through targeting a predetermined number of
coworkers and agents with whom they carpool, in case this is their transit
mode to work.

Contact tracing of a retirement home employee results in quarantining a
fixed number of residents in addition to coworkers. Conversely, a confirmed
positive resident leads to a quarantine of some other residents and employees.

With respect to schools, the granularity of our model was set to the single
school. Hence, contact tracing of a student who tested positive is modeled by
quarantining a predetermined number of other students of same age from that
agent’s school, plus one teacher. This logic applies upon tracing a teacher,
with a random choice of a number of same-aged students to quarantine.

Finally, since agents visit each other in private, we model contact trac-
ing imposing a quarantine on the entire households visited by a COVID-19
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positive agent during the course of 14 days, according to local policies. Due
to the limited supervision on restrictions to private visits, we accounted for
reduced compliance, estimating such a parameter from the literature, see Ta-
ble 4. The quarantine in the model placed an agent in a home isolation for a
period of 10 days. Afterwards, the agent continues to monitor themselves for
COVID-19 symptoms for a duration of 4 days, reflecting the guidelines. If
during this two-week period the agent develops COVID-19 symptoms, they
are selected a treatment regardless their testing status. Finally, following
the stricter guidelines fully vaccinated agents still have to quarantine, and
negative test results do not shorten the quarantine duration.

Simulation setup

Simulations are initialized with a predetermined number of COVID-19 in-
fected agents in the two phases of the disease, that is, exposed or symp-
tomatic, to mimic real conditions in the town. These initial cases can be
in different testing stages and undergo treatment. A certain initial number
of vaccinated agents is also contemplated, based on the data collected from
the vaccination campaign put in place between January 2021 and the start
of the simulation. We assume a random distribution of vaccination times in
the past, so that these vaccinated agents have different level of immunity at
the beginning of the simulations.

Model parameters related to vaccinations and contact tracing are based
on the literature and official releases from the CDC [43]. The duration of
immunity is based on the CDC recommendation to sign up for the booster
shot eight months after achieving peak vaccination benefits [2]. The charac-
teristics of different vaccine types are based on official CDC and Food and
Drug Administration (FDA) releases [44–49] and are outlined in detail in
S1 Appendix. As indicated therein, in the absence of confirmed values, we
either interpolated between the known benefit levels, or we used them for
scaling. The parameters used in our contact tracing practices are also listed
in Table 4, where our assumptions on the number of contacts each agent has
in their workplaces, schools, and other visited locations, are detailed. The
complete parameter set and all the modeling assumptions are detailed in
Table 4.

The complete computational framework, including code needed to repro-
duce the study is available through our GitHub repository. The database is
accessible through https://github.com/Dynamical-Systems-Laboratory/
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NR-population-revac and the agent-based model through https://github.

com/Dynamical-Systems-Laboratory/ABM-COVID-revac.

Results

Our simulations projected COVID-19 spreading over a time span of six
months starting from September 7th 2021. At this time, we assumed that
most of the town residents eligible for a vaccine had received their vaccination
earlier in the year. As the first dose was administered in January 2021, during
the six-month simulation window many of the vaccinated residents would lose
their immunity. The types of the vaccines and their effects mirrored those
that were distributed in the area and included the two double-dose vaccines
(Moderna and Pfizer) and one single-dose vaccine (Johnson&Johnson), see
Table 5. Per CDC guidelines, an agent was set to start losing their immunity
at approximately eight months after they become fully vaccinated [2]. At
this time, they become eligible for a booster shot, which would restore their
peak resistance to the virus, thereby immunizing again the population at
the rate set by the administration. The same vaccination rate was used to
immunize those who were not vaccinated, including vaccine hesitancy that
would prevent complete immunity of the town population.

Curbing an upcoming wave requires a vaccination rate

at least equal to the rate in spring 2021

To quantify the impact of the vaccination rate on the spread of COVID-19,
we performed simulations with two different rates: 0.58% and 0.11% of the
total population per day. These two values correspond to the maximum vac-
cination rates attained at the beginning of April 2021 and the rate registered
in early September 2021, respectively [50].

In our simulations, whose outcome is illustrated in Fig. 3, we assumed that
effective testing practices were enacted during the entire period. In particular,
we hypothesized that each symptomatic agent was tested with probability
equal to 80%, while such a probability was reduced to 40% for asymptomatic
agents. These parameters are representative of testing practices enacted
during spring 2021 [51].

We compared the prevalence (total number of infections) and death toll
for the two vaccination rates for six months starting from September 7th, 2021.
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Fig 3. COVID-19 spreading over six months from September 7th

2021, amid two different vaccination campaigns. Prevalence, total
number of infections, and total deaths for the next six months at either
peak vaccination rate of 0.58% (green) or present vaccination rate of 0.11%
(red). For each scenario, 100 independent realizations are shown and their
average is highlighted.
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Results from Fig. 3 show that, for the higher vaccination rate (green curves),
the average prevalence should increase, reaching its maximum around mid-
October. The average peak of prevalence should exceed 400 active cases per
day, and then it should quickly drop in few weeks, potentially reaching the
end of the outbreak at the beginning of 2022. On the contrary, the current
vaccination rate (red curves) would lead to a 50% increase in the peak number
of cases per day. Even more alarming is the projection that it would not be
sufficient to eradicate the disease, leading to a possible slow rise in number
of cases during winter 2022. These results indicate the need to maintain a
fast pace during the booster campaign toward curbing potential upcoming
waves and quickly eradicating the disease.

Testing is still needed, even with high high vaccination

rates

We also investigated the role of testing and contact tracing implemented
during the booster shot campaign, toward elucidating the impact of these
practices, their interplay with the vaccination rate, and, ultimately, to un-
derstand whether massive testing campaigns are still needed in this phase.

We conducted a parametric study by varying the vaccination rate and the
overall efficacy of testing practices over a two-dimensional grid. Specifically,
we considered re-vaccination rates ranging between 0.01–5% of the population
per day. These two extreme values represent scenarios in which the entire
re-vaccination campaign would last more than 20 years or just 20 days. For
context, the peak vaccination rate was 0.58% during April 2021 and the
lowest rate was 0.027% in mid-summer 2021 [50]. The efficacy of the testing
practices was encapsulated by a global parameter, termed “testing efficacy,”
which measures the probability that a symptomatic agent is tested. In the
simulations, we varied such a parameter from 10% to 100%, representing
scattered to ideal testing.

We performed these parametric studies within three different detection
scenarios, according to the ability of detecting pre-symptomatic and asymp-
tomatic agents (hereby, referred to as exposed): high detection (in which
exposed agents are tested with the same probability of symptomatic ones),
medium detection (in which the probability for an exposed individual to be
tested is reduced by 50% with respect to the one of a symptomatic agent),
and low detection (in which exposed agents reduce the probability of being
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Fig 4. Interplay between re-vaccination rates and testing efficacy.

Two-dimensional heat-maps showing the combined effect of vaccination rate
and testing efficacy on the total number of infected and deaths over a
period of six months starting from September 7th 2021. Three different
detection levels of exposed agents capture a range of contact tracing efforts.

tested to 10% of the one of symptomatic agents). While high detection of ex-
posed is ideal —but likely unrealistic, since asymptomatic infections are more
difficult to be detected without a massive implementation of testing practices
and contact tracing— medium and low detection are representative of testing
practices seen since the onset of the pandemic [51].

Our results, shown in Fig 4, highlight the need to continue testing during
the upcoming booster shot campaign. In particular, for all the examined
detection scenarios, testing less than 20–30% of symptomatic agents always
resulted in a dramatic increase of infections and deaths. To overcome the
ensuing surge it would necessary to apply unprecedentedly high vaccination
rates of 1–5% of the total population per day, likely beyond the capacity of
the healthcare system that we have seen in spring 2021.

Our results also emphasize that detecting pre-symptomatic and asymp-
tomatic agents is a critical issue. In fact, for all combinations of re-vaccination
rate and testing efficacy, reduced detection of such agents results in a many-
fold increase of total number of infections and deaths. For example, with low
detection of exposed agents (third scenario, in blue in Fig. 4), the number of
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deaths may exceed over 600 (that is, approximately 0.8% of the population
of the town), reaching peaks of more than 1,000 deaths in the worst case
scenarios of both low testing efficacy and low re-vaccination rates.

Discussion

The chief goal of this work was to systematically analyze the spread of
COVID-19 in the upcoming 2021 fall/winter season, as immunity gained
due to vaccination wanes over the year and testing practices change. To-
ward this aim, we extended a mathematical model designed in our previous
efforts [22, 33], a high-resolution ABM of a medium-sized U.S. town faith-
fully reproducing spatial layout, demographics, and lifestyles of urban areas,
to quantify the effects of a range of vaccination and testing efforts. As in
our previous studies, we focused on the town of New Rochelle, NY, which
was the location of one of the first COVID-19 outbreaks in the U.S., and is
representative of many towns in the country [52].

Complementing our earlier efforts, we enhanced the capabilities of the
computational framework along three main directions. First, we considered
realistic types and administration of vaccines, as well as time-varying vac-
cination benefits, including waning immunity after an eight-month period
and adminstration of a booster shot [2]. Second, immunity achieved through
recovery was also considered to be no longer permanent [53]. Third, we mod-
eled contact tracing, consistent with the CDC and local health department
guidelines [13, 39, 40]. Overall, the current model is a highly realistic and
detailed digital representation of the town and its residents, with the res-
olution of a single individual, thus allowing for reliable “what-if” analyses
of the epidemic during the upcoming fall/winter season. Equipped with a
new parameter set tuned on the now-dominant Delta variant, we studied the
local outcome of the interplay between the rate of vaccination and efficacy
of testing practices.

Predictably, we found that low testing efficacy may lead to a disastrous
increase in both infections and deaths, irrespective of vaccination efforts of
any intensity. In fact, low testing efficacy seems to hamper any benefits
that would be offered by realistic re-vaccination campaigns. The final count
of cases and casualties would be substantially independent of vaccination
rates, unless booster shots were administered to more than 1% population
per day (an unrealistic scenario, since it is almost twice as much as the peak
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vaccination rate during spring 2021). For low-to-moderate testing efficacy,
vaccination rates below 0.5% consistently lead to a case and death toll com-
parable with those experienced during the first wave [22].

These results, in agreement with other studies on testing practices during
previous phases of the COVID-19 pandemic [26,54], highlight the central role
of testing, contact tracing, and quarantining in the fight against COVID-19
and echo the “Path out of the Pandemic,” presented by the U.S. Government
on September 10th, 2021, as part of “President Biden’s COVID-19 Plan” [55].

To contain COVID-19 mortality below the level of the first wave, we
predict that at least 0.5% of population per day should be immunized/re-
immunized, as testing and contact tracing are carried out with moderate
efficacy. Such a 0.5% vaccination rate is not unreasonable, given that the
local vaccination rate during spring 2021 measured 0.57% of town population
[50]. Vaccination rates below 0.5% might lead to scenarios that are worse
than those recorded in spring 2020 [1]. In particular, using a vaccination
rate equal to the vaccination rate adopted in September 2021 would lead to a
potentially disastrous rise in the number of infections around the beginning
of 2022. While the number of deaths projected in this scenario are still
lower than those in the first wave, likely due to reduced mortality rates of
vaccinated individuals, the steep increase portends that this number would
ultimately overcome first wave figures.

These projections emphasize the importance for a booster shot, in line
with the “President Biden’s COVID-19 Plan” [55] that highlights the need
of “further protecting the vaccinated” (with the booster shot). To efficiently
combat the spread, the booster shot campaign should be conducted on a scale
close to the one implemented during the peak immunization efforts in spring
2021. Similar conclusions have been drawn by other authors. For example,
Layton et al. [4] report doubling of deaths by late December 2021 in Ontario,
Canada, as a consequence of reducing the baseline vaccination rate by 20%.
Sandmann et al. [36] predict the occurrence of up to two annual COVID-19
waves in the UK, whose magnitudes are strictly tied to vaccine efficacy and
active NPIs. In the worst case scenario, it is expected that there will be a
new wave this fall, with a magnitude comparable, or even higher, than the
one observed during 2020. Similarly, Song et al. [35] indicate reoccurring new
surges in the worst cases of vaccination efficacy and immunity duration, and
a constant, but non-zero COVID-19 incidence in the best scenarios, starting
from mid-2021.

Testing of symptomatic individuals plays a key role in controlling the
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spread, especially when it is accompanied by moderate contact tracing efforts.
Seen from another perspective, testing a mere 40% of the symptomatic in-
dividuals with moderate contact tracing efforts should avoid exceeding mor-
tality rates of the first wave. Beyond a 60% testing efficacy, the effect of
increased testing is diluted and higher vaccination rates are needed to bring
down mortality rates. While testing levels of 40% or above are achievable [51],
lower levels might be afforded by reducing delays in testing and contact trac-
ing [25, 26].

Likewise, the detection of asymptomatic individuals is of paramount im-
portance to combat the spreading. In particular, going from high- to low-
detection of such individuals more than doubles the number of cases and
deaths. This finding is consistent with the literature, whereby efficacious
tracking of the asymptomatic individuals has been shown to arrest the pro-
gression of the spread of the virus [56,57]. High detection rates can be realized
with aggressive contact tracing strategies that can identify stranger contacts
in addition to close contacts [58]. At the same time, while it is reasonable
that most people who develop symptoms or are informed of exposure to an
infected individual will isolate, and possibly test, detecting asymptomatic
individuals could become progressively more difficult, especially with gen-
eral decline in social distancing practices and lifting of mandatory testing by
many employers and institutions [1, 12].

While insightful, our results are not free from limitations. Though cali-
brated in real data, the high granularity of our model comes at a cost of a
series of assumptions. Importantly, immunity due to vaccination was mod-
eled based on educated guesses due to limited data availability. Except for
waning immunity benefits from vaccination, all the parameters in our simu-
lations were time-invariant; in real settings factors such as NPIs or testing
coverage are likely to change in response to emerging situations [59, 60] and,
likewise, vaccination rates to dynamically change. Moreover, we tested the
general, uninfected population in a non-random fashion, and contact trac-
ing guidelines within our model were more conservative than those currently
in-place.

The need to administer booster shots must also be put in context with
respect to medical, social, and moral concerns [3, 61]. First, the waning
of immunity is still not confirmed with certainty, and the health effects of a
third dose remain, to some extent, unexplored [3]. It cannot be excluded that
a third dose may only selectively boost the efficacy for individuals who are
immunocompromised or whose initial vaccination had low efficacy [62]. Also,
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any adverse effects of the third dose may have a negative impact ok vaccine
acceptance [62]. Second, with less than 5% of the populations in low income
countries being fully vaccinated, the World Health Organization has deemed
every booster shot as “ethically questionable” and warned that unmitigated
COVID-19 pandemic in those areas will continue yielding new variants [61,63].
Despite these concerns, countries have already started their booster shot
campaigns in an attempt to curb the risk of new surges and restrictions [64].
These decisions are likely driven by the Delta variant, which dilutes the herd-
immunity thresholds estimated for the wild-type strain [65–68].
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S1 Appendix

Here, we detail additional information on the model, building in our previ-
ous work [22, 33]. We refer to these two publications for details about the
framework; here, we focus the presentation on the new elements introduced
in this study and changes with respect to the previous implementations (such
as those due to the Delta variant).

Vaccination

In the following, we expand the corresponding subsection in the Materials
and Methods with details on modeling the effects of vaccinations on COVID-
19 progression. Specifically, once an agent i is vaccinated, five parameters
in the original model [22] related to that individual are modified: (1) the
probability of being infected by COVID-19, (2) the transmission rate, (3)
the probability of requiring hospitalization, (4) the probability of dying, and
(5) the probability of being asymptomatic.

The extent to which these five parameters are impacted for an agent i

depends on the vaccine type α ∈ {J, P,M} and the time elapsed ti since
the vaccine was administered. Specifically, a parameter (or function) k =
{1, 2, . . . , 5} is modified by vaccine α, s time-steps after the first dose is
administered through a function γα,k(s). The functions corresponding to the
five parameters are detailed next.

The probability of being infected by COVID-19 for a susceptible unvacci-
nated agent i is denoted by pvi (t). Upon being vaccinated vaccine α at time
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ti this probability is reduced to

pvi (t) := γα,1 (t− ti) pi (t) . (2)

Along the same lines, once an agent i gets infected with COVID-19, their
transmission rate becomes

βv
i (t) := γα,2 (t− ti)βi (t) , (3)

where βi(t) is the transmission rate for an unvaccinated agent. The proba-
bility of requiring hospitalization is similarly reduced compared to its base
value χi to

χv
i (t) := γα,3 (t− ti)χi, (4)

and the probability of dying decreases from that for an unvaccinated agent
at µi to

µv
i (t) := γα,4 (t− ti)µi. (5)

Finally, the probability of becoming asymptomatic for a vaccinated agent
increases from σi according to

σv
i (t) := γα,5 (t− ti)σi. (6)

For unvaccinated agents, the probabilities of hospitalization χi, dying µi,
and becoming asymptomatic σi depend only on testing practices and age, and
are therefore independent of t. Instead they depend on time for vaccinated
agents, as illustrated in Eqs. (4)–(6).

The functions γα,k(s) have a piece-wise linear form, controlled by k and
α. Specifically, the functions are designed to reach a peak value in 14 days
after the single shot of Johnson&Johnson, and in 44 days for the two-dose
vaccines. Functions decrease for parameters k = 1, . . . , 4 and increase for
parameter k = 5. Since, the peak benefits from vaccines last for an eight-
month period (following CDC recommendations for when a booster shot
should be taken [2]), the functions are designed to attain a constant value in
this window. Once the corresponding 254 day period after the vaccination
is over, the benefits linearly interpolate to 1 over the course of six months
(that is, until day 434), beyond which they remain at 1. Hence, the curve is
fully determined by two parameters: the value of the function immediately
following vaccination (Γ0) and the peak value (Γ14), as illustrated in Fig. 5a.
These values are reported in Table 1.
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Fig 5. Shape of the functions γ for a) a one-dose vaccine (in blue) and for
b) a two-dose vaccine (in green).
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In case of two-dose vaccines, the functions have two discontinuities as the
linearly change to a peak value: one at the moment when the second shot
is administrated one month after the first shot (day 30), and second two
weeks (day 44) after the second shot. Similar to the one-dose vaccine, the
peak benefits are then kept constant for an eight-month period [2]. Once
that period is over (that is, from day 284), the benefits linearly go to 1,
losing them over the course of six months (day 464). Hence, here the curve is
fully determined by three parameters: the value of the function immediately
following the first shot (Γ0), the value at the moment of the second shot (Γ30),
and the peak value (Γ44), as illustrated in Fig. 5b. These values are reported
in Table 2 and Table 3 for the Pfizer and Moderna vaccine, respectively.

The characteristics of vaccination effects were based on the data officially
distributed by CDC [44–46] and the Food and Drug Administration [47–49].
If the data for all the modeled time points was not available, we uniformly
interpolated between the known values. In cases where there was only one or
two datapoints, we scaled the parameter relative to one with most reported
datapoints. For example, we assumed that the increase in probability of
never developing symptoms, when unknown, changed proportionally to the
established vaccine efficacy (that is 1− γ

·,1(s)). If no data was available, we
guessed the value based on the parameter type and its relation with other
vaccine benefits. In particular, we let the transmission reduction follow the
drop in infection probability. We also used this relationship to extrapolate
the reduction in hospitalization likelihood for the Moderna vaccine (γM,3).

We assumed that the booster shot restores peak vaccination benefits in
24 hours after its administration and retains such benefits for a period that is
longer than the simulation horizon (that is, six months). Hence, if an agent
i receives the booster shot at time t̃i, then all the five parameters that are
affected by the vaccinations detailed in the above take their peak values, that
is, we set γJ,·(t) = Γ14,·, γP,·(t) = Γ44,·, and γM,·(t) = Γ44,·, for all t > t̃i.
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Table 1. Values of the functions γ from the one-dose

Johnson&Johnson vaccine at different times. The known (reported)
values are indicated in bold.

Function Γ0 Γ14

Infection γJ,1(s) 0.405 0.337

Transmission γJ,2(s) 0.405 0.337
Hospitalization γJ,3(s) 0.2331 0.146

Death γJ,4(s) 0 0

Asymptomatic γJ,5(s) 1.19 1.326

1This value was reported after a 14 day period, but since it is lower than
the peak value we use it at the moment of the vaccination.

Table 2. Values of the functions γ from the two-dose Pfeizer

vaccine at different times. The known (reported) values are indicated in
bold.

Function Γ0 Γ30 Γ44

Infection γP,1(s) 0.476 0.095 0.05

Transmission γP,2(s) 0.476 0.095 0.05
Hospitalization γP,3(s) 0 0 0

Death γP,4(s) 0 0 0

Asymptomatic γP,5(s) 1 1.524 1.6

Table 3. Values of the functions γ from the two-dose Moderna

vaccine at different times. The known (reported) values are indicated in
bold.

Function Γ0 Γ30 Γ44

Infection γM,1(s) 0.25 0.154 0.059

Transmission γM,2(s) 0.25 0.154 0.059
Hospitalization γM,3(s) 0.25 0.154 0

Death γM,4(s) 0 0 0

Asymptomatic γM,5(s) 1.5 1.83 1.882
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Out-of town non-essential locations

As detailed in [33], the agents in the model can visit various non-essential
locations, such as grocery stores and leisure locations. Human-to-human in-
teractions made at these places, termed non-essential locations, contribute to
the spread of the disease. In [33], we only modeled the non-essential locations
that were within the administrative limits of the town of New Rochelle. How-
ever, with the current uplifting of the lockdown measures, many residents of
New Rochelle have started again visiting leisure and non-essential locations
that are outside the town. To address this, in our new implementation of the
model, we extended the database to include popular venues outside of town
limits, as indicated by the SafeGraph data [38].

In our model, the risk of infection at a location is proportional to the
number of infected agents therein [22]. For in-town locations, such a quantity
can be exactly determined, as the model provides a one-to-one reproduction
of the entire population of the town (see [33] for more details). However, this
is not possible for places outside New Rochelle as it would require explicit
accounting for all the people in town vicinity. Thus, we approximated the
risk of infection in a out-of-town non-essential location based on the estimates
on the contagion in the area in which it is located.

Following the notation from [33] and referring the reader therein for
the complete mathematical model, the infectiousness of an out-of-town non-
essential location λN is defined as,

λNO = βNχI , (7)

where βN is the transmission rate at a generic non-essential location, and χI

is the COVID-19 prevalence reported for the geographic region around the
town [69–71].

Delta variant

To adapt the spreading to the locally dominant Delta variant, we increased
transmissibility of COVID-19 by a factor of 1.6 [72]. We also reduced the
average latency period to 3.7 days [73]. All these changes are detailed in
Table 4.
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Changes in the behavior of symptomatic agents

Infected agents with symptoms can no longer visit non-essential locations.
This also holds for agents with COVID-19 like symptoms due to other dis-
eases such as seasonal influenza. Infected agents with symptoms no longer
contribute to the infection risks in public transit or carpools, which reflects
their complete avoidance of other community members.

Higher education

The age of agents who can attend higher education institutions changed to
18-24 (previously it was 18-21).
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Table 4. Other parameters of the ABM. 1 Scaled down to town size
and time-step. 2 Scaled down to town size, time-step, and doubled following
calibrated percentage of asymptomatic adults in Ref. [22], used as a proxy
for underdetection. 3 Scaled down to town size, time-step, and doubled
following calibrated percentage of asymptomatic adults in Ref. [22], used as
a proxy for underdetection; this is the total number of cases recovering from
COVID-19 during an average recovery period used in Ref. [22] and scaled
with the new latency duration.

Value Reference

Increase of all COVID-19 trans-
mission rates due to Delta variant

1.6 [72]

Fraction of the population that is
estimated to be infected in the
area at a time-step

0.0003 [69–71]

Infectiousness in a out-of-town
workplace

0.000318 [69–71]

Infectiousness in a out-of-town
leisure location

0.00010944 [69–71]

Current capacity of public transit
compared to its maximum capac-
ity

0.66 [74] for public transit

Fraction of susceptible agents
with COVID-19-like symptoms

1e-6 [75]

Latency period

log-normal distribu-
tion with 1.225 mean
and 0.418 standard
deviation, days

[73, 76]

Fraction of the nominal transmis-
sion rate at workplaces, public
transit, carpools, and leisure loca-
tions associated with current re-
opening efforts

0.2 [74] for workplaces

Fraction of agents going to leisure
locations at each time-step

0.5 Assumption

Fraction of fully vaccinated
agents going to leisure locations
at each time-step

0.75 Assumption
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Initial number of vaccinated
agents

51,342 [50]1

Maximum number of agents that
can be vaccinated

64,364 Assumption

Time before recovery and vaccina-
tion eligibility

21 days Assumption

Duration of natural immunity af-
ter recovery

180 days Assumption

Compliance to home isolation af-
ter potential exposure from a
house guest (contact tracing)

0.109 [77]

Maximum number of quarantined
coworkers, students, or retire-
ment home residents

10 Assumption

Duration of the quarantine 10 days [13, 39, 40]
Duration of the after-quarantine
awareness

4 days [13, 39, 40]

Number of initially infected
agents in the town

4 [69]

Number of agents that are ini-
tially active COVID-19 cases

66 [1]3
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Table 5. Parameters related to vaccinations and booster

campaign.

Value Reference

Fraction of people taking John-
son&Johnson vaccine

20% [78]

Fraction of people taking Pfeizer
vaccine

45% [78]

Fraction of people taking Mod-
erna vaccine

35% [78]

Minimum vaccination age 12 years old [79]
Start of the vaccination campaign January 1st 2021 Assumption
Time for the booster to restore
the peak benefits

1 day after the shot Assumption

Duration of booster effects 240 days after the shot Assumption
Complete end of booster effects 420 days after the shot Assumption
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