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Abstract 

Background 

The worldwide surge in coronavirus cases has led to the COVID-19 testing demand surge. 

Rapid, accurate, and cost-effective COVID-19 screening tests working at a population level 

are in imperative demand globally.  

Methods 

Based on the eye symptoms of COVID-19, we developed and tested a COVID-19 rapid 

prescreening model using the eye-region images captured in China and Spain with cellphone 

cameras. The convolutional neural networks (CNNs)-based model was trained on these eye 

images to complete binary classification task of identifying the COVID-19 cases. The 

performance was measured using area under receiver-operating-characteristic curve (AUC), 

sensitivity, specificity, accuracy, and F1. The application programming interface was open 

access. 

Findings 

The multicenter study included 2436 pictures corresponding to 657 subjects (155 COVID-19 

infection, 23·6%) in development dataset (train and validation) and 2138 pictures 

corresponding to 478 subjects (64 COVID-19 infections, 13·4%) in test dataset. The image-

level performance of COVID-19 prescreening model in the China-Spain multicenter study 

achieved an AUC of 0·913 (95% CI, 0·898-0·927), with a sensitivity of 0·695 (95% CI, 

0·643-0·748), a specificity of 0·904 (95% CI, 0·891 -0·919), an accuracy of 0·875(0·861-

0·889), and a F1 of 0·611(0·568-0·655). 

Interpretation 

The CNN-based model for COVID-19 rapid prescreening has reliable specificity and 

sensitivity. This system provides a low-cost, fully self-performed, non-invasive, real-time 

feedback solution for continuous surveillance and large-scale rapid prescreening for COVID-

19.  
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Introduction 
The Coronavirus disease 2019 (COVID-19) has affected more than a billion people with 

unprecedented public health and economic costs. In the battle of controlling COVID-19 

infections, the first and critical step is to identify new outbreaks of coronavirus infections. 

Using polymerase chain reaction (PCR) based nucleic acid detection is the “golden standard” 

with high sensitivity and good specificity. However, the PCR detection requires significant 

time and hardware investments which can be prohibitory for rapid screening purposes. 

Therefore, several rapid screening tests have been utilized to identify potential COVID-19 

cases, including direct body temperature measurement, symptom assessment, travel and 

exposure history review, and combinations of the above-mentioned tests. However, all these 

rapid screening tests suffer from a hugely variable sensitivity in detecting COVID-19 cases1. 

Approximately 80% of the published studies reported a sensitivity of <50% in different target 

populations and scenarios2. Therefore, a rapid, accurate, and cost-effective COVID-19 

screening tests working at a population level is in imperative demand globally. 

  A spectrum of extrapulmonary manifestations of COVID-19 have been reported, including 

ocular symptoms3,4. These ocular symptoms consist of a wide range of manifestations in the 

eyelid, ocular surface, anterior segment, and the posterior segment of the eye5-8. The 

prevalence of ocular symptoms in COVID-19 cases reportedly ranged from 0 to 38% with an 

average prevalence of 11%9. The ocular manifestations as first presenting symptom or only 

symptom of COVID-19 were reported in up to 10% of COVID-19 cases5,6,10. These findings 

suggested that ocular symptoms could manifest specific features in symptomatic and even in 

presymptomatic COVID-19 patients. Although the clinical significance of ocular symptoms 

has yet to be fully elucidated9-11, the typical ocular symptoms provide useful information to 

recognize the potential infectious cases. 

  Artificial intelligence (AI) and machine learning, particularly image-based deep-learning 

models with convolutional neural networks (CNNs), have shown promising performance in 

disease classifications and risk assessments12,13. However, these AI systems require Computed 

Tomography scans in hospital settings, which are not available for screening tests at a 

population level. In this study, we developed and tested a rapid eye-image-based AI system, 

setting in a smartphone, to identify potential COVID-19 infection in three independent 

cohorts including two from China and one from Spain.  



Methods 

Ethical statements 

The study was conducted in accordance with of the Declaration of Helsinki. The study protocol 

was approved by the Ethics Committee of Shanghai Public Health Clinical Center, Fudan 

University (approval No.: YJ-2020-S078-02), the fifth hospital of Shijiazhuang affiliated to 

Hebei Medical University (approval No.: 2021005), and the Ethics Committee on Drug 

Research of the University and Polytechnic Hospital La Fe (registry No: 2020-637-1). Informed 

consents were obtained from all participating individuals. 

Study design and participants  

This multicentral study was led by the Shanghai Public Health Clinical Center (SPHCC), Fudan 

University, Shanghai, China. The study was conducted in two phases to enroll participants from 

three hospitals: the Department of Respiratory and Critical Care Medicine (DRCCM) of 

SPHCC, the fever isolation ward of the Fifth Hospital of Shijiazhuang (FHS), and the 

Department of Ophthalmology at the University and Polytechnic Hospital La Fe (DOUPH). 

The SPHCC is a tertiary class A general hospital, a WHO and national clinical research and 

training center for emerging and reappearing infectious diseases. It is the government-

designated hospital for the management of COVID-19 cases in Shanghai. The FHS is the first 

tertiary hospital for treatment, research, and prevention of infectious diseases in Hebei province, 

China. It is the national demonstrative base for prevention and treatment of liver diseases, the 

quality control center in Hebei province for diagnosis and treatment of AIDS, and the 

designated hospital for diagnosis and treatment of COVID-19 cases in Shijiazhuang city, China. 

Fever isolation ward is an emergency department established during the pandemic. The 

Department of Ophthalmology at the University and Polytechnic Hospital La Fe is a leading 

eye care provider, educator and researcher in Spain. All the COVID-19 patients were enrolled 

by DOUPH through collaboration with department of microbiology. 

  The first phase of data collection was completed from April 1st 2020 to June 7th 2021 at the 

SPHCC and DOUPH, which generated the development dataset. Development dataset was 

randomly divided into an independent training dataset and a validation dataset after considering 

the sample sizes and COVID-19 cases in each dataset. The training dataset was used to develop 

the model and the validation dataset was used to determine the best hyper-parameters and 

threshold (a score above the threshold is classified as positive). The second phase of the data 

collection was completed during June 1st 2020 and June 11th at the SPHCC, FHS and DOUPH. 

This dataset was used to test the performance of the models.  

  Controls were enrolled from each center during the corresponding phases of enrollment. The 

control dataset from SPHCC included subjects with non-COVID-19 lung diseases (NCLD), 

ocular diseases and healthy volunteers. NCLD included bronchopneumonia, chronic 

obstructive pulmonary diseases, pulmonary fungal infection and lung cancer. Ocular diseases 



included trachoma, pinkeye, conjunctivitis, glaucoma, cataract and keratitis. All healthy 

volunteers received physical examinations, had no abnormal clinical findings, and had no 

contact history with COVID-19 patients. In the FHS dataset, controls included patients fully 

recovered from COVID-19 (nuclear acid negative), patients with HBV (HBV DNA positive) 

and healthy subjects. In DOUPH dataset. All the control subjects were tested negative for 

COVID-19 nucleic acids during the study period. No death events were observed in this study. 

Image acquisition and preprocessing 

We conducted a study on the CNN-based model, using eye-region photos to screen for COVID-

19 patients (Figure 1). For each participant, normally 3-5 photographs of the ocular surface 

were taken using smart mobile phone CCD and CMOS cameras, assisted by doctors or 

healthcare workers. The same shooting mode and parameters were used during image capturing. 

And all shooting filters were avoided. All photos were captured in a good lighting condition, 

and not in a dark or red background. The image resolution was at least 1900x500 pixels at 96dpi. 

The average time for taking a set of 5 eye photos was around 1 minute. In the re-examination 

step, all the photos are examined by human for the second time, the data that failed to reveal 

the details of the eyes were discarded.  

  In this study, the images from Shanghai were captured by different mobile photos, including 

HONOR Play 3, MAIMANG 8, HUAWEI Mate 9, OPPO R15, HONOR Magic 2s, and iPhone 

8Plus. The images from Hebei were captured by Xiaomi 8, iPhone 7Plus, Huawei PRA-AL00X 

and Huawei ANA-AN00. The images from Spain were captured by OPPO A37f, Samsung SM-

A920F and iPhone SE 2nd. 

Development of the classification network  

The schematic of our proposed model is illustrated in Figure 2, which consists of two 

components, the Image Preprocessing14 and Classification Networks. Specifically, the Image 

Preprocessing received raw eye-region images, and prepared them for model training or 

inference. The Classification Network was built upon the deep learning architecture for the 

classification. It studied the characteristics of eye-region according to the inputs, and learnt 

discriminatory texture and semantic embeddings in a high-dimension space. Finally, the risk 

assessment of COVID-19 was predicted. During training, to avoid overfitting, the random crop 

and early stop strategies were applied. 

  The developing process of classification network had been divided into training and testing 

stages as shown in Fig. 1. In the training stage, the classification network was evaluated on the 

validation dataset and was used to determine the hyperparameters, the threshold was 

determined by the best F1 score. In the testing stage, the model’s performance (AUC, sensitivity, 

specificity, accuracy, F1) was measured using the test dataset with the determined threshold.  

Considering that a subject may have more than one available image, we classified each subject 

based on the prediction results of multiple images15. Therefore, we conduct the risk screening 



for subject based on the previous image-level predictions. To enhance the robustness or 

sensitivity, we developed two vote strategies: mean-voting and max-voting were applied. In the 

mean-voting method, the image-level prediction scores were averaged to the final score. In the 

max-voting method the highest image-level prediction score was used as the final score which 

resulted in a higher sensitivity.  

Statistical analysis 

To measure the performance of the binary classification network, we calculated the area under 

the receiver-operating-characteristic curve (AUC), sensitivity, specificity, and accuracy 

according of our classification network. Bootstrapping with 1000 replicates was used to 

estimate 95% confidence intervals of the performance metrics, with the photo as the resampling 

unit. In addition, the receiver operating characteristic curves (ROCs) was plotted to illustrate 

the performance in screening COVID-19 disease. 

Results 

Study subjects 

In the cohort from Shanghai, the participants were enrolled at the Shanghai Public Health 

Clinical Center (SPHCC), Fudan University and AIMOMICS. In the development datasets, 104 

COVID-19 patients, 342 control group participants (143 healthy volunteers, 131 NCLD, 68 OD 

patients) were recruited during 2020 April 1st to June 30th. The test dataset comprised of 29 

COVID-19 patients and 99 control group participants (35 healthy volunteers, 31 NCLD, 33 OD 

patients) who were enrolled during 2020 July 1st to August 31st (Table 1). Among the 133 

COVID-19 patients, 47 (including 24 in the development and 23 in the test dataset) were 

asymptomatic/mild cases. And the majority of the participants were East Asian (87·50% of the 

development dataset and 93·10% of the test dataset).  

  In the Hebei cohort, the participants were enrolled from the Fifth Hospital of Shijiazhuang, 

Hubei Provincial Hospital of Traditional Chinese Medicine and AIMOMICS. In the 

development datasets, 20 COVID-19 patients were enrolled during 2021 Jan 1st to Jan 23th. The 

test dataset was comprised of 27 COVID-19 patients and 161 controls who were enrolled during 

2021 Feb 1st to April 30st (Table 1).  

  In the Spain cohort, the participants were enrolled from the La Fe University, Polytechnic 

Hospital and AIMOMICS. In the development datasets, 31 COVID-19 patients and 160 

controls were enrolled during 2020 November 1st to 2021 June 7th. The test dataset comprised 

8 COVID-19 patients and 154 controls who were enrolled during 2021 January 1st to June 11st 

(Table 1).  

  The demographic characteristics of COVID-19 patients were shown in Table 1. The Shanghai 

cohort had 2,108 photographs (development 1561, test 547) of 574 participants (development 

446, test 128). The data in Hebei included 1041 photographs (development 101, test 940) of 

208 participants (development 20, test 188). The data in Spain included 1426 photographs 



(development 774, test 652) of 353 participants (development 191, test 162). In total, there were 

902 photographs of 219 COVID-19 cases. 

Results on the test dataset of China and Spain 

The classification network was trained on the multicenter training dataset. The classification 

network achieved an AUC of 0·953 (95%CI, 0·936-0·969) in the Shanghai test dataset, an AUC 

of 0·866 (95%CI, 0·837-0·895) in the Hebei test dataset, and an AUC of 0·925 (95%CI, 0·873-

0·976) in the Spain test dataset at image-level. The AUC of both max-voting and mean-voting 

strategies were shown in Table 2. The ROCs of image-level, max-voting, and mean-voting were 

plotted in Figure 3. 

  In the multicenter study, the 302 photos of COVID-19 patients have 210 (69·5%) classified 

correctly, the 1841 negative photos have 1665 (90·5%) classified correctly. With max-voting 

strategy, we can correctly classify 61 COVID-19 patients from 64, while the mean-voting 

strategy successfully detected 50 COVID-19 patients. The confusion matrix of classification 

results of subject-level and image-level were shown in Table 3. However, misjudgments were 

also documented, The false negative rate is 30·5%, 21·9%, and 4·7% with respect to the image-

level, mean-voting level and max-voting level. 

Discussion 

Typical ocular symptoms of COVID-19 could be captured by our specific AI model. The 

model successfully differentiated COVID-19 patients from non-COVID-19 controls, with 

higher specificity and sensitivity. Notably, the inputted eye-region images were captured by 

general cellphone cameras, which underlined the excellent convenience and easy accessibility 

of the ocular photos-based prescreening system for clinical translation.  

  A meta-analysis demonstrated that the four most common ocular symptoms/signs were 

follicular conjunctivitis, redness, watering, and discharge16. Conjunctivitis could be the sole 

symptom of COVID-1917. Although there is a low prevalence of SARS-CoV-2 in tears 

collected from conjunctival swabs, it is possible to transmit via the eyes18. Therefore, 

screening of patients with conjunctival congestion by ophthalmologists was advocated during 

the outbreak of COVID-1919. In this study, we provide a non-contact method to screening the 

eye’s manifestations, not only for ophthalmologists, but also for ordinary people. Besides the 

conjunctival manifestations, the SARS-CoV-2 can affect the inner and outer retinal layers, 

which might also contribute to the ocular symptoms, such as inflammation and ocular pain20. 

Knowledge of eye symptoms and ocular transmission of the virus remains incomplete. 

However, based on the clinical findings, the implementation of innovative changes such as AI 

may assist in battling against the COVID-19 infection13.  



  The current model has two major components: an image preprocessing method to detect, 

crop, and align the eye area from the input image, and a CNN-based screen model to extract 

discriminative features and recognize COVID-19 patients based on the processed eye-region 

data. The extracted high-dimensional feature is used to compare with the prototype features in 

the knowledge base for classification. Because of the great ability to capture the specific eye 

features, the methods have high specificity when the control and the positive are different in 

the eye area (for example, COVID-19 patients might have ocular symptoms). On the other 

hand, some COVID-19 patients might have no obvious ocular symptoms in some viewpoints, 

this makes the model might have a low sensitivity on a single image. Thus, the voting 

strategies on multiple images are adopted in our paper to boost the robustness of the model.   

  As shown in Figure 4, we generate the average heatmaps on the 5 typical poses (forward, 

left, up, right, and down respectively) to have an overall understanding about the attention of 

our model. Specifically, we randomly picked 20 images on each pose and group. The average 

heatmaps show that the eye features have obvious differences and certain regularity. In order 

to increase the interpretability of the model, we visually analyzed the key areas of the model's 

attention in the classification process. Concretely, the key areas of the model's attention were 

converted into heat maps based on gradients and activation maps by GradCAM. Specifically, 

GradCAM has been successfully applied to fast detection of COVID-19 cases by chest X-ray 

and CT-Scan images1, which helps the human to better understand the predictions of the deep 

learning model.  (1) The classification network extracted features to Non-COVID-19 

participants have evenly distributed attention on the eye area; (2) The ocular features to 

patients with COVID-19 mainly focus on the inner and outer corner of the eye, in addition it 

covers upper, lower eyelid and other eye area. These features might suggest the specific site 

in eyes where inflammation or immune reaction happened in COVID-19 patients, which need 

further investigations.  

  For case study heatmap in Figure 5, we found that the attention of heatmaps of Non-

COVID-19 group are around the sclera and eyelid in the row 1 and row 2. The attention 

heatmap of COVID covers upper and lower eyelid, the inner eye corner and especially the 

outer eye corner in row 1 and row 2.  

  To test whether the model can distinguish the asymptomatic COVID-19 patients from the 

control group. We leave only the 23 asymptomatic COVID-19 patients in the shanghai dataset 

(6 non-asymptomatic COVID-19 patients are removed) and make an asymptomatic COVID-

19 vs. Non-COVID-19 test. The sensitivity is 72·8%, 100%, 87% on image-level, max-voting 

subject-level and mean-voting subject-level, which is almost the same as the sensitivity of the 

default COVID-19 vs Non-COVID-19 test (71·2%, 100% and 86·2% on image-level, max-

voting subject-level and mean-voting subject-level). This implies that the model can 

effectively distinguish the asymptomatic COVID-19 patients from the control group. 



  In addition, this study belongs to a long-term global project. The project would gradually 

open more than 300 diseases eye tests, such as virus influenza, diabetes, hepatopathy, etc. 

through the open accessible APIs. The test algorithm could be easily deployed or embedded in 

the high-definition (HD) camera and any detect accessories, combined into a multi-modal 

approach including vision and other sensors, continually monitoring the particular disease 

control areas such as the transportation hub, population center, quarantine house, making the 

health care more accessible with lower cost. We believe this system could be easily realized 

with HD qualified eye-region images and selfies for rapid COVID-19 prescreening. 

Moreover, the current study could be inspiring and helpful for encouraging more researches 

on this topic. 

  There are some limitations in this study. First, the participants were mostly collected from 

East Asia (China) and some from Spain. Therefore, a larger multicenter study covering more 

patients with diverse races and more control groups is necessary before the model could be 

used globally. More data are being collected and will be used in the further study. Secondary, 

there might be potential confounding factors such as comorbidities influencing eye 

symptoms. We did not collect the comorbidities of our participants. However, the control and 

positive patients were randomly selected from the population, which could balance the 

baseline demographics between groups. Third, some of the demographic information (e.g., 

gender and ages) are not collected during image acquisition. Fourth, our model was based on 

the eye symptoms, however, it cannot determine COVID-19-related eye disease. The 

pathological significance of extracted features from COVID-19 patients should be carefully 

interpreted and re-verified by the ophthalmologist. Further clinical studies are needed to test 

the performance and provide a deeper understanding of our findings of the ocular surface 

feature-based classification network. 

CONCLUSION 

In this study, the rapid COVID-19 screening model with the CNN based on eye-region 

images captured by typical cellphones or qualified selfies had high specificity and acceptable 

sensitivity. As an available rapid solution of fully self-performed prescreening in turnaround 

time, capabilities include the lower cost, fully self-performed, non-invasive, real-time results, 

continuous surveillance, and open accessible APIs. Anyone anywhere anytime can use 

cellphone eye self-portraits to tell the risk probability and get the result within 1 minute. We 

believe a system implementing such an algorithm should assist the large-scale rapid screening 

for COVID-19 infection.  
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Figures 

 
Figure 1. Study design and workflow of this study. 

 
Figure 2. Illustration of the framework. 



 
Figure 3. COVID-19 vs. Non-COVID-19 ROC curves on the test datasets of Shanghai, 

Hebei, Spain and the Total.  



 
Figure 4. Average heatmaps. 

 
Figure 5. Case heatmaps. 

 



 
Tables 

Table 1. Summary of Development(Training/Validation), and Testing Datasets 
  Shanghai Hebei Spain Total 

 Infor. Develop. Test Develop. Test Develop. Test  Develop. Test  

Data 

aquisition 

date 2020·4·1 -  

2020·6·30 

2020·6·1-

2020·8·31 

2021·1·1-

2021·1·23 

2021·2·1- 

2021·4·30 

2020·11·1- 

2021·6·7 

2021·1·1- 

2021·6·11 

2020·4·1 -  

2021·6·7 

2020·6·1-

2021·6·11 

COVID-19 Subject 104(83/21) 29 20(14/6) 27 31(22/9) 8 155(119/36) 64 

Images 367(290/77) 139 101(68/33) 135 132(96/36) 28 600(454/146) 302 

Age Years 5-65 20-59 20-55 20-55 21-94 25-69 5-94 20-69 

Sex Male 71(68·27%) 21(72·41%) 4(20%) 11(40·7%) 17(54·8%) 1(12·5%) 87 22 

Female 33(31·73%) 8(27·59%) 16(80%) 16(59·3%) 14(45·2%) 7(87·5%) 47 15 

Control 

Group 

Subject 342(272/70) 99 0 161 160(119/41) 154 502(391/111) 414 

Images 1194(958/236) 408 0 805 642(482/160) 624 1836(1440/39

6) 

1837 

Total subject 446(355/91) 128 20(14/6) 188 191(141/50) 162 657(510/147) 478 

images 1561(1248/313) 547 101(68/33) 940 774(578/196) 652 2436(1894/54

2) 

2139 

Infor.=information. Develop.=development.  

 
Table 2. Classification Performance of the classification network on the test dataset of 
Shanghai, Hebei, Spain and Total 

 AUC(95% CI) Sensitivity(95% 

CI) 

Specificity(95% 

CI) 

ACC(95% CI) F1(95% CI) 

Image-Level (Shanghai) 
COVID-19 vs. Non-COVID-19 0·953(0·936-0·969) 0·712(0·634-

0.791) 

0·946(0·924-0·968) 0·887(0·860-0·913) 0·762(0·701-0·822) 

Subject-Level (Shanghai)  
COVID-19 vs. Non-COVID-19 

(Max-Voting) 

0·982(0·961-1·000) 1·000(1·000-

1·000) 

0·869(0·799-0·938) 0·898(0·845-0·952) 0·817(0·716-0·918) 

COVID-19 vs. Non-COVID-19 

(Mean-Voting) 

0·979(0·955-1·000) 0·862(0·732-

0·992) 

0·970(0·935-1·000) 0·945(0·905-0·986) 0·877(0·782-0·972) 

Image-Level (Hebei) 
COVID-19 vs. Non-COVID-19 0·866(0·837-0·895) 0·741(0·668-

0·814) 

0·839(0·812-0·865) 0·824(0·800-0·849) 0·548(0·485-0·611) 

Subject-Level (Hebei) 



COVID-19 vs. Non-COVID-19 

(Max-Voting) 

0·903(0·851-0·955) 0·963(0·885-

1·000) 

0·733(0·662-0·803) 0·766(0·705-0·827) 0·542(0·420-0·664) 

COVID-19 vs. Non-COVID-19 

(Mean-Voting) 

0·894(0·842-0·946) 0·778(0·611-

0·945) 

0·845(0·787-0·902) 0·835(0·779-0·891) 0·575(0·434-0·717) 

Image-Level (Spain) 
COVID-19 vs. Non-COVID-19 0·925(0·873-0·976) 0·393(0·209-

0·577) 

0·963(0·948-0·979) 0·938(0·919-0·958) 0·355(0·199-0·511) 

Subject-Level (Spain) 
COVID-19 vs. Non-COVID-19 

(Max-Voting) 

0·942(0·890-0·993) 0·750(0·420-

1·000) 

0·922(0·879-0·965) 0·914(0·869-0·958) 0·462(0·216-0·707) 

COVID-19 vs. Non-COVID-19 

(Mean-Voting) 

0·946(0·899-0·992) 0·500(0·119-

0·881) 

0·961(0·929-0·993) 0·938(0·901-0·976) 0·444(0·149-0·739) 

Image-Level (Total) 
COVID-19 vs. Non-COVID-19 0·913(0·898-0·927) 0·695(0·643-

0·748) 

0·904(0·891-0·919) 0·875(0·861-0·889) 0·611(0·568-0·655) 

Subject-Level (Total) 
COVID-19 vs. Non-COVID-19 

(Max-Voting) 

0·943(0·920-0·965) 0·953(0·899-

1·000) 

0·836(0·799-0·873) 0·851(0·818-0·884) 0·632(0·547-0·717) 

COVID-19 vs. Non-COVID-19 

(Mean-Voting) 

0·938(0·916-0·961) 0·781(0·677-

0·885) 

0·918(0·891-0·944) 0·900(0·872-0·927) 0·676(0·585-0·767) 

AUC=Area Under the Curve. ACC= accuracy. Max=maximum. VS.=versus. 

  

Table 3. The confusion matrix of classification result of subjects and images on the test 

dataset of Shanghai, Hebei, Spain and the Total 
 

 GT/Pred Subject-level(max) Subject-level(mean) Image-level 

P N P(%) N(%) P N P(%) N(%) P N P(%) N(%) 

Shanghai P 29 0 100 0 25 4 86·2 13·8 99 40 71·2 28·8 
N 13 86 13·1 86·9 3 96 3 97 22 386 5·4 94·6 

Hebei P 26 1 96·3 3·7 21 6 77·8 22·2 100 35 74·1 25·9 
N 43 118 26·7 73·3 25 136 15·5 84·5 130 675 16·1 83·9 

Spain P 6 2 75 25 4 4 50 50 11 17 39·3 60·7 
N 12 142 7·8 92·2 6 148 3·9 96·1 23 601 3·7 96·3 

Total P 61 3 95·3 4·7 50 14 78·1 21·9 210 92 69·5 30·5 

N 68 346 16·4 83·6 34 380 8·2 91·8 175 1662 9·5 90·5 

 
 


