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The Parallel Coordinates Plot Revisited: Visual
Extensions from Hive Plots, Heterogeneous Correlations,
and an Exploration of Covid-19 Data in the United States

Gary Koplik
Geometric Data Analytics

Abstract—This paper extends an existing visualization, the Par-
allel Coordinates Plot (PCP), specifically its polar coordinate
representation, the Polar Parallel Coordinates Plot (P2CP). With
the additional incorporation of techniques borrowed from Hive
Plot network visualizations, we demonstrate improved capabili-
ties to explore multidimensional data in flatland, with a partic-
ular emphasis on the unique ability to represent 3-dimensional
data. To demonstrate these techniques on P2CPs, we consider
toy data, the Iris dataset, and socioeconomic data for counties in
the United States. We conclude with an exploration of Covid-19
data from counties in the contiguous United States.
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Figure 1. A simple example of three points in three
dimensions, represented as a two-dimensional Polar Parallel
Coordinates Plot but styled as a Hive Plot. Each closed loop
in the figure corresponds to a single row of data. Note each
axis spans exactly the range of its dimension of data, and the

axes therefore span heterogeneous ranges.

1. INTRODUCTION

“Reasoning about evidence should not be stuck in 2 dimen-
sions, for the world we seek to understand is profoundly
multivariate” — Edward Tufte [1].

Multidimensional data visualization is routinely stuck be-
tween two conflicting truths—humans are very good at find-
ing patterns in data that can be visualized in two dimensions,
but plotting high-dimensional data in 2d requires representa-
tional tricks that can come with an interpretability trade-off.

Plenty of clever techniques have been applied to comprehen-
sibly reduce multidimensional data into flatland. Perhaps
the simplest technique used is to look at all of the pairs
of bivariate Scatterplots in a Scatterplot Matrix. Another
commonly-used technique is to plot a dataset as a standard
bivariate Scatterplot using two of the available dimensions,
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but modify the appearance of each plotted point according
to additional dimensions of data. For example, the color
and size of each point can represent extra dimensions, with
techniques like Chernoff faces [2] extending this concept to
higher dimensions. Others prefer to use embedding tech-
niques such as Principal Components Analysis to explicitly
collapse the information content of multidimensional data
into flatland. Finally, assigning dimensions to axes in flatland,
a technique most notably used with the Parallel Coordinates
Plot (PCP), allows one to represent a multidimensional point
as a polyline while preserving univariate relationships as well
as a subset of bivariate relationships.

Just as PCPs visualize relationships between orthogonal di-
mensions of multivariate data, a Hive Plot (HP) visualizes
relationships between orthogonal sets of nodes in network
data. In this paper, we delve into the overlap between these
two visualization techniques, applying concepts from HPs
to PCPs in order to improve the analytical capabilities of
PCPs. We demonstrate the resulting visualization, the Polar
Parallel Coordinates Plot (P2CP), on toy data as well as the
Iris dataset, county-level socioeconomic data for the United
States, and county-level Covid-19 data from the contiguous
United States.

Outline

We first discuss the history of Parallel Coordinates Plots and
Radar Charts in Section 2. We then apply techniques from the
Hive Plot literature on several example datasets in Section 3.
Next, we visualize correlations in Polar Parallel Coordinates
Plots in Section 4. As an application of Hive Plot techniques
and exploration of heterogeneous correlations, we look at
county-level Covid-19 data for the contiguous United States
in Section 5, and we conclude in Section 6.

2. PARALLEL COORDINATES PLOTS AND
POLAR DOPPELGANGERS

The Parallel Coordinates Plot (PCP) extends as far back as the
1880s. Philbert Maurice d’Ocagne in 1885 is frequently cred-
ited with laying out the means of coordinate transformation
needed for PCPs [3], but Henry Gannett preceded d’Ocagne
with the first plots a few years earlier [4]. PCPs were popular-
ized in 1980s by Alfred Inselberg [5]. Heinrich and Weiskopf
[6] nicely summarize many of the recent innovations in PCPs.

The polar coordinate equivalent of PCPs, the Polar Parallel
Coordinates Plot (P2CP), which radiates axes out from the
origin, is essentially an applied use of the Radar Chart (RC),
also known as the Spider Plot or Star Plot. RCs actually pre-
cede PCPs by several years, with Georg von Mayr publishing
the first RC in 1877 [7].

Although some researchers worry that PCPs can be hard to



interpret, there is evidence that even the unfamiliar can in
fact understand PCPs [8]. Furthermore, Lazenberger et al.
[9] found evidence suggesting that although PCPs were more
interpretable at first glance, P2CPs were better for hypothesis
generation as well as the visualization of important insights.

Unfortunately, although RCs are a well-established visual-
ization technique, there is minimal exploration in the liter-
ature of their use as P2CPs, with only some discussion in
the context of Circular Parallel Coordinates Plots [10] and
Stardinates [11]. Instead, RCs, both in the literature and in
practice, focus on shape comparisons between only a few
multidimensional points rather than considering a far larger
number of data points as one usually shows with a PCP. This
limited use of RCs has many flaws. For example, many RC
tools fill in the area inside the completed loop representation
of a multidimensional data point, which leads to a visually
disingenuous quadratic increase in area with respect to a lin-
ear increase along one dimension. Furthermore, there are far
more interpretable visualizations than RCs for comparing so
few multidimensional points. For a more thorough discussion
critiquing RCs, see [12].

By borrowing a few concepts from Hive Plots—a technique
from network visualization—this paper extends the visualiza-
tion capabilities of P2CPs to larger datasets. In particular, we
focus on curved edges, the unique visualization power of a
3-axis P2CP, and small multiples.

3. VISUALIZATION TECHNIQUES FROM HIVE
PLOTS

HPs [13] serve as an interpretable means of network visual-
ization. Due to the abstract nature of most networks, there
usually is not a “correct” way to place nodes in Euclidean
space. Whereas many network visualizations rely on an
algorithmic placement of nodes that can be difficult to inter-
pret, HPs allow one to more explicitly position nodes. First,
one chooses a partitioning of the nodes, which consequently
dictates a set of distinct axes on which to place each set of
nodes. The user then selects a scalar ordering variable for
each axis. A node is thus precisely and interpretably placed
on its specified axis in two-space based on its corresponding
scalar value. After drawing edges between nodes in their
final placement, the resulting structure offers a strong visual
interpretability, suggesting anecdotal patterns between nodes
with respect to the sorting variables chosen by the user.

To connect P2CPs to HP visualization techniques, we must
first clarify how we will think of standard multidimensional
data as “network data” of a sort. Rather than thinking of
choosing our axes to be some partition of the nodes in a
network, we will let our axes be dimensions of the dataset.
We will thus think of a “node” on an axis as being a specific
dimension value in a record of data. Assuming we do not have
missing values in our data, one multidimensional data point
will thus consist of one closed loop in a HP. A simple example
of three points in three dimensions is shown in Figure 1.

We borrow several concepts from HP visualizations to extend
the capabilities of P2CPs with many data points.

Curvature of Edges

RCs and P2CPs almost always follow the PCP convention of
straight line connections between axes,” thus under-utilizing
the available space in polar coordinates. HPs on the other
hand draw Bézier curves that arc through the space.’ The
curved edges not only make better use of the space in a plot in
polar coordinates, but also avoid visual artifacts of concavity
that can appear in figures with a more dense number of edges,
exemplified in Figure 2.

Straight Edges

Curved Edges

z

Figure 2. An example of two types of bivariate
relationships represented in 3-dimensional Polar Parallel
Coordinates Plots with either curved (left) or straight (right)
edges. The X to Y (orange) relationship represents a strong
negative correlation while the X to Z and Y to Z (green)
relationships represent a heterogeneous correlation.
Visualization of correlations with Polar Parallel Coordinates
Plots is discussed in detail in Section 4, but for now we
simply note that with straight edges, the lines are relatively
compressed and hard to distinguish. Furthermore, we
observe a misleading, visually-implied concavity with
straight edges that does not appear with curved edges.

3 Dimensions Preserved in Flatland

Static visualizations of 3-dimensional data can be highly mis-
leading. As an example, consider the following toy dataset—
four Gaussian blobs centered at four different corners of a
cube (Figure 3).
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Figure 3. Four Gaussian blobs centered on four corners of a
cube.

2There are some exceptions of PCPs contemplating curved edges, for
example [14].

30ne notable Radar Chart tool with curved edges is available through
Google Docs, which draws line arcs quite similarly to the au-
thors’ preferred Bézier curve structure. Examples can be found at
https://support.google.com/docs/answer/9146868



With the strategic choice of angle and azimuth in Figure 3,
the four clusters are clearly distinguished, but if we look at
the wrong angle, the separability becomes far less visually
apparent (Figure 4).
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Figure 4. The same four Gaussian blobs from Figure 3,
looking directly at the XY, X Z, and Y Z planes. One can
only distinguish the four clusters by looking at more than

one of these figures. The separability is also far less evident
(for example, the blue cluster is never fully isolated in any
figure).

If we instead place our X, Y, and Z axes in flatland with a 3-
axis P2CP (Figure 5), we can see the unambiguous trivariate
separability, as exhibited by the appearance of four loops of
distinct shape and color . Though 3-axis P2CPs can of course
nicely demonstrate trivariate relationships, the use of three
axes has a particular motivation for HPs.

Figure 5. The same four Gaussian blobs from Figure 3,
represented as a Polar Parallel Coordinates Plot but styled as
a Hive Plot. One can now easily distinguish the four clusters

by looking at the shape of the loops formed over the three
dimensions. Note that in addition to showing this trivariate
relationship, we also show every bivariate and univariate
relationship without any repeat axes.

HPs typically have three axes because each axis is adjacent
to every other axis, and thus one would never need to draw
an edge between nodes that crosses over an axis. Given one
might have any arbitrary partitioning of nodes into groups,
this enables cleanly visualizing any of the possible bivariate
relationships in the resulting figure.

When translating this property to P2CPs, a 3-axis P2CP re-
sults in every bivariate relationship being visually represented
in a single two-dimensional figure.* Therefore, despite pro-
jecting onto flatland, 3-dimensional P2CPs do not collapse
any variable interactions in the resulting figure.

As the number of dimensions increases beyond 3, PCPs and
P2CPs are still perfectly valid visualization schemes, but it
should be noted that new issues arise that can affect inter-
pretability. In particular, both the ordering of axes [15] and

4P2CPs also preserve univariate relationships on each axis.

strategic placement of repeat axes [16] are research questions
in their own right.

If forced to look at a single, static visualization, a 3-axis P2CP
is in fact more informative than a 3-dimensional Scatterplot.
Consider the Iris Dataset [17] [18], which consists of three
types of flowers represented by four dimensions of data. The
labels separate quite well on both petal length and petal width,
as demonstrated by a standard Scatterplot Matrix shown in
Figure 6.
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Figure 6. A Scatterplot Matrix for the Iris dataset. The
vertical separability of colors visible on the bottom two rows
indicates that petal length and petal width are good
predictors of flower type. Furthermore, the bottom-right
Scatterplot indicates that these two variables are highly
correlated. Though this implies we will have one particularly
strong first Principal Component, we cannot easily infer if
the Iris types can be further separated by additional Principal
Components.

Suppose we simply want to explore the separability of the
different labels via Principal Components Analysis (PCA).
Looking at the first three Principal Components (PCs) in three
dimensions (the left plot in Figure 7), we can only draw one
conclusion—the first PC performs quite a bit of separation
on its own—but we are unable to conclude anything further.
In fact, there is no single 3d Scatterplot of the PCA dataset
that can unambiguously show us the collective separability
possible using these three PCs.

A 3-axis P2CP visualization of the same dataset (the right plot
in Figure 7), on the other hand, not only demonstrates the
standalone, univariate separability resulting from PCI1, but
also shows us that the second and third PCs have no univariate
separability. Furthermore, this visualization illustrates that no
bivariate relationship or even the one trivariate relationship
can improve on the separability achieved by PC1 alone.

Small Multiples with Hive Panels

The compact nature of HPs allows one to look at small
multiples of plots in succession with each other, referred to

5As a digression of examples using P2CPs, the Scatterplot Matrix in Figure
6 could instead be represented as four instances of 3-axis P2CPs showing the
four possible trivariate relationships. The resulting figure can be found in the
Appendix (Figure 15).
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Figure 7. Left: 3d Scatterplot of the first three Principal Components for the Iris dataset. The first component clearly
separates the data quite well, but we cannot say anything about the second or third components, let alone any combinations of
components, from this 3d visualization alone. Right: Polar Parallel Coordinates Plot representation of the first three Principal
Components of the Iris dataset (the same data as shown in the left plot), styled as a Hive Plot. In a single figure in flatland, we

can see all three univariate relationships, the three possible bivariate relationships, and the sole trivariate relationship. From
this figure, we can conclude that the only separability for labels in the Iris dataset is along the first Principal Component.

in the HP literature as a Hive Panel [13]. Although small
multiples have frequently been used with RCs, they have
not been used in the PCP literature. One use case for small
multiples with parallel coordinates would be to visualize mul-
tiple combinations of dimensions from a high-dimensional
dataset—for example, instead of making a single, long PCP
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with n axes, one could make n/3 P2CPs, each with three
axes.

A second natural use case arises with multidimensional time
series data, for which one might be interested in visualizing

the changing multivariate relationship over time. Current
Unemployment
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Median Median
Household Household

Income Income
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Figure 8. Polar Parallel Coordinates Plots of unemployment rate, poverty percentage, and median household income for
United States counties in 2007, 2012, and 2017. Univariate density is represented with the orange dots on each axis in the
figure. The bivariate correlation between unemployment and poverty appears consistently positive over the represented years,
notably with unemployment and poverty increasing in tandem during the economic fallout from the Great Recession.
Similarly, the negative correlation between poverty and median household income appears robust over the represented years,
though median household income values increase over time (note, these data are not inflation-adjusted). The last bivariate
correlation between unemployment and median household income shows an intriguing visual heterogeneity over time. Despite
the Pearson correlation being relative consistent over the three represented years (—0.36, —0.40, and —0.41 for 2007, 2012,
and 2017 respectively), there appear to be changing trends in behaviors along the upper extremes between these two variables.
In 2007, both high unemployment and income appear to be symmetrically negatively correlated with each other, but in 2012,
the negative relationship appears to be stronger for high unemployment than for high income. This relationship then appears to
flip in 2017, with high income having a visually stronger negative relationship than for high unemployment. Visualizing
correlations with Polar Parallel Coordinates Plots is discussed in more detail in Section 4. Note that the minimum and
maximum values on the axes of each plot have been constrained to normalize outliers to a more tightly-bound range.
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methodologies in the literature for showing changes over
time with PCPs include adding axes for discrete times [19],
using color and alpha channels to continuously correspond
with time [20], and animation tools over the same set of
axes [21] [22]. With P2CPs, we can instead partition the
data over discretized windows of time and look at the re-
sulting P2CPs side-by-side. As an example, in Figure 8,
we generated a series of P2CPs with three socioeconomic
variables using data from the Bureau of Labor Statistics [23]
and the United States Census Bureau [24]—unemployment
rate, poverty percentage, and median household income—for
United States counties in 2007, 2012, and 2017. This figure
shows some consistent relationships over time, most notably
a stable negative correlation between poverty and income,
but also demonstrates an intriguing heterogeneity over time
between unemployment and income.

4. VISUALIZING MULTIVARIATE,
HETEROGENEOUS CORRELATIONS WITH
POLAR PARALLEL COORDINATES PLOTS

A large part of Exploratory Data Analysis involves looking
for patterns, with a particularly important pattern between
two variables being their correlation. In this section, we look
at basic bivariate correlations in P2CPs and then turn our
attention to multivariate correlations. We demonstrate with
a simple example how in a circumstance of heterogeneous
correlations, the multivariate visualization scheme of P2CPs
lends itself well to finding localized, multivariate patterns in
the data, a strategy we will make use of in practice in Section
5.

Positive Relationship

No Relationship

X

Before discussing the visualization of correlations with
P2CPs further, it’s important to note that when visually ex-
ploring bivariate correlations, there are known interpretabil-
ity trade-offs when using PCPs as opposed to Scatterplots,
discussed further in [25], [26], and [27]. These trade-offs,
however, extend only to the simpler task of identifying the
magnitude of positive and negative correlations as noise
increases. For the majority of this section, we will focus on
heterogeneous correlations and the particular capability with
P2CPs to discern localized, multivariate patterns, a task that
we consider outside the scope of the above-cited papers.

To demonstrate basic correlation patterns with P2CPs, we
first consider four simple, low-noise examples in Figure 9.
Dot-Dash Plots [28] were used for the bivariate Scatterplots to
create a more comparable visualization to the P2CP, as P2CPs
also display univariate density on their axes. For P2CPs,
positive relationships result in concentric arcs, negative re-
lationships result in a “butterfly” pattern, and no relationship
conveniently looks like no relationship.

Heterogeneous correlations can of course vary drastically
from our simple example in Figure 9, but regardless of the
particular heterogeneous structure, one can likely discern
local patterns in that bivariate relationship with a standard
Scatterplot as well as with a P2CP representation. With
P2CPs though, one can additionally explore those local pat-
terns in a multivariate context. As a simple toy example, con-
sider a 3-variable toy dataset in Figure 10 composed of two
heterogeneous relationships and one negative relationship,
borrowing correlation structures from Figure 9. With this
visualization, we can quickly discern multivariate patterns;
for example, a high value for any one variable relates to a

Negative Relationship

Heterogeneous Relationship

X

Figure 9. Four simple examples of different correlations. At the left of each figure, a Dot-Dash Plot shows the data (e.g. a
bivariate Scatterplot showing univariate density on each axis). On the right of each figure, the comparable Polar Parallel
Coordinates Plot representation of the same data. Note the negative and heterogeneous relationships in this figure were also
used in Figures 2 and 10.
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lower value for the other two variables.

Pearson
Correlation
-1.000

Pearson
Correlation
0.004

Pearson
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-0.003

Figure 10. An example trivariate Polar Parallel Coordinates
Plot, with one negative relationship (X to Y) and two
heterogeneous relationships (X to Z and Y to Z) borrowed
from Figure 9. By design, the heterogeneous relationships
here contain subsets with either positive or negative
correlations, resulting in overall correlations of
approximately 0. Despite no overall correlation for the
heterogeneous relationships, this visualization allows us to
visualize local, multivariate patterns in this toy dataset. For
example, a high value for any one variable relates to a lower
value for the other two variables.

5. POLAR PARALLEL COORDINATES PLOTS
WITH COVID-19 DATA IN THE UNITED
STATES

Applying the techniques from Section 3, we visually explored
the trivariate relationship between vaccination rates, Covid-
19 cases, and Covid-19 deaths for counties in the contigu-
ous United States from March, 2021 through August, 2021.
Specifically, we focused on the relative outcomes of the most-
vaccinated and least-vaccinated counties. Vaccination data
came from the Centers for Disease Control [29], and Covid-
19 cases and deaths data came from Johns Hopkins University
[30].

First, we considered these three variables in their geographic
context for a single day of data—August 1st, 2021—in Figure
11. There are certainly geospatial patterns here within each
map, but these maps don’t lend themselves well to consider-
ing the multivariate relationship between the variables.

Next, we considered two different forms of comparison of the
same data—bivariate Dot-Dash Plots and a P2CP—in Figure
12. Perhaps the greatest surprise from the Scatterplots upon
first glance is the lack of any apparent strong relationship
between deaths and vaccination rates, and unfortunately, the
Scatterplots offer little suggestion of the next step in a visual
exploration of these data. The P2CP, on the other hand, shows
an intriguing heterogeneous relationship between deaths and
vaccination rates reminiscent of the heterogeneous relation-
ships considered in Figure 10, where one could see visually
distinctive behavior within a subset of the data despite mini-
mal overall correlation.

A natural starting point with heterogeneous behavior is to
focus on just the extremes of a variable; to start, we will
focus on the lowest and highest quantiles of vaccination
percentage. In Figure 13, we replicate Figure 12, but we
keep and color only the highest and lowest 10% of counties
by vaccination percentage. Several interesting patterns can
be seen in this figure. First, there is a clear divergence
in common behavior between the groups in terms of case
rates, with less-vaccinated counties seeing more cases in
general, though it should be noted that highly-vaccinated
counties also have counties with high case rates. Second,
both groups have relatively low death rates, but the less-
vaccinated counties have noticeably more outlier counties
with high death rates. Finally, we can see a fairly heteroge-
neous relationship between cases and deaths among the less-
vaccinated group of counties. Namely, there appear to be two
relationships—many of the less-vaccinated counties seem to
observe a fairly standard positive correlation between cases
and deaths, whereas another subset are following the trend
of the more-vaccinated counties, that is, maintaining a low
death rate regardless of case rate. This might be indicative of
an omitted variable dividing outcomes in the less-vaccinated

group of counties.®

Taking advantage of the small multiples capability of P2CPs,
we can look for frends in these observed behaviors over
time. In Figure 14, we find that the trends and separations
discussed in Figure 13 are steadily converged on over time.
Furthermore, we are able to explore these trends looking
at only six plots as opposed to the eighteen that would be
required were we instead to look at bivariate Scatterplots.

6. CONCLUSION

When augmented with techniques from HP network visu-
alizations, P2CPs offer a compact, interpretable means for
multidimensional visualization in flatland that lends itself
well to plotting with small multiples. By taking advantage
of the unique properties of 3-axis P2CPs in particular, we
can collapse 3-dimensional data into two dimensions with-
out sacrificing the visualization of any variable interactions.
P2CPs offer a particularly good means for the exploration of
multivariate, heterogeneous correlations, which makes this
visualization technique a strong tool when working with
socioeconomic data. Finally, P2CPs encourage hypothesis
generation, making them an excellent starting point when
beginning to analyze a dataset.
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SVariable behavior could be the result of anything from heterogeneous
spread of more-infectious variants to demographic conditions (e.g. average
age, obesity rates, etc. in counties). Once again, though, our P2CP
visualization suggests hypotheses worthy of further exploration that are not
visually suggested by comparable Scatterplots.
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Figure 11. From left to right: contiguous United States county-level vaccination percentage, cases per 100,000 people, and
deaths per 100,000 people, all on August 1st, 2021. Note that the counties in white in the “Vaccination Percent” figure on the
left (several California counties and the entire state of Texas) did not report vaccination data to the Centers for Disease
Control, and were therefore excluded in that figure.

August 01, 2021

Pearson Correlation: -0.200 Pearson Correlation: -0.068 Pearson Correlation: 0.186
1500 - 60 -
80 -
1250 - 50 -
1000 - 40 - 60 -
Cases (7-Day Avg) Deaths (7-Day Avg) Deaths (7-Day Avg)
per 100k People 750 - = per 100k People 30 - per 100k People 40
500- § 20- - X o
H Sk 20- -
250 - 10- - L E @88 %%
o- o | il oo | AMESES
1 —— 0 —— — 11
. . . ] . . ] ] . . . ] ! ] !
0 25 50 75 100 0 25 50 75 100 0 500 1000 1500 2000
Vaccination Vaccination Cases (7-Day Avg)
Percent Percent per 100k People

Cases (7-Day Avg)
per 100k People

Aug 01, 2021

Vaccination
N\ Percent

Deaths (7-Day Avg)
per 100k People

Figure 12. Top: Dot-Dash Plots between the three possible bivariate combinations of contiguous United States county-level
vaccination rates, cases per 100,000 people, and deaths per 100,000 people, all on August 1st, 2021 (the same data as shown in
Figure 11). The Pearson correlation between each pair of variables is reported above each plot. Univariate relationships can be

viewed along the axes. At first glance, the authors found that these figures failed to suggest any particular hypotheses worth

exploring. Bottom: Polar Parallel Coordinates Plot of same data as above. Univariate density comparable to the axes of a
Dot-Dash Plot is represented with the orange dots on each axis. Though not showing anything immediately obvious, this
figure clearly shows heterogeneous relationships between the variables that suggests further exploration. A natural way to
drill-down on heterogeneity is to look at only the data with the highest and lowest values for one variable, for example
exploring the behavior along different extremes of vaccination rates. Note that the minimum and maximum values on the axes
of the Polar Parallel Coordinates Plot have been constrained to normalize outliers to a more tightly-bounded range.



August 01, 2021

1500 A
50 A 50 4
1250
1000 4 40 A 40 H
Cases (7-Day Avg) Deaths (7-Day Avg) Deaths (7-Day Avg)
per 100k People 750 per 100k People 30 1 per 100k People 30 -
500 - 20 A 201
2501 ok 10 A 104
0 ®hes 0 omsm—— 0 elibscme
0 20 40 60 80 100 0 20 40 60 80 100 0 500 1000 1500
Vaccination Vaccination Cases (7-Day Avg)
Least Vaccinated Percent Percent per 100k People
®  Counties
Most Vaccinated
Counties

Cases (7-Day Avg)
per 100k People

\ Aug 01, 2021

Vaccination
Percent

Least Vaccinated

~ Counties
Deaths (7-Day Avg) Most Vaccinated
per 100k People Counties

Figure 13. Top: Scatterplots between the three possible bivariate combinations of contiguous United States county-level
vaccination rates, cases per 100,000 people, and deaths per 100,000 people, all on August 1st, 2021. Data subset to the 10% of
counties with the highest vaccination percentage (orange) and the 10% of counties with the lowest vaccination percentage
(blue). Bottom: Polar Parallel Coordinates Plot of the same subset of data as above. Univariate density on the axes is removed
in this figure. Both the Scatterplots and the Polar Parallel Coordinates Plot allow for similar bivariate conclusions. Though
both groups generally have low death rates, there are more outlier counties with high death rates among the least-vaccinated
counties than the most-vaccinated counties. As for cases, though both groups have plenty of counties with low case rates,
higher case rates are far more common among the least-vaccinated counties, whereas they are relative outliers among the
most-vaccinated counties. Finally, cases and deaths seem to be positively correlated among some of the least-vaccinated
counties, with a subset of those counties in addition to the vast majority of the most-vaccinated counties having little to no
deaths regardless of case count. Note that the minimum and maximum values on the axes of the Polar Parallel Coordinates
Plot have been constrained to normalize outliers to a more tightly-bound range.
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Figure 14. Polar Parallel Coordinates Plots between contiguous United States county-level vaccination rates, cases per
100,000 people, and deaths per 100,000 people, spanning six months from March Ist, 2021 through August 1st, 2021. Data
subset to the 10% of counties with the highest vaccination percentage (orange) and the 10% of counties with the lowest
vaccination percentage (blue). Univariate density on the axes is removed in each figure. The separations discussed with
respect to Figure 13 become more pronounced over time. Note, the same Polar Parallel Coordinates Plot from Figure 13 is

shown in the bottom right of this figure.
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APPENDIX

Species
sepal sepal m— setosa
width width = versicolor
(cm) (cm) = virginica

sepal sepal

length length
(cm) (cm)
sepal sepal
length width
(cm) (cm)

Figure 15. Four instances of three-axis Polar Parallel Coordinates Plots showing all possible combinations of three variables
in the Iris dataset. Note that this figure has comparable information content to Figure 6, but only requires 4 plots instead of 10.
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