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Abstract—COVID-19 has driven most schools to remote 

learning through online meeting softwares such as Zoom and 

Google Meet. Although this trend helps students continue learning 

without in-person classes, it removes a vital tool that teachers use 

to teach effectively: visual cues. By not being able to see a student’s 

face clearly, the teacher may not notice when the student needs 

assistance, or when the student is not paying attention. In order to 

help remedy the teachers of this challenge, this project proposes a 

machine learning based approach that provides real-time student 

mental state monitoring and classifications for the teachers to  

better conduct remote teaching. Using publicly available 

electroencephalogram (EEG) data collections, this research 

explored four different classification techniques: the classic deep 

neural network, the traditionally popular support vector machine, 

the latest convolutional neural network, and the XGBoost model, 

which has gained popularity recently. This study  defined three 

mental classes: an engaged learning mode, a confused learning 

mode, and a relaxed mode. The experimental results from this 

project showed that these selected classifiers have varying 

potentials in classifying EEG signals for mental states. While some 

of the selected classifiers only yield around 50% accuracy with 

some delay, the best ones can achieve 80% accurate classification 

in real-time. This could be very beneficial for teachers in need of 

help making remote teaching adjustments, and for many other 

potential applications where in-person interactions are not 

possible.  
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I. INTRODUCTION 

Most schools have been forced into some form of remote 
learning due to the COVID-19 pandemic. Video conferences 
have been helpful for teachers to safely keep in touch with the 
students, and have increasingly become a replacement for 
teaching in a traditional classroom. However, one of the big 
challenges in online teaching is the loss of the ability to visually 
observe students in real-time. By being in the same classroom, 
experienced teachers can acutely sense whether students are 
paying attention, and more importantly whether students are 
understanding the materials and concepts that are being taught. 
With those observations, teachers can adjust the delivery method 
or the teaching speed on the fly and create an effective teaching 
environment. With video conferencing softwares such as Zoom 
and Google Meet, it is harder to observe students and generally 
more difficult for the teacher to judge how effective the teaching 
materials are being delivered. One of the big problems is that the 
teacher cannot easily see every student from the small squares 

on a small computer screen. Even then, the student can mute 
themselves and stop their video, which prevents the teacher from 
picking up any signs of discomfort from the student. On top of 
that, students who need help may not want to speak up due to 
the unfamiliarity of speaking in a remote setting. In an attempt 
to resolve this challenge, schools sometimes send out surveys to 
students to identify the difficulty of the homework or the 
learning curriculum in general. However, the survey results 
could be quite biased in that the students may not be willing to 
answer truthfully. Combined with the fact that these surveys are 
time-consuming for the teacher and generally not timely for the 
students, the challenge remains for teachers to effectively 
conduct remote teaching. Teachers are desperately in need of 
new tools to help capture a student’s mental state with the 
introduction of remote teaching. 

Traditionally it is accepted that one of the most reliable ways 

of determining the mental state is to examine the reflection of 

various measurements on brain activity, which can be 

represented by Electroencephalogram (EEG) signals. EEG has 

frequently been used in clinical diagnoses, biomedical research, 

and behavior analyses[1-3]. Stress, anxiety, and pleasure are a few 

of the examples where EEG signals have been proven to show a 

high correlation.  

The recent rapid development and adoption of deep neural 
networks in the machine learning field has opened a vast number 

of opportunities in highly accurate data analysis, data mining, 

and data classification. This movement inevitably penetrated the 

area of Biomedical Science too, especially in EEG data analysis. 

Deep Neural Networks (DNN) have been used to detect stress 

levels in construction workers using EEG signals as an input [4]. 

The researchers in this research used a convenient wearable 

EEG headset to obtain the EEG recording, then measured levels 

of cortisol to get a stress reference. After that, they passed the 

raw EEG through a preprocessor, and finally, put it through a 

Convolutional Neural Network (CNN) to determine the stress 
levels. They achieved about a 64% accuracy with a CNN, and 

87% with a DNN. Some scientists proposed a method that uses 

EEG signals to detect stress and introduces stress reduction 

techniques by adding interventions into their method [5]. They 

used the support vector machine (SVM) as one of their 

classification techniques. Others proposed an EEG-based stress 

recognition framework that considers each subject’s brainwave 

patterns and continuously updates itself based on the new input 
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signals in near real-time[6]. The framework first removes EEG 

signal artifacts, then extracts a broad range of EEG signals, and 

finally applies different online multitask learning (OMTL) 

algorithms to recognize the individuals’ stress in near real-time. 

Most of the work presented 70-87% accuracy achieved using 
various machine learning methods. However, none have 

specifically studied EEG signal usage in a student learning 

scenario. 

In this research, a study was performed where a student’s 

mental states in a learning environment were classified into 3 

distinctive states: 

• Engaged learning: where students can grasp the taught 

concept and follow the teacher’s teachings without 

difficulty 

• Confused learning: where students are not able to 

understand the material being taught, even though they 
are still engaged in learning 

• Relaxed state: where students are disengaged with the 

current learning (not paying attention) 

With EEG signals used as the input, 4 different types of 

popular classifiers were explored in order to find the fastest 

model that can output accurate results: SVM, DNN, CNN, and 

XGBoost. The first 3 classifiers were chosen due to their 

popularity in literature related to EEG signal classification. The 

4th one, XGBoost, is a decision tree style machine learning 

model that can optimize arbitrary loss functions with gradient 

boosting. It has recently gained lots of popularity due to 

surprisingly high accuracy readings achieved in various data 
science competitions. While the literature research did not yield 

any mentions of using XGBoost in EEG signal processing, the 

approach seems suitable nonetheless for the task. 

In the remainder of this paper, I will first describe the data 
sources used in this study in detail. Then I will briefly introduce 
the different classifiers and how the input features are 
constructed. Experimental results will be presented next. Finally 
I will conclude with some discussions about future work. 

II. DATA 

The search for data to be used in this project focused on 

publicly available EEG datasets. However, there were not many 
available that were related to students. One of the most relevant 

datasets was found on Kaggle[9], which recorded EEG signals 

when students were presented with teaching videos of 

designated difficulty levels. Another dataset relevant to this 

study was from OpenNeuro[16], which recorded EEG signals 

during meditation. The detailed descriptions of both datasets are 

provided here, as well as the preprocessing steps needed to 

reconcile the different methods of both datasets. 

 

Figure 1. Mindset Headset. Only Has the Fp1 Channel [17] 

A. Kaggle Student EEG Data 

In [9], the authors collected EEG signal data from 10 college 

students (subjects) while they watched 10 video clips. These 

videos are one minute long each and focus on topics varying 

from basic Algebra to Stem Cell Research. These topics are 

either within the education level of the subject, or at a much 

more advanced level than the subject’s current grade and 

designed to confuse the subject. The EEG signal was recorded 

by a single-channel wireless MindSet, shown in Figure 1, that 

measured activity over the frontal lobe. The MindSet measures 

the voltage between an electrode resting on the forehead and two 
electrodes (one ground and one reference) each in contact with 

an ear. Previous research has shown that this type of wireless 

EEG device can produce compatible quality signals as 

traditional wired EEG system[15]. The EEG bands are compiled 

every 0.5 seconds. After each session, the student rated his/her 

confusion level on a scale of 1-7, where one corresponded to the 

least confusing and seven corresponded to the most confusing. 

These labels are further classified into binary labels of whether 

the students are confused or not.  

One limitation of this data set is that there is no raw data, and 
only the limited power spectrum of the EEG frequency bands 
are available. As described by the author, the frequency band 
readings were directly from the device and no raw data was 
recorded. Besides the usual 5 bands - Delta, Theta, Alpha, Beta, 
Gamma, the dataset further divides the Alpha, Beta, and Gamma 
bands into 2 equal frequency bands each, forming Alpha1, 
Alpha2, Beta1, Beta2, Gamma1, and Gamma2 bands. As a 
result, the same band division was used for other data sets so that 
they are compatible as input features to the same ML classifiers. 
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B. OpenNeuro EEG Data 

 

Figure 2. Biosemi Headcap, 64 channels, 10/20 layout [18] 

In [10], expert and non-expert meditators alike were asked 

to meditate continuously throughout the experiment in a seated 

meditation position. Once all subjects were comfortably seated 

in their meditative posture, they were instructed to begin their 

meditation. All practitioners began with an initial body scan as 
they relaxed into their seated posture. Experience-sampling 

probes were presented at random intervals ranging from 30 to 

90 seconds throughout the duration of the experiment. The time 

range of the experiment lasted from 45 min to 1 hour and 30 

minutes, as some subjects were willing and able to sit 

comfortably for longer periods of time. The authors collected 

data using a 64-channel Biosemi system and a Biosemi 10–20 

head cap, as shown in Figure 2, montage at 2048 Hz sampling 

rate. All electrodes were kept within an offset of 15 using the 

Biosemi ActiView data acquisition system for measuring 

impedance. Respiration, heart rate (ECG/HRV) and galvanic 
skin response (GSR) were also recorded, but results from these 

data were not reported in the dataset. Raw data is available for 

this data set.  

It was noted in the dataset documentation that not all subjects 
are experts in meditation. Given that the people labeled non-
experts may produce some unreliable data, in this experiment, 
only the expert labeled data were used to remove any noise. 

C. Data Preprocessing 

Besides the general high-pass filtering to remove DC noise, 

extra preprocessing was needed to match the two datasets. These 

are the 3 required steps: 

1. Channel compatibility. Because the Kaggle dataset only 

measures the Fp1 channel of the subjects only the A1 

channel recording from the OpenNeuro dataset was 

used in the study, which recorded EEG signals from the 

same area as the Fp1 channel (see Figure 2). 

2. Feature extraction:  For OpenNeuro data processing, 8 

bands of power spectrum were computed, rather than 

the usual 5 bands in order to match the Kaggle dataset’s 

higher resolution for Alpha, Beta, and Gamma bands. In 

addition, this project used 2 dimensions for gender and 

1 dimension for age, which leads to 11-dimensional 

features used in my experiments. 

3. Sampling rate:  An analysis using FFT every 0.5 

seconds on the OpenNeuro raw data were performed, 
resulting in features with the same sampling rate as the 

Kaggle dataset. 

III. CLASSIFIERS 

In this work, 4 different types of popular classifiers were 
studied: SVM, fully connected DNN, CNN, and XGBoost. 
Publicly available Python packages were used in this study, 
which include TensorFlow, SKLearn, and XGBoost. In this 
section, a brief description of each classifier and their strengths 
are provided. 

A. SVM 

In machine-learning, support-vector machines are a set of 
supervised learning models with maxium margin objectives. In 
the simplest case of linearly separable set of training data 
{(𝑥̅1, 𝑦1), (𝑥̅2, 𝑦2),… , (𝑥̅𝑛, 𝑦𝑛)}, where 𝑥̅𝑖  is the input vector, 
and 𝑦𝑖 is the class label of 1 or -1, the hyperplane of label 1 and 
-1 can be described as: 

𝑊𝑇𝑥̅ − 𝑏 = 1  hyperplane for label 1 

𝑊𝑇𝑥̅ − 𝑏 = −1  hyperplane for label -1 

where W is the normal vector of the hyperplane and b is the 

constant bias. The distance of the two hyperplane is thus 
2

‖𝑊‖
. To 

find the maximum margin (distance) between the two 
hyperplanes would mean to minimize ‖𝑊‖ [11]. The formular 
can be extended to more complex nonlinear classifications with 
more than 2 classes. 

SVM was very popular in the 80s and 90s because it provides 
high accuracy with relatively less required computation. It is 
also widely used in biomedical fields for EEG signal 
classification [4][5][6].  It would be very interesting to see how 
it works with this project’s target of mental states during 
learning. 

B. DNN 

 

Figure 3. A Fully Connected (Dense) DNN 

Deep Neural Network is sometimes interchangeably used 

with “Deep Learning”. It has made possible for the last 10 years 

due to its phenomenal success in many different fields of 

machine learning, significantly improving the state-of-the-art 

accuracy. 
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As shown in Figure 3, neural network is a layered network 

of neurons connected by weighted links 𝑊𝑖
⃗⃗⃗⃗ . In the picture, each 

circle is an artificial neuron. There is a 5-dimentional input layer 

(𝑥 ), 3 hidden layers denoted by ℎ𝑖
⃗⃗  ⃗ with 6 neurons at each layer, 

and finally 4 output nodes indicating a 4-class label (𝑦 ) problem. 

Each neuron takes the weighted summation of input from all 

neurons of previous layer and pass the value through a non-

linear activation function which provides neural network its 

learning power. “Deep” in DNN just means a lot of hidden 

layers and hidden nodes. 

In this paper, the term DNN is used to refer to a generic fully 

connected Deep Neural Network. Also, due to the limited 
amount of data, best results were obtained with 2 hidden layers, 

each layer consisting of 450 nodes. The size of the resulting 

DNN is not excessively deep, even though this size would have 

been considered computationally prohibitive 10 years ago. 

 

C. CNN 

In deep learning, a convolutional neural network (CNN) is a 

class of deep neural networks, usually applied to analyzing 

visual imagery. They are also known as shift invariant or space 

invariant artificial neural networks (SIANN), based on their 

shared-weights architecture and translation invariance 

characteristics. They have applications in image and video 

recognition, recommender systems, image classification, 

medical image analysis, natural language processing, and 

financial time series [13].  CNNs are probably one of the most 

popular classification techniques due to the high accuracy they 

generally achieve. By design, CNNs are also regularized so that 

the training would unlikely be overfitting.  

The input to CNNs is different from the other in that it 
requires an input of a 4-tuple: [number of images, image width, 
image height, number of channels]. To accommodate the 
requirement, I applied a sliding window of 20 frames (10 
seconds) which generates a 11x20 feature map for input to 
CNNs, as well as sampling the feature every 11 frames. 

D. XGBoost 

XGBoost stands for eXtreme Gradient Boosting [14]. 

Gradient boosting is a machine learning technique for regression 

and classification problems, which produces a prediction model 

in the form of an ensemble of weak prediction models, typically 

decision trees. It builds the model in a stage-wise fashion like 

other boosting methods do, and it generalizes them by allowing 

optimization of an arbitrary differentiable loss function [8]. 

XGBoost is particularly popular in Kaggle competitions and 
has won several of them. It is computationally efficient while 

yielding particularly good results on structured and tabular data. 

Even though no application or literature mentioned XGBoost as 

one of the selected tools for EEG signals, I would like to give it 

a try for my experiment. 

E. Model Setup 

This section will describe the model parameters and 

topology. I have experimented with a set of different 

configurations for each classifier. What I provide here has 

yielded the best accuracy. 

• SVM: To set up the SVM, I used scikit’s 

sklearn.svm.SVC. I changed the regularization 

parameter to 0.5 instead of the default 1.0. Everything 

else was left as is. 

• DNN: I used Tensorflow’s pre-made 

tf.estimator.DNNClassifier, with 2 hidden layers of 

450 nodes. The feature columns and number of classes 
were changed to fit the training and testing sets. 

• CNN: I  used TensorFlow’s constructor 

tf.models.Sequential as the framework to construct my 

CNN. The convolutional part of the model contains 

two Conv2D layers, with a MaxPooling2D layer in 

between them. Both Conv2D layers have kernel sizes 

of 3*3 and Relu activation functions. The first Conv2D 

layer has 32 filters and an input shape of (20,11,1). The 

second Conv2D layer has 64 filters. The 

MaxPooling2D layer has a pooling size of 2*2. After 

the convolutional part comes a flattening layer, 

followed by two dense layers. The first dense layer 
contains 32 nodes, with a Relu activation function. The 

second and last dense layer contains 3 output nodes, 

one for each class. 

• XGBoost: I did not change any of the default settings 

that came with the XGBoost framework. 

IV. EXPERIMENTAL RESULTS 

After compiling all the collected data into a single data 

frame, the data were shuffled and split into two sets, where 80% 

were used for training, and 20% were used for testing. The split 

resulted in a test set size of 1451 samples. Then each classifier 

was trained and tested. The accuracy results are shown in Figure 
5. Note that a random classification with a random number 

generator was also performed for reference. A valid machine-

learning classifier would result in an accuracy higher than the 

random accuracy. 

Figure 4. CNN Feature Map 
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Figure 5. Accuracy Ratings for Each Model, Random Guess at 33% 

As shown in the accuracy graph, all classifiers performed 
better than the random classifier, indicating they all learnt from 
the data as expected. The CNN has the best accuracy. At 79.2%, 
CNN does a decent job in classifying the mental states, and can 
possibly be used in a real-world scenario. The model that did the 
worst was the SVM, with a low score of 50.6%. However this is 
understandable, as SVM is efficient for binary classification, 
and may have trouble distinguishing more than two classes. The 
most surprising result is the accuracy of the XGBoost model. 
Even though it wasn’t mentioned in any existing EEG 
classification work, it got an accuracy of 74.9%, which is better 
than the classic Deep Neural Network’s accuracy of 70.3%. 

The confidence intervals were also calculated and displayed 
in Figure 5, where Gaussian Distribution is assumed, and 95% 
significance level is used: 

𝐶𝐼 = 1.96 ∗ √
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ (1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

𝑛
 

Equation 1. Confidence Interval for Classification at 95% level 

where n is the sample size for the test set, which equals 1451 in 
this study. The resulting confidence intervals are between 2.0% 
to 2.5% with an average error margin of ±2.31%. 

 While the accuracy ratings show promise, it is necessary to 
consider the speed of each classifier if they are considered for 
practical applications. In order to do so, I measured the time it 
took for each model to evaluate the same test set. To measure 
the trade-off between accuracy and speed, I defined a metric, 
“Potential”, which is denoted as follows (Equation 2): 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦/𝑡𝑖𝑚𝑒 

Equation 2. Accuracy is in Decimals, Time is in Seconds 

The higher the accuracy, and the shorter the testing time, the 

higher Potential the model would have. The Potential of the 
random classifier is 0 by definition since it has 0 potential to be 

used in practice. 

 

 
Figure 6. Potential of Each Model, Random=0.33/0 

     Figure 6 shows the Potential of the 4 classifiers. While most 

of the models took around half a second to evaluate the testing 

data, the XGBoost model was able to do it in 0.015 seconds. 

Along with the high accuracy ratings rivaling that of the CNN, 

XGBoost has the best potential by far for classifying EEG 

signals in real time. I believe the potential of XGBoost for EEG 
signal processing should be further explored. 

V. CONCLUSION 

COVID-19 has given teachers the added challenge of not 

being able to clearly discern students in need of help. To solve 

this problem, I propose machine-learning based automatic 

mental state classification and monitoring as a new method 

assisting teachers in a remote learning environment. Four 

different Machine Learning techniques were explored in this 

study to classify learning and relaxing mental with EEG signals. 

From the accuracy alone, it was clear that the CNN provided the 

best accuracy. However, the XGBoost model was able to create 
accuracies close to the CNN in a much smaller time frame. 

Given that there are scarcely any prior work using XGBoost for 

EEG data, I hope this study provides a new promising direction. 

At close to 80%, I think both the CNN and XGBoost model are 

usable for detecting students’ mental states during remote 

learning and can provide useful information to teachers and 

students alike.  

VI. FUTURE WORK 

Given the limitation of the data sources available to me, I 

was confined to a small set of features. In the future, with more 

targeted EEG data collections in learning environments that 

provide raw recordings, the feature set can be greatly enriched, 
which would hopefully result in much higher accuracy than 

79.2%.   

Imagine a real-world remote learning setting where each 

student is wearing a noise-cancelling headset with a single probe 

on the frontal lobe area for EEG collection.  EEG signals are sent 

to the servers as part of the video/audio signal. Mental 

classification is conducted on the servers and sent to both the 

student and the teacher. A confused student would be 

highlighted at the teacher(host)’s screen so that the teacher can 

take some measures to help the student. On the other hand, a 

very relaxed student would result in a warning sign on his/her 
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screen. If this can become a reality, then remote learning will 

become even more viable, during and after the COVID-19 

pandemic. 

 

      This study aims for the scientific research and practical 
viability of the approach in technical terms. However, I 

recognize that EEG signals and mental states are private to the 

person and must be protected if and when the application is 

implemented in reality.  
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