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Abstract: Events such as the Financial Crisis of 2007-2008 or the COVID-19 pandemic caused significant
losses to banks and insurance entities. They also demonstrated the importance of using accurate equity
risk models and having a risk management function able to implement effective hedging strategies. Stock
volatility forecasts play a key role in the estimation of equity risk and, thus, in the management actions
carried out by financial institutions. Therefore, this paper has the aim of proposing more accurate stock
volatility models based on novel machine and deep learning techniques. This paper introduces a neural
network-based architecture, called Multi-Transformer. Multi-Transformer is a variant of Transformer
models, which have already been successfully applied in the field of natural language processing. Indeed,
this paper also adapts traditional Transformer layers in order to be used in volatility forecasting models.
The empirical results obtained in this paper suggest that the hybrid models based on Multi-Transformer
and Transformer layers are more accurate and, hence, they lead to more appropriate risk measures
than other autoregressive algorithms or hybrid models based on feed forward layers or long short term
memory cells.
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1. Introduction

Since the Financial Crisis of 2007-2008, financial institutions have enhanced their risk
management framework in order to meet the new regulatory requirements set by Solvency II
or Basel III. These regulations have the aim of measuring the risk profile of financial institutions
and minimizing losses from unexpected events such as the European sovereign debt crisis or
COVID-19 pandemic. Even though banks and insurance entities have reduced their losses
thanks to the efforts made in the last years, unexpected events still cause remarkable losses
to financial institutions. Thus, efforts are still required to further enhance market and equity
risk models in which stock volatility forecasts play a fundamental role. Volatility, understood
as a measure of an asset uncertainty [1,2], is not directly observed in stock markets. Thus,
taking into consideration the stock market movements, a statistical model is applied in order
to compute the volatility of a security.

GARCH-based models [3,4] are widely used for volatility forecasting purposes. This
family of models is especially relevant because it takes into consideration the volatility clus-
tering observed by [5]. Nevertheless, as the persistence of conditional variance tends to be
close to zero, Refs. [6-9] developed more flexible variations of the traditional GARCH models.
In addition, the models introduced by [10] (EGARCH) and [11] (GJR-GARCH) take into con-
sideration that stocks volatility behaves differently depending on the market trend, bearish or
bullish. Multivariate GARCH models were developed by [12,13]. Bollerslev et al. [14] applied
the previous model to financial time series, while [15] introduced a time-varying multivariate
GARCH. Dynamic conditional correlation GARCH, BEKK-GARCH and Factor-GARCH were
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other variants of this family that were developed by [16-18], respectively. Finally, it is worth
mentioning that, in contrast to classical GARCH, the first-order zero-drift GARCH model (ZD-
GARCH) proposed by [19] is non-stationary regardless of the sign of Lyapunov exponent and,
thus, it can be used for studying heteroscedasticity and conditional heteroscedasticity together.
Another relevant family is composed by stochastic volatility models. As they assume that
volatility follows its own stochastic process, these models are widely used in combination with
Black—Scholes formula to assess derivatives price. The most popular process of this family is
the [20] model which assumes that volatility follows an Cox-Ingersoll-Ross [21] process and
stock returns a Brownian motion. The main challenge of the Heston model is the estimation
of its parameters. Refs. [22,23] proposed a generalized method of moments to obtain the
parameters of the stochastic process, while [24-27] used a simulation approach to estimate
them. Other relevant stochastic volatility processes are Hull-White [28] and SABR [29] models.
The last relevant family is composed of those models based on machine and deep learning
techniques. Even though GARCH models are considered part of the machine learning tool-
kit, these models are considered another different family due to the significant importance
that they have in the field of stock volatility. Thus, this family takes into consideration the
models based on the rest of the machine and deep learning algorithms such as artificial neural
networks [30], gradient boosting with regression trees [31], random forests [32] or support
vector machines [33]. Refs. [34-36] applied machine learning techniques such as Support
Vector Machines or hidded Markov models to forecast financial time series. Hamid and Igbid
[37] applied Artificial Neural Networks (ANNSs) to demonstrate that the implied volatility
forecasted by this algorithm is more accurate than Barone-Adesi and Whaley models.
ANNSs have been also combined with other statistical models with the aim of improving
the forecasting power of individual ANNs. The most common approach applied in the field
of stocks volatility is merging GARCH-based models with ANNSs. Refs. [38—44] developed
different architectures based in the previous approach for stock volatility forecasting purposes.
All these authors demonstrated that hybrid models overcome the performance of traditional
GARCH models in the field of stock volatility forecasting. It is also worth mentioning
the contribution of [45], who combined different GARCH models with ANNs in order to
compare their predictive power. ANN-GARCH models have been also applied to forecast
other financial time series such as metals [46,47] or oil [48,49] volatility. Apart from the
combination with GARCH-based models, ANNs have been merged with other models for
volatility forecasting purposes. Ramos-Pérez et al. [50] merged ANNs, random forests, support
vector machines (SVM) and gradient boosting with regression trees in order to forecast
S&P500 volatility. This model overcame the performance of a hybrid model based on feed
forward layers and GARCH. Vidal and Kristjanpoller [51] proposed an architecture based on
convolutional neural networks (CNNs) and long-short term memory (LSTM) units to forecast
gold volatility. LSTMs were also used by [52] to forecast currency exchange rates volatility. It is
also worth mentioning that GARCH models have not been only merged with ANNs, Peng et al.
[53] combined SVM with GARCH-based models in order to predict cryptocurrencies volatility.
The aim of this paper is to introduce a more accurate stock volatility model based
on an innovative machine and deep learning technique. For this purpose, hybrid models
based on merging Transformer and Multi-Transformer layers with other approaches such as
GARCH-based algorithms or LSTM units are introduced by this paper. Multi-Transformer
layers, which are also introduced in this paper, are based on the Transformer architecture
developed by [54]. Transformer layers have been successfully implemented in the field of
natural language processing (NLP). Indeed, the models developed by [55,56] demonstrated
that Transformer layers are able to overcome the performance of traditional NLP models.
Thus, this recently developed architecture is currently considered the state-of-the-art in the
field of NLP. In contrast to LSTM, Transformer layers do not incorporate recurrence in their
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structure. This novel structure relies on a multi-head attention mechanism and positional
embeddings in order to forecast time series. As [54] developed Transformer for NLP purposes,
positional embeddings are used in combination with word embeddings. The problem faced
in this paper is the forecasting of stock volatility and, thus, the word embedding is not needed
and the positional embedding has been modified as it is explained in Section 2.4.

In contrast to Transformer, Multi-Transformer randomly selects different subsets of
training data and merges several multi-head attention mechanisms to produce the final
output. Following the intuition of bagging, the aim of this architecture is to improve the
stability and accurateness of the attention mechanism. It is worth mentioning that the GARCH-
based algorithms used in combination with Transformer and Multi-Transformer layers are
GARCH, EGARCH, GJR-GARCH, TrGARCH, FIGARCH and AVGARCH.

Therefore, three main contributions are provided by this study. First, Transformer layers
are adapted in order to forecast stocks volatility. In addition, an extension of the previous
structure is presented (Multi-Transformer). Second, this paper demonstrates that merging
Transformer and Multi-Transformer layers with other models lead to more accurate volatility
forecasting models. Third, the proposed stock volatility models generate appropriate risk
measures in low and high volatility regimes. The Python implementation of the volatility
models proposed in this paper is available in this repository.

As it is shown by the extensive literature included in this section, stock volatility fore-
casting has been a relevant topic not only for financial institutions and regulators but also for
the academia. As financial markets can suffer drastic sudden drops, it is highly desirable to
use models that can adequately forecast volatility. It is also useful to have indicators that can
accurately measure risk.This paper makes use of recent deep and machine learning techniques
to create more accurate stock volatility models and appropriate equity risk measures.

The rest of the paper is organized as follows: Section 2 describes the dataset, the measures
used for validating the volatility forecasts and provides a look at the volatility models used as
benchmark. Then, this section presents the volatility forecasting models proposed in this paper,
which are based on Transformer and Multi-Transformer layers. As NLP Transformers need
to be adapted in order to be used for volatility forecasting purposes and Multi-Transformer
layers are introduced by this paper, explanations about the theoretical background of these
structures are also given. The analysis of empirical results is presented in Section 3. Finally,
the results are discussed in Section 4, followed by concluding remarks in Section 5.

2. Materials and Methods

This section is divided in five different subsections. The first one (Section 2.1) describes
the data for fitting the models. The measures for validating the accuracy and value at risk
(VaR) of each stock volatility model are explained in Section 2.2. Section 2.3 presents the stock
volatility models and algorithms used for benchmarking purposes. Section 2.4 explains the
adaptation of Transformer layers in order to be used for volatility forecasting purposes and,
finally, the Multi-Transformer layers and the models based on them are presented in Section
2.5.

2.1. Data and Model Inputs

The proposed architectures and benchmark models are fitted using the rolling win-
dow approach (see Figure 1). This widely used methodology has been applied in finance,
among others, by [57-60]. Rolling window uses a fixed sample length for fitting the model
and, then, the following step is forecasted. As in this paper the window size is set to 650 and
the forecast horizon to 1, the proposed and benchmark models are fitted using the last 650
S&P trading days and, then, the next day volatility is forecasted. This process is repeated until
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the whole period under analysis is forecasted. The periods used as training and testing set
will be defined at the end of this subsection.

”—| Subsample 1
I ”—| Subsample 2

Subsample T-m I ”—|

| |
Subsample T-m+1 [ ||—|

|—| Rolling window |—| Horizon m = Window and horizon size T = Sample size

Figure 1. Rolling window methodology.

The input variables of the models proposed are the daily logarithmic returns (r;_;) and
the standard deviation of the last five daily logarithmic returns:

" - 2
o \/ Yo (i — El) o

n—1

As Multi-Transformer, Transformer and LSTM layers are able to manage time series, a lag
of the last 10 observations of the previous variables are taken into consideration for fitting
these layers. Thus, the input variables are:

X1 = (04-1,0¢-2,...,0t_10) ()
Xo = (fe—1,7t—2,-- -, 7t-10) 3)

In accordance with other studies such as [38] or [50], the realized volatility is used as
response variable for the models based on ANNSs;

i—1 n— E 2

where E[r f] = Eil;lo i+ /iand i = 5. As shown in the previous formula, the realized volatility
can be defined as the standard deviation of future logarithmic returns.

The dataset for fitting and evaluating the volatility forecasting models contains market
data of S&P from 1 January 2008 to 31 December 2020. The optimum configuration of the
models is obtained by applying the rolling window approach and selecting the configuration
which minimizes the error (RMSE) in the period going from 1 January 2008 to 31 December
2015. The optimum configuration in combination with the rolling window methodology is
applied in order to forecast the volatility contained in the testing set (from 1 January 2016 to
31 December 2020). The empirical results presented in Section 3.2 are based on the forecasts of
the testing set.
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2.2. Models Validation

This subsection presents the measures selected for validating and comparing the perfor-
mance of the benchmark models with the algorithms proposed in this paper.

The mean absolute value (MAE) and the root mean squared error (RMSE) have been
selected for validating the forecasting power of the different stock volatility models:

(030 — 071)?

N A N
| (Tl,t (Tl,t | / RMSE — Z (5)
t=1

MAE =
N

t=1 N
where N is the total number of observations.

The validation carried out by this study is not only interested on the accuracy, but also on
the appropriateness of the risk measures generated by the different stock volatility forecasting
models. In accordance with Solvency II Directive, 99.5% VaR has been selected as risk measure.
Although Solvency II has the aim of obtaining the yearly VaR, the calculations carried out in
this paper will be based on a daily VaR in order to have more data points and, thus, more
robust conclusions on the performance of the different models. The parametric approach
developed by [61] is used for validating the different VaR estimations. The aim of this test is
accepting (or rejecting) the hypothesis that the number of VaR exceedances are aligned with
the confidence level selected for calculating the risk measure. In addition to the previous test,
the approach suggested by [62] is also applied in order to validate the appropriateness of VaR.

2.3. Benchmark Models

This subsection introduces the benchmark models used in this paper: GARCH, EGARCH,
AVGARCH, GJR-GARCH, TrARCH, FIGARCH and two architectures that combine GARCH-
based algorithms with ANN and LSTM, respectively. The GARCH-based algorithms will
be fitted assuming that innovations, €;, follow a Student’s t-distribution. Thus, the returns
generated by these models follow a conditional t-distribution [63].

The generalized autoregressive conditional heteroskedasticity (GARCH) model devel-
oped by [4] has been widely used for stock volatility forecasting purposes. GARCH(p,q) has
the following expression:

q p
F=w+ Y wri ;+ Y Biot; / P = Orey (6)
i=1 =1

1

where w;, #; and B; are the parameters to be estimated, r;_; the previous returns and (737 ; the
last observed volatility. As previously stated, innovations (¢;) follow a Student’s t-distribution.

The absolute value GARCH [64], AVGARCH(p,q), is similar to the traditional GARCH
model. In this case, the absolute value of previous return and volatility is taken into consider-
ation to forecast volatility:

q p
G=w+ Y a ||+ ) Bior )
i-1 i-1

As volatility behaves differently depending on the market tendency, models such as
EGARCH, GJR-GARCH or TrGARCH were developed. EGARCH(p,q) [10] has the following
expression for the logarithm of stocks volatility:

p q
logo? = w+ Y a;jlogo7;+ Y (Bier—i+vi(| er—i | —E(| et—i |))) 8
' =

i=1
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where w;, a;, B; and 7; are the parameters to be estimated and ¢; = r;/0;. The GJR-
GARCH(p,0,q) developed by [11] has the following expression:

q 0 P
fftz =w+ ): airt{i + 'yirffil[,tfﬁo} + Z ﬁi(rtz,i 9)
i=1 =1 i=1

1

As with EGARCH model, wj, a;, B; and 7; are the parameters to be estimated. I [ri_1<0]
takes the value of 1 when the subscript condition is met. Otherwise Ij,, | -o) = 0. The volatility
of the Threshold GARCH(p,0,q) (TrtGARCH) model is obtained as follows:

q 0 4
ot=w+ Y ai|r i [+ Y vilril Iy, <o+ Y Bior—i (10)
i= i=1 i=1

As with the previous two architectures, w;, a;, B; and 7; are the model parameters.
The last GARCH-based algorithm used in this paper is the fractionally integrated GARCH
(FIGARCH) model developed by [65]. The conditional variance dynamic is

o =w+ |1—BL—¢L(1— L)d} 2+ ohy_y 1)

where L is the lag operator and d the fractional differencing parameter.

In addition to the previous approaches, two other hybrid models based on merging
autoregressive algorithms with ANNs and LSTMs are also used as benchmark. Figure 2
shows the architecture of ANN-GARCH and LSTM-GARCH. The inputs of the algorithms are
the following:

e The last daily logarithmic return, r;_1, for the ANN-GARCH and the last ten in the case
of the LSTM-GARCH (as explained in Section 2.1).
®  The standard deviation of the last five daily logarithmic returns:

_ XL (i — E[r])?
01 = \/ p—] (12)
where E[r] = Y/ r—i/n and n = 5. As with the previous input variable, the last

standard deviation is considered in the ANN-GARCH, whereas the last ten are taken
into consideration by the LSTM-GARCH architecture.
The GARCH-based algorithms included within the ANN-GARCH and LSTM-GARCH

models are the six algorithms previously presented in this same subsection (GARCH, EGARCH,
AVGARCH, GJR-GARCH, TrARCH, FIGARCH).
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Git Git
i T
Feed forward layer ] [ Feed forward layer ]
[ Feed forward layer + Dropout ] [ Feed forward layer + Dropout
[ Feed forward layer + Dropout LSTM layer + Dropout
Or—1 [ GARCH-based algorithms ] - n GARCH GARCH
B =1 S-10  (EeeHEe models
el § )
?‘tl—l | Tt—10
ANN-GARCH architecture LSTM-GARCH architecture

Figure 2. ANN-GARCH and LSTM-GARCH architectures.

As explained in Section 2.1, the true implied volatility, o; ;, is used as response variable to
train the models. This variable is the standard deviation of the future logarithmic returns:

i—1 —_E 2
a—l-,t=\/ reofean = B (13)

where E[r¢] = Z;_:lo Tt4n /1. In this paper, i = 5.

As it is shown in Figure 2, the input of the ANN-GARCH model is processed by two feed
forward layers with dropout regularization. These layers have 16 and 8 neurons, respectively.
The final output is produced by a feed forward layer with one neuron. In the case of the
LSTM-GARCH, inputs are processed by a LSTM layer with 32 units and two feed forward
layers with 8 and 1 neurons, respectively, in order to produce the final forecast.

2.4. Transformer-Based Models

Before explaining the volatility models based on Transformer layers (see Figure 3), all
the modifications applied to their architecture are presented in this subsection. As previously
stated, Transformer layers [54] were developed for NLP purposes. Thus, some modifications
are needed in order to apply this layer for volatility forecasting purposes.
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[ Normalization
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[ Feed forward layer ]
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Scaled Dot-Product Att. Multi-Head Attention Transformer Layer

Figure 3. Transformer and Multi-Head attention mechanism.

In contrast to LSTM, recurrence is not present in the architecture of Transformer lay-

ers. The two main components used by these layers in order to deal with time series are
the following:

Positional encoder. As previously stated, Transformer layers have no recurrence structure.
Thus, the information about the relative position of the observations within the time
series needs to be included in the model. To do so, a positional encoding is added to
the input data. In the context of NLP, Vaswani et al. [54] suggested the following wave
functions as positional encoders:

PE s 2,) = sin(pos/1000%/4™) a8
PE (pos,,,) = cos(pos/1000%/ %) 5

pos,2is1

where dim is the total number of explanatory variables (or word embedding dimension
in NLP) used as input in the model, pos is the position of the observation within the
time series and i = (1,2, ...,dim — 1). This positional encoder modifies the input data
depending on the lag of the time series and the embedding dimension used for the words.
As volatility models do not use words as inputs, the positional encoder is modified in
order to avoid any variation of the inputs depending on the number of time series used
as input. Thus, the positional encoder suggested in this paper changes depending on the
lag, but it remains the same across the different explanatory variables introduced in the
model. As in the previous case, a wave function plays the role of positional encoder:

pos . (T pos
PE s = — | = - —_ 16
pos cos(anos _1> sm(2 +anos—1) (16)

where pos = (0,1,..., Npos — 1) is the position of the observation within the time series
and Ny,s maximum lag.

Multi-Head attention. It can be considered the key component of the Transformer layers
proposed by [54]. As shown in Figure 3, Multi-Head attention is composed of several
scaled dot-product attention units running in parallel. Scaled dot-product attention is
computed as follows:

T
Attention(Q,K, V) = softmax <?/IZTI<) 14 (17)
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where Q, K and V are input matrices and dy the number of input variables taken into
consideration within the dot-product attention mechanism. Multi-Head attention splits
the explicative variables in different groups or ‘heads’ in order to run the different
scaled dot-product attention units in parallel. Once the different heads are calculated,
the outputs are concatenated (Corncat operator) and connected to a feed forward layer
with linear activation. Thus, the Multi-Head attention mechanism has the following
expression:

MultiHead(Q, K, V) = Concat(head, . .., head;, ) W° (18)
head; = Attention(QWS, KWK, VWY (19)

where £ is the number of heads. It is also worth mentioning that all the matrices of
parameters (WiQ, WK, WY and W©) are trained using feed forward layers with linear ac-
tivations.

In addition to the scaled dot-product and the Multi-Head attention mechanisms, Figure 3

shows the Transformer layers used in this paper. As suggested by [54], the Multi-Head
attention is followed by a normalization, a feed forward layer with ReLU activation and,
again, a normalization layer. Transformer layers also include two residual connections [66].
Thanks to these connections, the model will decide by itself if the training of some layers
needs to be skipped during some phases of the fitting process.

The modified version of Transformer layers explained in the previous paragraphs are

used in the volatility models presented in Figure 4. The T-GARCH architecture proposed in
this paper merges the six GARCH algorithms presented in Section 2.3 with Transformer and
feed forward layers in order to forecast &; ;. In addition to the previous algorithms and layers,
TL-GARCH includes a LSTM with 32 units. In this last model, the temporal structure of the
data is recognized and modelled by the LSTM layer and, thus, no positional encoder is needed
in the Transformer layer. Both models have the following characteristics:

Ot—1s s Ot—10

Gy
&t,t [ Feed forward layer
Feed for\l:a rd layer ] [ Feed forward Izyer+ Dropout
Feed forward Ilyer+ Dropout ] Transformer layer + Dropout

Transformer layer + Dropout LSTM layer + Dropout

GARCH GARCH GARCH GARCH

Ot—1s 1 Ot—10

models models models models
f f ; f
-1 t—10" | -1 Te—10— |
| I I
Transformer-GARCH (T-GARCH) Transformer-LSTM-GARCH (TL-GARCH)

Figure 4. T-GARCH and TL-GARCH volatility models.

Adaptative Moment Estimator (ADAM) is the algorithm used for updating the weights of
the feed forward, LSTM and Transformer layers. This algorithm takes into consideration
current and previous gradients in order to implement a progressive adaptation of the
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initial learning rate. The values suggested by [67] for the ADAM parameters are used in
this paper and the initial learning rate is set to 6 = 0.01.

The feed forward layers with dropout present in both models have 8 neurons, while the
output layer has just one.

The level of dropout regularization 6 [68] is optimized with the training set mentioned in
Section 2.1.

The loss function used for weights optimization and back propagation purposes is the
mean squared error.

Batch size is equal to 64 and the models are trained during 5000 epochs in order to obtain
the final weights.

2.5. Multi-Transformer-Based Models

This subsection presents the Multi-Transformer layers and the volatility models based

on them. The Multi-Transformer architecture proposed in this paper is a variant of the
Transformer layers proposed by [54]. The main differences between both architectures are
the following:

PEpos instead of PE 5 2,) and PE o5

As shown in Figure 5, Multi-Transformer layers generate T different random samples of
the input data. In the volatility models proposed in this paper, 90% of the observations
of the database are randomly selected in order to compute the different samples.

Multi-Transformer architecture is composed of T Multi-Head attention units (in this
paper T = 5), one per each random sample of the input data. Then, the average of the
different units is computed in order to obtain the final attention matrix. Thus, the Average
Multi-Head (AMH) mechanism present in Multi-Transformer can be defined as follows:

AMH(Q,K,V) = Li= Concat (head%,t, ..., head), ) WP o0

head;; = Attention(QtWiQt, KWE, Viw) (21)

As with the Transformer architecture applied in this paper, the positional encoder used is

it1)
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A
Normalization
|
Feed forward layer ]

R R

>[ Normalization
[ MultiHeadl | [ MultiHead2 | .. [ MultiHeadT |
r 4 1

Random Sample 1

Figure 5. Multi-Transformer architecture.

The aim of the Multi-Transformer layers introduced in the paper is to improve the
stability and accuracy by applying bagging [69] to the attention mechanism. This technique
is usually applied to algorithms such as linear regression, neural networks or decision trees.
Instead of applying the procedure on all the data that are input into the model, the proposed
methodology uses bagging only to the attention mechanism of the layer architecture.

The computational power required by bagging is one of the main limitations of this
technique. As Multi-Transformer applies bagging to the attention mechanisms, their weights
are trained several times in each epoch. Nevertheless, bagging is not applied to the rest of
the layer weights and, thus, this offsets partially the previous limitation. It is also worth
mentioning that bagging preserves the bias and this may result in underfitting.

On the other hand, this technique should bring two main advantages to the Multi-
Transformer layer. First, bagging reduces significantly the error variance. Second, the ag-
gregation of learners using this technique leads to a higher accuracy and reduces the risk
of overfitting.

The structure of the volatility models based on Multi-Transformer layers (Figure 6) is sim-
ilar to the architectures presented in Section 2.4. The MT-GARCH merges Multi-Transformer
and feed forward layers with the six GARCH models presented in Section 2.3. In addition to
the previous algorithms and layers, MTL-GARCH adds a LSTM with 32 units. The rest of the
characteristics such as the optimizer, the number of neurons of the feed forward layers or the
level of dropout regularization are the same than those presented in the previous section for
T-GARCH and TL-GARCH.
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it
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&i,t [ Feed forward layer
) t
[ Feed forward layer ] [ Feed forward layer + Dropout
T

[ Feed forward layer + Dropout Multi-Transformer layer + Dropout

Multi-Transformer layer + Dropout LSTM layer + Dropout

GARCH GARCH GARCH GARCH
models models Ot-1s+9t-10 | models models
T T t 0

1 10— | 1 10" |
I | I I
Multi-Transformer-LSTM-GARCH
(MTL-GARCH)

Ot—1s 1 Ot—10

Multi-Transformer-GARCH (MT-GARCH)

Figure 6. MT-GARCH and MTL-GARCH volatility models.

The risk measures of ANN-GARCH, LSTM-GARCH and all the models introduced
by this paper (Sections 2.4 and 2.5) are calculated assuming that daily log-returns follow
a non-standardize Student’s t-distribution with standard deviation equal to the forecasts
made by the volatility models. It is worth mentioning that Student’s t-distribution generates
more appropriate risk measures than normal distribution due to the shape of its tail [70,71].
In addition, this assumption is in line with the GARCH-based models used as benchmark and
the inputs of the hybrid models presented in this paper.

3. Results

In this section, the forecasts and the risk measures of the volatility models presented
in previous sections are compared with the ones obtained from the benchmark models.
In addition, the following subsection shows the optimum hyperparameters of the benchmark
and proposed hybrid volatility models.

3.1. Fitting of Models Based on Neural Networks

As explained in Section 2.1, rolling window approach ([57-60] among others) is applied
for fitting the algorithms. The training set used for optimizing the level of dropout regulariza-
tion contains S&P returns and observed volatilities from 1 January 2008 to 31 December 2015.
Table 1 presents the error by model and level of 6.

Table 1. RMSE by level of 6.

Model 0=0 0 = 0.05 0 =0.10 0 =0.15
ANN-GARCH 0.0351 0.0092 0.0085 0.0082
LSTM-GARCH 0.0065 0.0057 0.0056 0.0054

T-GARCH 0.0089 0.0076 0.0072 0.0074
TL-GARCH 0.0050 0.0045 0.0044 0.0045
MT-GARCH 0.0068 0.0062 0.0064 0.0064

MTL-GARCH 0.0047 0.0045 0.0042 0.0044

Source: own elaboration.

The results of the optimization process reveals that 8 = 0 generates higher error rates
than the rest of the possible values regardless of the model. This means that models based on
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architectures such as Transformer, LSTM or feed forward layers need an appropriate level
of regularization in order to avoid overfitting. According to the results, this is especially
relevant for ANN-GARCH, where the error strongly depends on the level of regularization.
The dropout level that minimizes the error of each model is selected.

3.2. Comparison against Benchmark Models

Once the optimum dropout level of each of the proposed volatility forecasting models
based on Transformer and Multi-Transformer is selected, their performance is compared with
the benchmark models (traditional GARCH processes, ANN-GARCH and LSTM-GARCH)
presented in Section 2.3.

Tables 2 and 3 present the validation error (RMSE and MAE) by year and model. The col-
umn ‘Total’ shows the error of the whole test period (from 1 January 2016 to
31 December 2020). The main conclusions drawn from the these tables are the following:

e  Traditional GARCH processes are outperformed by models based on merging artificial
neural network architectures such as feed forward, LSTM or Transformer layers with the
outcomes of autoregressive algorithms (also named hybrid models).

e  The comparison between ANN-GARCH and the rest of the volatility forecasting mod-
els based on artificial neural networks (LSTM-GARCH, T-GARCH, TL-GARCH, MT-
GARCH and MTL-GARCH) reveals that feed forward layers lead to less accurate fore-
casts than other architectures. Multi-Transformer, Transformer and LSTM were specially
created to forecast time series and, thus, the volatility models based on these layers are
more accurate than ANN-GARCH.

*  Merging Multi-Transformer and Transformer layers with LSTMs leads to more accurate
predictions than traditional LSTM-based architectures. Indeed, TL-GARCH achieves
better results than LSTM-GARCH, even though the number of weights of TL-GARCH
is significantly lower. Thus, the novel Transformer and Multi-Transformer layers intro-
duced for NLPs purposes can be adapted as described in Sections 2.4 and 2.5 in order
to generate more accurate volatility forecasting models. It is also worth mentioning
that Multi-Transformer layers, which were also introduced in this paper, lead to more
accurate forecasts thanks to their ability to average several attention mechanisms. In fact,
the model that achieves the lower MAE and RMSE is a mixture of Multi-Transformer
and LSTM layers (MTL-GARCH).

Table 2. RMSE by volatility model and year.

Model 2016 2017 2018 2019 2020 Total
GARCH(1,1) 0.0058 0.0026 0.0095 0.0073 0.1026 0.0464
AVGARCH(1,1) 0.0053 0.0027 0.0076 0.0056 0.0847 0.0383
EGARCH(1,1) 0.0056 0.0028 0.0093 0.0078 0.0880 0.0399
GJR-GARCH(1,1,1) 0.0090 0.0028 0.0126 0.0068 0.1248 0.0565
TrGARCH(1,1,1) 0.0074 0.0027 0.0115 0.0058 0.1153 0.0521
FIGARCH(1,1) 0.0062 0.0029 0.0095 0.0066 0.1011 0.0457
ANN-GARCH 0.0042 0.0023 0.0060 0.0044 0.0171 0.0086
LSTM-GARCH 0.0032 0.0021 0.0043 0.0030 0.0101 0.0054
T-GARCH 0.0048 0.0029 0.0058 0.0044 0.0117 0.0067
TL-GARCH 0.0030 0.0019 0.0033 0.0026 0.0070 0.0040
MT-GARCH 0.0036 0.0021 0.0046 0.0033 0.0096 0.0054
MTL-GARCH 0.0030 0.0016 0.0033 0.0026 0.0066 0.0038

Source: own elaboration.
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Table 3. MAE by volatility model and year.

Model 2016 2017 2018 2019 2020 Total
GARCH(1,1) 0.0037 0.0019 0.0058 0.0044 0.0363 0.0105
AVGARCH(1,1) 0.0034 0.0019 0.0049 0.0037 0.0296 0.0087
EGARCH(1,1) 0.0035 0.0020 0.0060 0.0048 0.0333 0.0100
GJR-GARCH(1,1,1) 0.0048 0.0020 0.0074 0.0042 0.0404 0.0118
TrGARCH(1,1,1) 0.0042 0.0020 0.0069 0.0038 0.0365 0.0107
FIGARCH(1,1) 0.0038 0.0021 0.0055 0.0041 0.0361 0.0104
ANN-GARCH 0.0029 0.0019 0.0038 0.0029 0.0095 0.0042
LSTM-GARCH 0.0022 0.0015 0.0027 0.0021 0.0060 0.0029
T-GARCH 0.0035 0.0021 0.0041 0.0031 0.0070 0.0040
TL-GARCH 0.0020 0.0014 0.0021 0.0018 0.0044 0.0023
MT-GARCH 0.0024 0.0016 0.0031 0.0023 0.0057 0.0030
MTL-GARCH 0.0019 0.0012 0.0021 0.0018 0.0041 0.0022

Source: own elaboration.

To enhance the analysis of the results shown in Tables 2 and 3, Figure 7 collects the
RMSE and the observed volatility by year. Notice that only the most accurate GARCH-based
model is shown in order to improve the visualization of the graph. The black dashed line
shows that the observed volatility of 2020 was significantly higher than the rest of the years
due to the turmoil caused by COVID-19 outbreak. As expected, the error of every model is
also higher in 2020 because the market volatility was more unpredictable than the rest of the
years. Nevertheless, it has to be mentioned that the 2020 forecasts of traditional autoregressive
algorithms are significantly less accurate than hybrid models based on architectures such as
LSTM, Transformer or Multi-Transformer layers.

Although the observed volatility is lower in years before 2020, autoregressive models
are also outperformed by hybrid models. Nevertheless, the difference between both sets of
models is remarkably lower.

The p-values of the Kupiec and Christoffersen tests by volatility model and year are
shown in Tables 4 and 5, respectively. In contrast to the approach suggested by Kupiec,
Christoffersen test is not only focused on the total number of exceedances, but it also takes into
consideration the number of consecutive VaR exceedances. As stated in Section 2.2, the risk
measure and confidence level (99.5% VaR) selected are in line with Solvency II Directive. This
regulation sets the principles for calculating the capital requirements and assessing the risk
profile of the insurance companies based in the European Union. This law covers not only the
underwriting risks but also financial risks such as the potential losses due to variations on the
interest rate curves or the equity prices.

The column “Total” of Tables 4 and 5 reveal that only TL-GARCH, MT-GARCH and
MTL-GARCH produce appropriate risk measures (p-value higher than 0.05 in both tests) for
the period 2016-2020. The rest of the models fail both tests and, thus, their risk measures can
not be considered to be appropriate for that period.
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Figure 7. Observed volatility and RMSE by year.

As with any other statistical test, the higher the number of data points the more relevant
are the outcomes obtained from the test. That is the reason why the previous paragraph
focuses on the “Total” column and not on the specific results obtained by year. The results
by year show that most of the models fail the test in 2020 due to the high level of volatility
produced by COVID-19 pandemic.

According to these results, the stock volatility models introduced in this paper (I-GARCH,
TL-GARCH, MT-GARCH and MTL-GARCH) produce more accurate estimations and ap-
propriate risk measures in most of the cases. Regarding the models accuracy, it is specially
remarkable the difference observed in 2020, where COVID-19 caused a significant turmoil
in the stock market. Concerning the appropriateness of equity risk measures, three out of
four models based on Transformer and Multi-Transformer pass Kupiec and Christofferesen
test for the period 2016-2020, while all the benchmark models fail at least one of them. No-
tice that the proposed models are compared with other approaches belonging to its own
family (ANN-GARCH and LSTM-GARCH) and autoregressive models belonging to the
GARCH family.

Table 4. Kupiec test (p-values) by volatility model and year.

Model 2016 2017 2018 2019 2020 Total
GARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
AVGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
EGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
GJR-GARCH(1,1,1) 0.543 0.540 0.011 0.543 0.190 0.008
TrGARCH(1,1,1) 0.543 0.540 0.051 0.810 0.190 0.042
FIGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
ANN-GARCH 0.543 0.540 0.001 0.002 0.012 0.001
LSTM-GARCH 0.810 0.186 0.540 0.188 0.190 0.042
T-GARCH 0.188 0.540 0.002 0.543 0.052 0.001
TL-GARCH 0.543 0.540 0.813 0.810 0.810 0.782
MT-GARCH 0.112 0.540 0.540 0.188 0.052 0.089
MTL-GARCH 0.543 0.113 0.113 0.810 0.190 0.910

Source: own elaboration.
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Table 5. Christoffersen test (p-values) by volatility model and year.

Model 2016 2017 2018 2019 2020 Total
GARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
AVGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
EGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
GJR-GARCH(1,1,1) 0.522 0.520 0.002 0.523 0.179 0.002
TrGARCH(1,1,1) 0.522 0.520 0.004 0.800 0.179 0.009
FIGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
ANN-GARCH 0.522 0.520 0.001 0.002 0.002 0.001
LSTM-GARCH 0.800 0.180 0.520 0.177 0.179 0.037
T-GARCH 0.176 0.520 0.001 0.523 0.048 0.001
TL-GARCH 0.522 0.520 0.803 0.800 0.797 0.693
MT-GARCH 0.113 0.520 0.520 0.177 0.048 0.079
MTL-GARCH 0.522 0.113 0.113 0.800 0.179 0.790

Source: own elaboration.

4. Discussion

This paper introduced a set of volatility forecasting models based on Transformer and
Multi-Transformer layers. As Transformer layers were developed for NLP purposes [54],
their architecture is adapted in order to generate stock volatility forecasting models. Multi-
Transformer layers, which are introduced by this paper, have the aim of improving the stability
and accuracy of Transformer layers by applying bagging to the attention mechanism. The pre-
dictive power and risk measures generated by the proposed volatility forecasting models
(T-GARCH, TL-GARCH, MT-GARCH and MTL-GARCH) are compared with traditional
GARCH processes and other hybrid models based on LSTM and feed forward layers.

Three main outcomes were drawn from the empirical results. First, hybrid models based
on LSTM, Transformer or Multi-Transformer layers outperform traditional autoregressive al-
gorithms and hybrid models based on feed forward layers. The validation error by year shows
that this difference is more relevant in 2020, when the volatility of S&P500 was significantly
higher than in the previous years due to COVID-19 pandemic. Volatility forecasting models
are mainly used for pricing derivatives and assessing the risk profile of financial institutions.
As the more relevant shocks on the solvency position of financial institutions and derivatives
prices are observed in high volatility regimes, the accurateness of these models is particularly
important in years such as 2020.

The higher performance of hybrid models have also been demonstrated by [38-44]. These
papers merged traditional GARCH models with feed forward layers to predict stock market
volatility. This type of models have shown also a superior performance in other financial fields
such as oil market volatility [48,49] and metals price volatility [46,47]. Notice that this paper
does not only present a comparison with traditional autoregressive models, but it also shows
that Transformer and Multi-Transformer can lead to more accurate volatility estimations than
other hybrid models.

Second, Multi-Transformer layers lead to more accurate volatility forecasting models
than Transformer layers. As expected, applying bagging to the attention mechanism has a
positive impact on the performance of the models presented in this paper. It is also remarkable
that empirical results demonstrate that merging LSTM with Transformer or Multi-Transformer
layers has also a positive impact on the models performance. On one hand, the volatility
forecasting model based on Multi-Transformer and LSTM (named MTL-GARCH) achieves
the best results in the period 2016-2020. On the other hand, the merging of Transfomer with
LSTM (TL-GARCH) leads to a lower error rate than the hybrid model based only on LSTM
layers (LSTM-GARCH) even though the number of weights of the first model is significantly
lower. Thus, the use of Transfomer layers can lead to simpler and more accurate volatility
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forecasting models. Notice that Transformer layers are already considered the state of art
thanks to BERT [55] and GPT-3 [56]. These models have been successfully used for sentence
prediction, conversational response generation, sentiment classification, coding and writing
fiction, among others.

Third, the results of Kupiec and Christoffersen tests revealed that only the risk estimations
made by MTL-GARCH, TL-GARCH and MT-GARCH can be considered as appropriate for the
period 2016-2020, whereas traditional autoregressive algorithms and hybrid models based on
feed forward and LSTM layers failed, at least, one of the tests. As previously stated, volatility
does not play only a key role in risk management but also in derivative valuation models.
Thus, using a volatility model that generates appropriate risk measures can lead to more
accurate derivatives valuation.

5. Conclusions

Transformer layers are the state of the art in natural language processing. Indeed,
the performance of this layer have overcome the performance of any other previous model in
this field [56]. As Transformer layers were specially created for natural language processing,
they need to be modified in order to be used for other purposes. Probably, this is one of
the main reasons why this layer have not been already extended to other fields. This paper
provides the modifications needed to apply this layer for stock volatility forecasting purposes.
The results shown in this paper demonstrates that Transformer layers can overcome also the
performance of the main stock volatility models.

Following the intuition of bagging [69], this paper introduces Multi-Transformer layers.
This novel architecture has the aim of improving the stability and accuracy of the attention
mechanism, which is the core of Transformer layers. According to the results, it can be
concluded that this procedure improves the accuracy of stock volatility models based on
Transformer layers.

Leaving aside the comparisons between Transformer and Multi-Transformer layers,
the hybrid models based on them have overcome the performance of autoregressive algorithms
and other models based on feed forward layers and LSTMs. The architecture of these hybrid
models (T-GARCH, TL-GARCH, MT-GARCH and MTL-GARCH) based on Transformer and
Multi-Transformer layers is also provided in this paper.

According to the results, it is also worth noticing that the risk estimations based on the
previous models are specially appropriate. The VaR of most of these models can be considered
accurate even in years such as 2020, when the COVID-19 pandemic caused a remarkable
turmoil in the stock market.

Consequently, the empirical results obtained with the hybrid models based on Trans-
fomer and Multi-Transformer layers suggest that further investigation should be conducted
about the possible application of them for derivative valuation purposes. Notice that volatil-
ity plays a key role in the financial derivatives valuation. In addition, the models can be
extended by merging Transformer or Multi-Transformer layers with other algorithms (such as
gradient boosting with trees or random forest) or modifying some key assumptions of the
attention mechanism.
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