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ABSTRACT

During the COVID-19 pandemic, many institutions have announced that their counterparties are struggling to fulfill contracts.
Therefore, it is necessary to consider the counterparty default risk when pricing options. After the 2008 financial crisis, a variety
of value adjustments have been emphasized in the financial industry. The total value adjustment (XVA) is the sum of multiple
value adjustments, which is also investigated in many stochastic models such as Heston1 and Bates2 models. In this work, a
widely used pure jump Lévy process, the CGMY process has been considered for pricing a Bermudan option with various
value adjustments. Under a pure jump Lévy process, the value of derivatives satisfies a fractional partial differential equation
(FPDE). Therefore, we construct a method which combines Monte Carlo with finite difference of FPDE (MC-FF) to find the
numerical approximation of exposure, and compare it with the benchmark Monte Carlo-COS (MC-COS) method. We use the
discrete energy estimate method, which is different with the existing works, to derive the convergence of the numerical scheme.
Based on the numerical results, the XVA is computed by the financial exposure of the derivative value.

Introduction
Before 2007, investors believed that large financial institutions such as banks would not have the risk of default or bankruptcy,
which was a very popular concept of "too big to fail". As we already know, Long Term Capital Management, Enron, Lehman
Brothers and many other large financial institutions went bankrupt during the last finance crisis. In recent years, especially
since the COVID-19 pandemic, the significance of the counterparty credit risk (CCR) has become increasingly prominent.
In particular, institutions have gradually strengthened the risk management of financial derivatives traded over the counter
(OTC). At the same time, industry regulations such as Basel regulations and the International Financial Reporting Standards
(IFRS) also required the financial institutions to charge the counterparty a premium which is to balance the credit risk. This
premium is usually called credit valuation adjustment (CVA) and Gregory3 gave a very detailed introduction of CCR and CVA.
In recent years, many other valuation adjustments have also been discussed as a supplement of CVA. The most significant ones
are funding value adjustment (FVA) and capital value adjustment (KVA). Together with CVA, these three adjustments form the
so-called XVA, i.e.,

XVA=CVA+FVA+KVA.
Although there are some other adjustments, such as debit value adjustment (DVA) and market value adjustment (MVA), their
existences and effects have some debates; see Kenyon4 and Gregory.5 The most commonly used adjustments in the industry are
the three items we mentioned in the above equation. Among them, KVA is usually ignored and only considered in a few cases,6

such as pricing a 10-year swap.7

To date, there are two main approaches for the calculation of XVA. The first approach is constructed by Burgard,8 and they
built a portfolio that contains all the underlying risk factors. Specifically, it includes defaultable bonds of each counterparty.
Then they derive a partial differential equation (PDE) representation for the value of financial derivatives with CVA. By a
similar method, Arregui9 expanded it to the XVA and gives a lot of numerical examples, but it is still based on the classical
Black-Scholes model.10 Borovykh11 applied the method to a jump-diffusion model. As the model becomes more complex, they
get a partial integro-differential equation (PIDE) representation instead of a PDE. Salvador1 transferred the same method to a
stochastic volatility model.

The above approach gives a PDE or PIDE to represent the value of a derivative with CVA or XVA. However, the assumptions
of the above method are idealized. It requires us to find the corresponding defaultale bonds of each counterparty, which is
actually hard to achieve in reality. In the industry, the more common approach to getting XVA is based on Gregory5’s method,
which is also the approach we use in this work. Since the exposure can be seen as a potential loss,3 we calculate the exposure
and expected exposure (EE) related to the value of derivatives, then each component of XVA is obtained according to the
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definition (see Section II. A). In light of Ruiz6’s review article, the largest proportion of the total value adjustment is CVA,
followed by FVA, and the influence of KVA can be ignored in most cases. Therefore, when we deal with a Bermudan option in
this work, we will focus on CVA and FVA.
Based on the numerical estimation of EE, de Graaf12 investigated the CVA and its sensitivities under the Heston model. The
Goudenege2 proposed a Hybrid Tree-Finite Difference method to compute the CVA under the Bates model. Similar to the
steps of these two papers, we compute the value adjustments of a Bermudan option under a CGMY process. Comparing to the
normal diffusion process, the pure jump process has better performance to capture all the empirical stylized regularities of stock
price movements.13, 14 As a tempered process, the CGMY model can be transformed into other pure jump processes, such as
the Variance Gamma (VG) model15 and the KoBoL model,16 after adjusting the parameters. This characteristic makes it a
representative and widely used pure jump Lévy model in finance. The difference between our work and Goudenege2 and de
Graaf12 is that we construct a complex pure jump model. In addition to CVA, we also consider the impact of FVA on the total
value adjustments.
Since the exposure is based on the value of derivatives, we generate a sufficient number of paths of underlying price based
on a pure jump Lévy process by Monte Carlo simulation, and then combine them with two numerical methods to get an
approximation of the option value. First, we combine Monte Carlo with finite difference of FPDE (MC-FF). Specifically, we
employ the finite difference method for solving the FPDE related to the pure jump CGMY process. We use the second-order
central difference operator to approximate the first-order space derivative, we utilise the tempered and weighted and shifted
Grünwald difference (tempered-WSGD) operators to discrete the tempered fractional order derivatives,17 and we employ the
Crank-Nicolson scheme to discrete the time derivative. For convergence analysis, different with Li,17 the discrete energy
estimate method is utilised to analyse the convergence of the numerical scheme. Second, we combine Monte Carlo with COS
(MC-COS), which is a benchmark method we use to compare with the MC-FF method. This method was proposed by Fang,18

which has a high accuracy but a long calculation time. Then, the CVA and FVA are calculated and compared by the two
methods.
The rest of the paper is structured as follows. Section II gives the mathematical model including the reviews of XVA components
and the valuation parts. In Section III, we propose two numerical methods (MC-FF, MC-COS) to compute the expected
exposure of the Bermudan option under the CGMY process. And the numerical results on exposures and XVA are presented in
Section IV. Finally, the conclusion and further applications of this work are drawn in Section V.

Mathematical Models For XVA and Exposure
As we mentioned before, XVA consists of different value adjustments. In this section, we introduce the components of XVA
and the exposures of the Bermudan option under a pure jump Lévy process.

Components of XVA
Traditional derivatives valuation, especially for option pricing, only considered the impact of cash flow. For simple derivative
types, the pricing problem was usually just a matter of applying the correct discount factor. The global financial crisis led
to a series of valuation adjustments, by considering credit risk, funding costs and regulation capital costs, to convert simple
valuation into correct one. A general and simple representation5 of value adjustments is:

Actual Value= Base Value + XVA,
where XVA is composed of the various value adjustments we mentioned in last section and base value refers to the original
derivative value. Notice that this expression assumes the XVA components is totally separate from the actual value. It is not
completely true in reality but it can almost always be considered to be a reasonable assumption in practice.
Before giving the definition of each component of the XVA, we first introduce several factors that can affect value adjustments:

• Loss given default (LGD). The LGD refers to the proportion that would be lost if a counterparty default. It is sometimes
defined as one minus the recovery rate. Although there are some works discussing the recovery rate such as Unal19 and
Schlafer,20 the LGD is often assumed to be a constant.3 Throughout this paper, we also assume the LGD to be a constant.

• Expected exposure (EE). The fact of credit exposure is a positive value of a financial derivative, and the expected exposure
can be seen as the future value of the derivative. Following Gregory,3 let V (t) be the value of a portfolio at time t, then
the exposure E(t) is defined by

E(t) =V (t)+, (1)

where x+ = max[x,0], and the present expected exposure at a future time t is defined by

EE(t) = E[E(t)|F0], (2)
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where F0 is the filtration at time t = 0. And we also use potential future exposure (PFE) to represent the best or worst
case the buyer may face in the future. It is defined as

PFEα(t) = in f {x : P(E(t)≤ x)≥ α} , (3)

where α takes 97.5% and 2.5% in this work.

• Default probability (PD). As its name implies, the PD is the probability of counterparty defaults, which is usually derived
from credit spreads observed in the market.5 Let us define the default probability between two sequential times tm and
tm+1 is PD(tm, tm+1), a commonly used approximation5, 21 of PD is:

PD(tm, tm+1)≈ exp
(
− s(tm) · tm

LGD

)
− exp

(
− s(tm+1) · tm+1

LGD

)
, (4)

where s(t) is the credit spread at time t.

Recall that the XVA mainly consists of three parts: CVA, FVA and KVA.
CVA The credit value adjustment is the most important part of XVA and it is also the key expression for describing the
counterparty risk. Different with traditional credit limits, the CVA can be seen as the actual price of counterparty credit risk.
According to Gregory,3 assuming independence between PD, exposure and recovery rate, a practical CVA expression is given
by

CVA =−LGD
∫ T

0
EE∗(t)dPD(t)≈−(1−R)

M

∑
m=1

EE∗(tm)PD(tm−1, tm), (5)

where R is the recovery rate, EE∗ is the discounted expected exposure and {0 = t1 < t2 < ... < tM = T} is a fixed time grid.

FVA Limited to liquidity and capacity, a large proportion of OTC derivatives are traded without collateral. These un-
collateralised trades are source of funding risk and the FVA can be broadly considered as a funding cost for these trades.5, 22 An
intuitive FVA formula is:

FVA =−
∫ T

0
(EPE∗(t)−ENE∗(t)) · s f (t)dt ≈−

M

∑
m=1

(EPE∗(tm)−ENE∗(tm))×
{

exp
[
−s f (tm−1) · tm−1

]
− exp

[
−s f (tm) · tm

]}
,

(6)

where EPE∗ and ENE∗ are discounted expected positive exposure and discounted expected negative exposure, respectively,
and s f (t) is the market funding spread. For a future time t, the EPE and ENE are given by:

EPE(t) := E[E+(t)|F0],

ENE(t) := E[E−(t)|F0],
(7)

where x− = min[x,0]. In this work, we price a Bermudan option whose option value can never be negative. Therefore, the
ENE := 0 and the FVA can be simplified to:

FVA =−
∫ T

0
EE∗(t) · s f (t)dt. (8)

KVA In general, the capital value adjustment represents a cost for a financial institute to meet the regulatory needs, and it
measures the tail risk it faces.6 Regulators set capital use restrictions or require banks to reach a certain capital threshold, at
least implicitly charging capital for transactions. The formula of KVA is given by Gregory:5

KVA =−
∫ T

0
EKt · rc ·DFtdt, (9)

where EKt is the expected capital, DFt is the survival rate and rc is the cost of holding the capital. As we mentioned in last
section, for option pricing, the influence of the KVA can be neglected, thus we will not consider this term when we calculate
XVA later.
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Exposure of Bermudan option under Lévy process
From last section, we can see that both CVA and FVA calculation need to find exposure. And from (1), we know that exposure
is decided by the option value. A Bermudan option is a special American-style option, it can be early exercised at a restricted
set of possible exercise dates. Let T denote the set of exercises time:

T= {t1, t2, ..., tM} , (10)

where M is the number of exercise times, and the time interval ∆t between each exercise time is equal. Because the dynamics
of stock price is under burst, intermittent, disrupting fluctuations, the stock price can be considered as a process following the
Lévy process.16 Let St be the price of underlying assets, which satisfies the following stochastic differential equation

d(lnSt) = (r−ν)dt +dLt , (11)

with solution

St = S0e(r−ν)t+
∫ t

0 dLu , (12)

where r is risk-free rate, ν is a convexity adjustment, Lt is a Lévy process, and S0 is the initial price. In this work, let us consider
a CGMY process Xt defined by Carr,23 it is a pure jump Lévy process with Lévy measure W (dx) = wwwCGMY (x),

wwwCGMY (x) =C
e−G|x|

|x|1+Y 1x<0 +C
e−Mx

x1+Y 1x>0, (13)

whose characteristic exponent can be obtained through Lévy-Khintchine representation16, 24

Ψt(z) =CΓ(Y )
[
(M− iz)Y −MY +(G+ iz)Y −GY ] , (14)

where z ∈ R, Γ(x) is a Gamma function, C > 0, G≥ 0, M ≥ 0 and Y < 2. The parameter C measures the intensity of jumps,
G and M control the skewness of distribution. For Y ∈ [0,1], it means infinite activity process of finite variation, whereas for
Y ∈ (1,2), the process is infinity activity and infinity variation.15

For a CGMY process, the convexity adjustment is given by:16

ν =CΓ(Y )
[
(M−1)Y −MY +(G+1)Y −GY ] . (15)

At each exercise time, the payoff function ϕ and continuous value V c are compared, and they are defined as:

ϕ(Stm) =

{
(Stm −K)+, for a call option,
(K−Stm)

+, for a put option,
(16)

V c(Stm , tm) = e−r∆tE
[
V (Stm+1 , tm+1) | Stm

]
, (17)

where K is strike price, V (Stm+1 , tm+1) is the option value at time tm+1. A natural assumption is that holder of the Bermudan
option will exercise the option when the payoff value is higher than the continuous value at each tm. Therefore, the value of
Bermudan option satisfies the following term:22

V (Stm , tm) =


ϕ(StM ) for m = M,

max[V c(Stm , tm),ϕ(Stm)] for m = 1,2, · · · ,M−1,
V c(St0 , t0) for m = 0.

(18)

According to (1), it is not difficult to find that the exposure equals to zero if the option is exercised, and the continuous value
will be the exposure if no exercise. The exposure of Bermudan option at time tm is formulated as:

E(tm) =V c(Stm , tm)1no−exercise, (19)

where m ∈ [1,2, ..,M−1]. In addition, we have E(t0) =V c(St0 , t0) and E(tM) = 0.
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Numerical Methods
In this section, we introduce two methods to compute the EE of the Bermudan option under the CGMY process. Both of them
are combined with Monte Carlo simulation to obtain the option value and then the value adjustments can be found by the
definition in Section II. A. For the Bermudan option, the option value and exposure depend on the underlying price Stm at the
exercise time point tm. If the price paths are generated, the distribution of the future value can be computed. The Monte Carlo
simulation of the CGMY process is quite complex. Based on Madan25 and Sioutis,26 we can consider the CGMY process as a
time-changed Brownian motion, i.e., the CGMY process can be written as

X(t) =
G−M

2
ϒ(t)+B(ϒ(t)), (20)

where ϒ(t) is a subordinator independent of the Brownian motion B(t). By applying Rosinski27 truncation method, the CGMY
random variable can be simulated. More details can be found in Madan’s work.25

The general steps of whole algorithm are presented as follows:

Step 1: Simulate paths of underlying price St under the CGMY model by Monte Carlo method.

Step 2: Calculate continuous values and exercise values at each exercise time tm and terminal date, decide weather to exercise
it or not.

Step 3: Find the exposure of each path if the option is not exercised, otherwise the exposure equals 0.

Step 4: Compute the CVA and FVA as defined in Section II. A.

The rest parts of this section will explain the two numerical methods we will use in Step 2.

Monte Carlo and finite difference of FPDE
Recently, the fractional models have aroused numerous research interests in various fields, ranging from finance,28, 29 neuro-
science,30, 31 physics,32, 33 and so on.34–39 We here focus on the fractional model in option pricing. The finite difference method
is a widely used method in option pricing. Combining with the results of Monte Carlo simulation, we can calculate the option
values at different time points. The Monte Carlo simulation was introduced at the beginning of this section. In this part, we will
establish the fully discrete numerical scheme for solving the FPDE related to the CGMY process. By using discrete energy
estimate method, we will prove the convergence of the numerical scheme.
Consider a European-style option under the CGMY process as defined in Section II. B, Cartea16 proves that option value V
satisfies the following FPDE:[

r+CΓ(−Y )(GY +MY )
]
V (x, t)

=
∂V (x, t)

∂ t
+(r−ν)

∂V (x, t)
∂x

+CΓ(−Y )e−Gx
−∞DY

x
(
eGxV (x, t)

)
+CΓ(−Y )eMx

xDY
∞

(
e−MxV (x, t)

)
,

(21)

where −∞DY
x and xDY

∞ are left and right Riemann-Liouville (RL) fractional derivatives, they are given by

−∞DY
x f (x) =

1
Γ(p−Y )

∂ p

∂xp

∫ x

−∞

(x− y)p−Y−1 f (y)dy, (22)

xDY
∞ f (x) =

(−1)p

Γ(p−Y )
∂ p

∂xp

∫ x

−∞

(y− x)p−Y−1 f (y)dy (23)

for p−1≤ Y < p, and p is the smallest integer than Y . The left and right RL tempered fractional derivatives are defined as40

−∞DY,G
x f := e−Gx

−∞DY
x
(
eGx f

)
, xDY,M

∞ f := eMx
xDY

∞

(
e−Mx f

)
.

Furthermore, for an American-style option, it becomes a free-boundary problem.41 Considering the optimal-exercise boundary
and payoff function (see equation (28) and (29) in Guo’s work41), the American option value under the CGMY model satisfies:[

r+CΓ(−Y )(GY +MY )
]
V (x, t)

≥ ∂V (x, t)
∂ t

+(r−ν)
∂V (x, t)

∂x
+CΓ(−Y )e−Gx

−∞DY
x
(
eGxV (x, t)

)
+CΓ(−Y )eMx

xDY
∞

(
e−MxV (x, t)

)
,

(24)
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for any time t ∈ [t0,T ] the option can be exercised. A Bermudan option can be seen as a discrete case of American option, i.e.,
for each exercise time, we can solve (24) as an equality, and the Bermudan option value will take the maximum value between
this value and the exercise value.

Finite difference scheme for FPDE related with CGMY process
In the following approximation method, the unbounded spatial domain is truncated into a bounded one, x ∈ (xL,xR). Now, we
present the finite difference scheme for solving the FPDE related with the CGMY process for a European call option,

rV (x, t) = ∂V (x,t)
∂ t +(r−ν) ∂V (x,t)

∂x +CΓ(−Y )[xL DY,G
x V (x, t)−GYV (x, t)]

+CΓ(−Y )[xDY,M
xR V (x, t)−MYV (x, t)],(x, t) ∈ (xL,xR)× (0,T ),

V (xL, t) = 0, V (xR, t) = exR −Ke−r(T−t), t ∈ (0,T ),
V (x,T ) = (ex−K)+, x ∈ (xL,xR),

(25)

where xL DY,G
x V (x, t) = e−Gx

xL DY
x
(
eGxV (x, t)

)
, xDY,M

xR V (x, t) = eMx
xDY

xR

(
e−MxV (x, t)

)
.

We divide the temporal domain into N parts by the grid points t j = T − jτ (0≤ j ≤ Nt), where the temporal stepsize τ = T
Nt
.

The spatial domain is divided into Nx parts by the mesh points xn = xL +nh (0≤ n≤ Nx), where the spatial stepsize h = xR−xL
Nx

.

The temporal domain is covered by Ωτ = {t j|0≤ j ≤ Nt}, and the spatial domain is covered by Ωh = {xn|0≤ n≤ Nx}. Let
Vh = {v|v = {v j

n| 0≤ j ≤ Nt , 0≤ n≤ Nx}} be grid function space defined on Ωτ ×Ωh. For the grid function v ∈ Vh, we have
the following notations:

v
j+ 1

2
n =

v j+1
n + v j

n

2
, δtv

j+ 1
2

n =
v j+1

n − v j
n

−τ
, δx0v

j+ 1
2

n =
v

j+ 1
2

n+1 − v
j+ 1

2
n−1

2h
.

First, we approximate the first-order space derivative by using the second-order central difference operator, and for the tempered
fractional order derivatives, we turn to the following useful lemma. For conciseness, we let the parameter λ refer to G and M,
respectively.

Lemma 1 17 The Y-th order left and right RL tempered fractional derivatives of V (x) at point xn can be approximated by the
tempered-WSGD operators:

xL DY,λ
x V (xn)−λ

YV (xn) :=L DY,λ
h V (xn)+O(h2) =

1
hY

[
n+1

∑
l=0

g(Y )l,λ V (xn−l+1)−φ(λ )V (xn)

]
+O(h2), (26)

xDY,λ
xR

V (xn)−λ
YV (xn) :=R DY,λ

h V (xn)+O(h2) =
1

hY

[
Nx−n+1

∑
l=0

g(Y )l,λ V (xn+l−1)−φ(λ )V (xn)

]
+O(h2), (27)

here

φ(λ ) =
(

γ1ehλ + γ2 + γ3e−hλ

)(
1− e−hλ

)Y
(28)

and the weights are given by
g(Y )0,λ = γ1ω0ehλ ,g(Y )1,λ = γ1ω1 + γ2ω0,

g(Y )l,λ = (γ1ωl + γ2ωl−1 + γ3ωl−2)e−(l−1)hλ , l ≥ 2,

ω0 = 1,ωl =
(
1− 1+Y

l

)
ωl−1, l ≥ 1,

(29)

and the parameters γ1, γ2 and γ3 admit the following linear system{
γ1 =

Y
2 + γ3,

γ2 =
2−Y

2 −2γ3,
(30)

here γ3 is the free variable.

Second, we employ the Crank-Nicolson scheme to discrete the time derivative. Then, we arrive at

δtV
j+ 1

2
n +(r−ν)δx0V

j+ 1
2

n +CΓ(−Y )[LD
Y,G
h V

j+ 1
2

n +R D
Y,M
h V

j+ 1
2

n ]

−rV
j+ 1

2
n = R

j+ 1
2

n , 0≤ j ≤ Nt −1, 1≤ n≤ Nx−1, (31)
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and there exists a constant CR such that the truncation error

|R j+ 1
2

n | ≤CR(τ
2 +h2). (32)

Let v
j+ 1

2
n denote the approximate solution to V

j+ 1
2

n and drop the truncation error. Finally, we obtain the fully discrete finite
difference scheme:

δtv
j+ 1

2
n +(r−ν)δx0v

j+ 1
2

n +CΓ(−Y )[LD
Y,G
h v

j+ 1
2

n +R D
Y,M
h v

j+ 1
2

n ]− rv
j+ 1

2
n = 0, 0≤ j ≤ Nt −1, 1≤ n≤ Nx−1. (33)

The initial-boundary conditions for a call option are discretized as

v0
n = (exn −K)+, n = 1,2, . . . ,Nx−1,

v j
0 = 0, v j

Nx
= exR −Ke−r(T−t j), j = 0,1, . . . ,Nt .

We next move on to the analysis of convergence for the scheme (33). For any grid functions v,u ∈ Vh, we introduce the discrete
inner product

〈v,u〉= h
Nx−1

∑
n=1

vnun,

and corresponding induced norm
||v||=

√
〈v,v〉.

Convergence analysis of finite difference scheme
We propose two lemmas below, which are essential to the analysis of convergence.

Lemma 2 For Y ∈ (1,2) and λ ≥ 0, if γ3 ≥−Y
2 , we have

φ(λ )≥ 0, (34)

where φ(λ ) is defined in Lemma 1.

Proof. According to the definition of φ(λ ), we have

φ(λ ) =
(

γ1ehλ + γ2 + γ3e−hλ

)(
1− e−hλ

)Y
.

For hλ ≥ 0, the function
(
1− e−hλ

)Y ≥ 0. Then our goal is to prove

φ1(λ ) = γ1ehλ + γ2 + γ3e−hλ ≥ 0.

Substituting the expressions of parameters γ1, γ2 (see (30)) into φ1(λ ), we get

φ1(λ ) =
(Y

2
+ γ3

)
ehλ +

2−Y
2
−2γ3 + γ3e−hλ = γ3

(
ehλ + e−hλ −2

)
+

Y
2
(
ehλ −1

)
+1. (35)

Noting that ehλ + e−hλ −2≥ 0. When ehλ + e−hλ −2 = 0, it holds that φ1(λ )> 0. When ehλ + e−hλ −2 > 0, if

γ3 ≥
Y
2

(
1− ehλ

)
−1

ehλ + e−hλ −2
:= f (hλ ), (36)

then we have φ1(λ )≥ 0. To make sure the formula (36) always holds, we have to compute the maximum of function f (hλ ).
One can check that f (hλ ) is a monotone increasing function, thus

max
hλ≥0

f (hλ ) = lim
hλ→+∞

f (hλ ) := lim
hλ→+∞

Y
2

(
1− ehλ

)
−1

ehλ + e−hλ −2
=−Y

2
. (37)

That is, if γ3 ≥−Y
2 , we have φ1(λ )≥ 0.

In short, for Y ∈ (1,2) and λ ≥ 0, if γ3 ≥−Y
2 , we have φ(λ )≥ 0. �
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Lemma 3 For any function v ∈ Vh, and Y ∈ (1,2). If γ3 ≥−Y
2 and 0≤ λ ≤ c0

h , then we have

〈LDY,λ
h v,v〉 ≤ c2

( 2
xR− xL

)Y
||v||2, (38)

〈RDY,λ
h v,v〉 ≤ c2

( 2
xR− xL

)Y
||v||2, (39)

where c0 and c2 are positive constants independent of h and τ.

Proof. Recalling the definition of LD
Y,λ
h in (26) and applying Lemma 2, we have

〈LDY,λ
h v,v〉

= h
Nx−1

∑
n=1

1
hY

[
n+1

∑
l=0

g(Y )l,λ vn−l+1−φ(λ )vn

]
vn,

≤ h
hY

[
g(Y )1,λ

Nx−1

∑
n=1

v2
n +
(
g(Y )0,λ +g(Y )2,λ

)Nx−2

∑
n=1

vnvn+1 +
Nx−1

∑
l=3

g(Y )l,λ

Nx−l

∑
n=1

vn+l−1vn

]

≤ 1
hY

[
g(Y )1,λ ||v||

2 +
(
g(Y )0,λ +g(Y )2,λ

)
h

Nx−2

∑
n=1

v2
n + v2

n+1

2
+

Nx−1

∑
l=3

g(Y )l,λ h
Nx−l

∑
n=1

v2
n+l−1 + v2

n

2

]

≤ 1
hY

Nx−1

∑
l=0
|g(Y )l,λ |||v||

2. (40)

According to the definition of g(Y )l,λ in (29) and noting hλ ≤ c0, Y ∈ (1,2), there exists an appropriate positive constant c1 such
that

Nx−1

∑
l=0
|g(Y )l,λ |= |γ1ω0ehλ |+ |γ1ω1 + γ2ω0|+

Nx−1

∑
l=2

(γ1ωl + γ2ωl−1 + γ3ωl−2)e−(l−1)hλ

≤ c1

[
|ω0|+ |ω1|+

Nx−1

∑
l=2

(
|ωl |+ |ωl−1|+ |ωl−2|

)]

≤ 3c1

∞

∑
l=0
|ωl |, (41)

where we have used the fact that the parameters γ1 and γ2 are constants for fixed Y and γ3.

By virtue of the properties of the weights ωl ,42

|ωl | ≤
Y 2Y+1

(l +1)Y+1 , l ≥ 0,

it holds that

∞

∑
l=0
|ωl | ≤

Nx−1

∑
l=0

Y 2Y+1

(l +1)Y+1 +
∞

∑
l=Nx

Y 2Y+1

(l +1)Y+1 . (42)

Noting that for x≥ 0, 1
(x+1)Y+1 is a monotone decreasing function, we arrive at

∞

∑
l=Nx

1
(l +1)Y+1 ≤

∞

∑
l=Nx

∫ l+1

l

1
(x+1)Y+1 dx =

1
Y (Nx +1)Y

. (43)
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Therefore, together with (40)-(43), there exists a positive constant c2 such that

〈LDY,λ
h v,v〉

≤ 3c1

hY

∞

∑
l=0
|ωl |||v||2

≤ 3c1

hY

[
Y 2Y+1

(
Nx +

1
Y (Nx +1)Y

)]
||v||2

≤ c2

hY

( 2
Nx +1

)Y
||v||2 = c22Y h−Y N−Y

x
NY

x

(Nx +1)Y
||v||2

≤ c2

( 2
xR− xL

)Y
||v||2. (44)

Similarly, we have

〈RDY,λ
h v,v〉 ≤ c2

( 2
xR− xL

)Y
||v||2. (45)

�

Lemma 4 43 Suppose that {F j| j ≥ 0} is a non-negative sequence and satisfies

F j+1 ≤ (1+ cτ)F j + τg, j = 0,1,2, · · · ,

where c and g are two non negative constants. Then we have

F j ≤ ec jτ
(

F0 +
g
c

)
, j = 1,2,3, · · ·

For j = 1,2, . . . ,Nt , let ε j =V j−v j, where V j =
(

V j
1 ,V

j
2 , . . . ,V

j
Nx−1

)T
and v j =

(
v j

1,v
j
2, . . . ,v

j
Nx−1

)T
. We have the follow-

ing convergence result.

Theorem 1 For Y ∈ (1,2), γ3 ≥−Y
2 , 0≤ G≤ c0

h and 0≤M ≤ c0
h , we have∥∥ε

j∥∥≤ ĉ
(
h2 + τ

2) , j = 1,2, . . . ,Nt ,

where ĉ denotes a positive constant independent of h and τ.

Proof. Subtracting (33) from (31), we get the following error equation

δtε
j+ 1

2
n +(r−ν)δx0ε

j+ 1
2

n +CΓ(−Y )[LD
Y,G
h ε

j+ 1
2

n +R D
Y,M
h ε

j+ 1
2

n ]− rε
j+ 1

2
n = R

j+ 1
2

n , 0≤ j ≤ Nt −1, 1≤ n≤ Nx−1. (46)

Taking inner product 〈·, ·〉 on both sides of Eq. (46) with ε j+ 1
2 , we have

〈δtε
j+ 1

2 ,ε j+ 1
2 〉+(r−ν)〈δx0ε

j+ 1
2 ,ε j+ 1

2 〉CΓ(−Y )[〈LDY,G
h ε

j+ 1
2 ,ε j+ 1

2 〉+ 〈RDY,M
h ε

j+ 1
2 ,ε j+ 1

2 〉]

= r〈ε j+ 1
2 ,ε j+ 1

2 〉+ 〈R j+ 1
2 ,ε j+ 1

2 〉. (47)

For the first term of the left-hand side (LHS) of (47), it holds that

〈δtε
j+ 1

2 ,ε j+ 1
2 〉= 〈ε

j+1− ε j

−τ
,

ε j+1 + ε j

2
〉= ||ε

j+1||2−||ε j||2

−2τ
. (48)

For the second term of the LHS of (47), noting that ε
j

0 = ε
j

Nx
= 0 (0≤ j ≤ Nt), we have

(r−ν)〈δx0ε
j+ 1

2 ,ε j+ 1
2 〉= (r−ν)h

Nx−1

∑
n=1

(ε
j+ 1

2
n+1 − ε

j+ 1
2

n−1

2h

)
ε

j+ 1
2

n = 0. (49)
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Applying Lemma 3 to the third term of the LHS of (47) yields

CΓ(−Y )[〈LDY,G
h ε

j+ 1
2 ,ε j+ 1

2 〉+ 〈RDY,M
h ε

j+ 1
2 ,ε j+ 1

2 〉]

≤ 2CΓ(−Y )c2

( 2
xR− xL

)Y
||ε j+ 1

2 ||2. (50)

Combining with (48)-(50) and using the ρ−inequality (bd ≤ 1
2ρ

b2 + ρ

2 d2), we arrive at

||ε j+1||2−||ε j||2−2τCΓ(−Y )c2

( 2
xR− xL

)Y(
||ε j+1||2 + ||ε j||2

)
≤−2τr||ε j+ 1

2 ||2−2τ〈R j+ 1
2 ,ε j+ 1

2 〉

≤ −2τr||ε j+ 1
2 ||2 + τ

(
ρ||R j+ 1

2 ||2 + 1
ρ
||ε j+ 1

2 ||2
)
. (51)

Taking ρ = 1
2r , we can eliminate the term ||ε j+ 1

2 ||2. After some calculations, then we obtain

[
1−2τCΓ(−Y )c2

( 2
xR− xL

)Y ]
||ε j+1||2

≤
[
1+2τCΓ(−Y )c2

( 2
xR− xL

)Y ]
||ε j||2 + τ

2r
||R j+ 1

2 ||2. (52)

Letting 2τCΓ(−Y )c2

(
2

xR−xL

)Y
≤ 1

3 , we have

||ε j+1||2 ≤
[
1+6τCΓ(−Y )c2

( 2
xR− xL

)Y ]
||ε j||2

+
3τ

4r
||R j+ 1

2 ||2. (53)

Applying Lemma 4 to (53) results in

||ε j||2 ≤ exp
(

6TCΓ(−Y )c2

( 2
xR− xL

)Y
)

(xR− xL)
1+YC2

R
23+Y rCΓ(−Y )c2

(τ2 +h2)2. (54)

That is,∥∥ε
j∥∥≤ ĉ

(
h2 + τ

2) , j = 1,2, . . . ,Nt , (55)

where

ĉ =

√
exp
(

6TCΓ(−Y )c2

( 2
xR− xL

)Y
)

(xR− xL)1+YC2
R

23+Y rCΓ(−Y )c2
,

which is a positive constant independent of h and τ. �

Monte Carlo-COS method
The COS method is an efficient option pricing method proposed by Fang.18 The central idea of this method is to estimate
the probability density function via a Fourier cosine expansion. Since the characteristic function of the Lévy process has a
closed-form relation with the Fourier cosine series coefficients, the COS method can be applied to many complex underlying
price processes, including the CGMY process. Incorporated with Monte Carlo method, the so-called Monte Carlo-COS
(MC-COS) method is a benchmark approach to compute the exposure of the Bermudan option.44

Recall the Section II.B, for a Bermudan option, if we define x = log( Stm
K ), y = log(

Stm+1
K ), and denote V̂ (y) =V (Key) =V (S),

then the continuous value (17) is transformed to:

V c(Stm , tm) = e−r∆tE
[
V̂ (y, tm+1) | x

]
= e−r∆t

∫
R

V̂ (y, tm+1) f (y|x)dy, (56)

where f (y|x) is the conditional density function of y. Based on Fourier cosine expansion, Fang18 proves that (56) can be
approximated by:

V̄ c(Stm , tm) = e−r∆t
N−1

∑
k=0

′

Re
{

φX (
kπ

b−a
)e−ikπ

a
b−a

}
×Hk(tm+1), (57)
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where ∑
′ means that the first term of the summation is weighted by 1/2, Re(x) is to take real part of x, and φX is the characteristic

function of Lévy process Lt , for the CGMY process,

φCGMY (z, t) := etCΓ(−Y )((M−iz)Y−MY+(G+iz)Y−GY ). (58)

And Hk is the Fourier cosine series coefficients of V̂ (y):

Hk(tm+1) :=
2

b−a

∫ b

a
V̂ (y, tm+1)cos

(
kπ

y−a
b−a

)
dy, (59)

here [a,b] is the the truncation rage of integration. By the definition in Oosterlee15 and Fang’s18 works, the integration range
can be defined as:

[a,b] :=
[
(x+ζ1)−L

√
ζ2 +

√
ζ4,(x+ζ1)+L

√
ζ2 +

√
ζ4

]
, (60)

where L ∈ [6,12] is a user-decided parameter to control the tolerance level, and ζ1,ζ2,ζ4 are cumulants of Lévy process, for the
CGMY process, they are defined as:

ζ1 = rt +CtΓ(1−Y )(MY−1−GY−1),

ζ2 =CtΓ(2−Y )(MY−2 +GY−2),

ζ4 =CΓ(4−Y )t(MY−4 +GY−4).

(61)

In order to compute (57), we need to find the Fourier cosine series coefficients Hk first. As in Fang’s paper,18 for the Bermudan
option, we need to consider the early exercise time points. Let x∗(tm) be the point where the continuous value equals the payoff
function, it can be found by Newton root finding algorithm. Then Hk(tm) is split into two interval: [a,x∗(tm)] and [x∗(tm),b].
For a call option, in the case that a < 0 < b, we obtain:44

Hk(tm+1) =
2

b−a
(ψk(a,x∗(tm+1))+χk(x∗(tm+1),b)) (62)

for m = M−2, ...,0 and at tM = T ,

Hk(tM) =
2

b−a
χk(0,b), (63)

where the cosine series coefficients χk and ψk on an integration interval [c,d]⊂ [a,b] are given by:

χk(c,d) :=
∫ d

c
eycos

(
kπ

y−a
b−a

)
dy, (64)

ψk(c,d) :=
∫ d

c
V c(tm+1)cos

(
kπ

y−a
b−a

)
dy (65)

for k = 0,1, ...,N−1 and m = 0,1, ..,M−1, χk has an analytical solution and ψk can be also approximated by a same method,
the derivation can be found in Fang18 and Kienitz’s45 papers. Similarly, for a put option, we have

Hk(tm+1) =
2

b−a
(χk(a,x∗(tm+1))+ψk(x∗(tm+1),b)) (66)

for m = M−2, ...,0 and at tM = T ,

Hk(tM) =
2

b−a
χk(a,0). (67)

Let us consider the Bermudan call option. For each simulated path, we calculate the truncation interval [a,b] first. Then
the Fourier cosine coefficients Hk can be obtained by (62) for a call option. For the terminal time tM = T , option value
V (StM , tM) = ϕ(StM ). For other time steps, applying the backward induction, we can get the approximation of continuous
value (57) at tm−1 from the value at tm. Finding the minimum time point τ if it exists such that ϕ(Sτ) ≥V c(Sτ ,τ). Then the
option value at each time step becomes V (Stm , tm) = max(ϕ(Stm),V

c(Stm , tm)) and V (St , t) = 0 for t > τ . Setting the exposure
E(tm) = (V (Stm , tm),0)

+, considering all simulated paths, we can get the EE and value adjustments defined in Section 2.
As a benchmark method, the MC-COS method has a high accuracy, and there are many discussions about the errors caused by
truncated integration ranges, quadrature and propagation, such as Fang18 and Oosterlee.15 The disadvantage of this approach is
the computing time. Compared with MC-FF, the MC-COS is significantly slower when more Monte Carlo paths are used.
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Table 1. Parameters of each example.

Example 1 Example 2 Example 3 Example 4

Strike Price K 50 40 50 40
Expiry Time T 1 1 0.5 0.5
Exercise Times 50 50 30 30

C 1 1 0.5 0.5

Figure 1. Distributions of ST under the CGMY process with default parameters when S0 = 40, generated by Monte Carlo
Method.

Numerical Results
In this section, we will present several numerical results for value adjustments of the Bermudan option under the CGMY
process. The parameters of four different examples can be found in Table I. The initial price S0 = 40, and the risk-free rate
r = 0.05 are not changed in every experiment. The parameter C of CGMY process may vary in different examples. And the
default parameters of CGMY process are set as: C = 1, G = 25, M = 26 and Y = 1.5. In all cases, experiments have been
performed by using MATLAB on an Intel(R) Core(TM) i7-8700 CPU computer.

To reduce the impact of noise of Monte Carlo simulations, we generated 104 paths for each example. Figure 1 presents a
distribution plot of the terminal price ST , which is generated by Monte Carlo method. It can be seen that most values are within
200. Every Monte Carlo price path has a similar distribution. Therefore, we set the price boundary of finite difference method
and COS method to 400 to ensure that more than 99% of paths can be used, while also avoiding some noise.

Exposure analyses
For the Bermudan call option, the trend of EE is to increase first and then decrease, and on the expiry date, the EE will be 0 since
there is no exposure. This trend can be observed in Figure 2 and it presents the EE of examples 1 and 2. The difference between
MC-FF method and MC-COS method is quite small, which is also reflected in value adjustments. Figure 3 demonstrates the
change of the EE and PFEs of examples 3 and 4, compared with the similar curves of Heston model,22 the EE curve of the
CGMY model is more fluctuant due to its pure jump feature.
A comparison of examples 1 and 2 in Figure 2 reveals that EE begins at the initial option value and then decreases due to the

early exercise probability, but a higher strike price will lead to a more uncertainty. From the plots, we can clearly see that the
curve of example 1, which has a higher strike price, is more volatile, while the curve of example 2 is smoother. This result is
reasonable. For call options, higher strike prices often mean higher risks. Similarly, the PFEs in Figure 3 also begin with the
starting option value because there is no uncertainty at this point. Starting at t = 0, PFE2.5% quickly falls to zero, whereas
PFE97.5% is always greater than the EE. Paths will terminate because of the early exercise possibility. That means exercise will
occur so that more than 2.5% of the values are equal to zero shortly. In contrast, the quantity of minimum value for which
97.5% of the price paths are lower is significantly greater and only reduces later as more and more paths are exercised.

To investigate the effects of different parameters of the CGMY process on exposure, we conducted four experiments,
changing only one parameter each time. In Figure 4, there are clear trends of effects of different parameters. The parameters G
and M have almost no effect on the initial value, but have a greater effect on the high point of the exposure curves. The reason
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Figure 2. EE of Examples 1 and 2 for Bermudan call option, comparison of MC-FF method and MC-COS method, for 50
exercise times.

Figure 3. EE, PFE97.5% and PFE2.5% of Examples 3 and 4 for Bermudan call option, comparison of MC-FF method and
MC-COS method, for 12 exercise times.
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Figure 4. The effects of different parameters in the CGMY model on EE for Bermudan call option, for 12 exercise times.
Except for the changing parameters, the other reference parameters are C = 1, G = 25, M = 26, Y = 1.5, and strike price
K = 50.

for this feature is that the skewness in the CGMY process is controlled by parameters G and M.16 In practice, the selection of
parameters for the CGMY process needs to be optimized based on market historical data.46

Overall, these results indicate that the trend of EE under the CGMY model is the same as the reality, and the selection of
different parameters also has a significant effect on EE. For the calculations of different value adjustments and the comparison
of the accuracy and efficiency of the two methods are discussed in the next part.

XVA analyses
Comparison of two methods on XVA
When we get EE, the value adjustments can be calculated by the definitions in Section II. A. In this work, we take 100 basis
points for the credit spread and 50 basis points for the funding spread, which are close to the reality values.47 The total value
adjustments of examples 1, 2, 3 and 4 can be found in Table II, and the difference between the two methods is also given. It is
apparent from this table that the difference of value adjustments between two methods is quit small. Most of them are smaller
than 10−3. This result suggests that the accuracy of the two methods is very close. As Table II shows, the values of the CVA for
both examples 1 and 2 are around 3%, and the example 2 is slightly larger than example 1 due to the larger exposure. The
value of CVA for examples 3 and 4 would be somewhat larger due to their shorter maturities and greater exposures. The overall
variation of the FVA is similar to the CVA, although its value is roughly one-third of the CVA, which is also consistent with
the theory. In general, the level of XVA is roughly between 4% and 8%, which is consistent with the concepts6 that value
adjustment can be seen as a spread.

Turning to the calculation time in Table III, this data is not similar anymore. It can be seen that the calculation time
required by the MC-COS method is very small when there are few simulated paths, but it increases linearly as the number of
paths increases. For the MC-FF method, its calculation time does not change significantly with the increase of the simulation
path. One reason for this result is that at each exercise time, the MC-COS method performs an additional calculation of the
continuation values, which requires interpolation for each path. Although the MC-COS method is more efficient when fewer
paths are simulated, it is only accurate enough for Monte Carlo simulation when the number of paths is large enough. In this
work, we generated 10,000 Monte Carlo paths for each experiment, and it is clear that the MC-FF method consumes less time.
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Table 2. CVA, FVA and XVA of Examples for the Bermudan call option, comparison and difference of MC-FF method and
MC-COS method.

MC-FF MC-COS Difference

CVA

Example 1 -3.22% -3.20% 1.70e-04
Example 2 -3.78% -3.77% 1.76e-04
Example 3 -4.54% -4.47% 7.37e-04
Example 4 -6.05% -5.97% 8.93e-04

FVA

Example 1 -1.08% -1.07% 5.70e-05
Example 2 -1.27% -1.26% 5.88e-05
Example 3 -1.55% -1.53% 2.51e-04
Example 4 -2.05% -2.02% 3.03e-04

XVA

Example 1 -4.31% -4.28% 2.27e-04
Example 2 -5.06% -5.04% 2.35e-04
Example 3 -6.09% -5.99% 9.89e-04
Example 4 -8.11% -8.00% 1.19e-03

Table 3. Comparison of the calculation time (in seconds) of the two methods with different number of Monte Carlo paths.

500 Paths 1000 Paths 5000 Paths 10000 Paths

MC-FF 18.9364 19.3256 21.2162 22.0326
MC-COS 3.5263 6.8362 36.5698 76.2355

Figure 5. Bermudan call option values with CVA and XVA against the strike price K with default CGMY parameters.
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Effect of XVA on option value
In Figure 5, we compare the Bermudan call option value considering CVA and XVA to the risk-free value, which is the option
value without counterparty default risk. As we talked before, the CVA accounts for a large proportion of XVA, and both of
them will tend to 0 as K increases. From the Figure 5 we can see that the existence of credit risk and funding risk reduces the
value of option. This is intuitive because there is counterparty default risk, which certainly makes the profits obtained through
the option smaller for the institutes.

Conclusion
In this work, we have used two different approaches to find the total value adjustments of the Bermudan option, whose
underlying asset follows a complex pure jump CGMY process. Both approaches are based on the Monte Carlo simulation of
the CGMY process, and the exposures are calculated at each path and exercise times. Although in this work we only discuss
the CGMY model, the approach is similar for other pure jump Lévy process. For example, when the CGMY parameter Y = 0,
we can obtain the VG model, and the KoBoL model can also be obtained by making appropriate adjustments to the parameters.
To obtain the exposure, we applied the finite difference to a FPDE under the CGMY process and proved the convergence of this
method (MC-FF method). Compared to the benchmark method (MC-COS method), the MC-FF method we constructed is more
efficient when using more Monte Carlo paths. At the same time, the accuracy of the MC-FF method is almost the same as that
of the MC-COS method. According to the numerical results, it can be seen that the impact of the pure jump feature on exposure
is most significant for PFE97.5%. And CVA, as a part of XVA, has a more obvious effect on the value of the Bermudan option
than FVA.
Further research should be undertake to explore how to apply realistic market data to find XVA of derivatives and compare it
with actual market price. In addition, inspired by Salvador,1 it is also a considerable attempt to derive a differential equation
modeling XVA when pure jump feature is assumed.
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