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In the absence of vaccines or medicines to stop COVID-19, one of the effective methods to slow the spread of the coronavirus and
reduce the overloading of healthcare is to wear a face mask. Nevertheless, to mandate the use of face masks or coverings in public
areas, additional human resources are required, which is tedious and attention-intensive. To automate the monitoring process, one of
the promising solutions is to leverage existing object detection models to detect the faces with or without masks. As such, security
officers do not have to stare at the monitoring devices or crowds, and only have to deal with the alerts triggered by the detection of
faces without masks. Existing object detection models usually focus on designing the CNN-based network architectures for extracting
discriminative features. However, the size of training datasets of face mask detection is small, while the difference between faces with
and without masks is subtle. Therefore, in this paper, we propose a face mask detection framework that uses the context attention
module to enable the effective attention of the feed-forward convolution neural network by adapting their attention maps feature
refinement. Moreover, we further propose an anchor-free detector with Triplet-Consistency Representation Learning by integrating
the consistency loss and the triplet loss to deal with the small-scale training data and the similarity between masks and occlusions.
Extensive experimental results show that our method outperforms the other state-of-the-art methods. The source code is released as a
public download to improve public health at https://github.com/wei-1006/MaskFaceDetection.
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1 INTRODUCTION

As the saying goes, “An ounce of prevention is worth a pound of cure.” To alleviate the burden of healthcare caused
by COVID-19, World Health Organization (WHO) suggests that masks should be used as part of a comprehensive
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2 Yang et al.

(a) Faces of different orientations (b) Reflected faces without masks (c) Crowd scene with different scales

(d) Occlusion and masks in different colors (e) Faces with different poses (f) Masks on non-human

(g) Occlusion and blurry faces without masks (h) Makeup faces without masks (i) Masks with occlusion

Fig. 1. Illustrative example of difficult cases on the AIZOO dataset.

strategy of measures to suppress transmission and provide protection against COVID-19. Leung et al. [41] also show
that surgical masks can protect people from the coronavirus by reducing the probability of airborne transmission. As
such, many governments mandate the use of face masks or coverings in public areas, such as retail establishments
and public transportation [5, 33]. Nevertheless, to implement the executive order, it requires staff to monitor whether
pedestrians wear masks or not at the entrance of restricted areas, which may be a heavy burden for large-scale and
long-term surveillance.

With the advance of Artificial Intelligence (AI), it is promising to alleviate the burden by utilizing its machine learning
algorithms for implementing an automatic monitoring system. Generally, facial mask detection can be regarded as a
special case of object detection [3, 7, 9, 11, 19, 28, 32, 37, 38, 42, 50, 69, 77, 82–85]. That is, the goal is to determine where
the faces are (object localization) and whether the faces are with or without masks (object classification) in a given
image. Object detection can be categorized into two mainstreams, anchor-based approaches [3, 23, 24, 28, 37, 62, 69]
and anchor-free approaches [10, 40, 57, 70, 77, 82, 83]. Anchor-based approaches leverage predefined multiple sizes
anchor boxes to detect objects with different scales and aspect ratios, which can also be categorized into one-stage
detectors [7, 18, 44, 46, 57, 85] and two-stage detectors [6, 23, 43, 62]. Two-stage detectors adopt region proposals to
Manuscript submitted to ACM
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extract the region of interest (ROI) and separate the object detection task into object localization and image classification.
Due to the high computational complexity of two-stage detectors, one-stage detectors merge the tasks of object
localization and image classification into a regression problem by predicting class probabilities and bounding box
coordinates simultaneously. On the other hand, anchor-free detectors truncate anchor boxes and directly detect the
vital keypoints [14, 40, 57, 70, 77, 82, 83], such as centers and corners of the object.

Generally, existing works of face detection solve a variety of challenging cases as illustrated in Figs. 1(a)-1(c), i.e.,
faces of different orientations, reflections, crowded scenes of different scales. Nevertheless, it is still challenging to detect
faces with or without masks since several issues cannot be well-addressed by most of the previous works of object
detection. First, masks are with different colors and styles, e.g., Fig. 1(d) contains dark blue, light blue, white and pink
masks, while the masks in Fig. 1(e) and Fig. 1(f) are with different styles. To detect faces with masks of different colors
and styles, one naïve solution is to increase the size of training data. However, the number of training data with facial
masks is much smaller than of face images in existing datasets. Therefore, it is challenging to devise a machine learning
model without a large-scale dataset. Second, images of wearing masks or not are only partially different, while the
occlusions are similar to facial masks, e.g., one hand covering mouth in Fig. 1(d), kissing a medal in Fig. 1(g). Moreover,
the occlusions of faces are diverse, e.g., makeup in Fig. 1(h), the clothing occluding the mask in Fig. 1(i). One of the
possible solutions is to use fine-grained feature extraction models, e.g., [45, 51, 64, 76]. Nevertheless, the embeddings of
faces with and without facial masks, as well as occluded faces, are still relatively close to each other, which easily leads
to the confusion of the model.

To address these issues, in this paper, we present a new framework, namely, "CenterFace", for face mask detection
with triplet-consistency representation learning. We first use the pre-trained models, e.g., ResNet-18 [29], MobileNet
[30], to extract the basic features. Afterward, to enhance the basic features, the convolution block attention module
[78] is leveraged, which is the simple yet effective attention but can blend the cross-channel and spatial information
together by operating the interactively informative features along the two significant dimensions. The input feature
map can easily concatenate with the attention maps for adaptively refining the features in the feed-forward convolution
neural networks module. As the anchor-free models demonstrate promising efficiency and effectiveness, the proposed
"CenterFace" uses a keypoint heat map to find the center point of its bounding box. Moreover, we propose a new
Triplet-Consistency Representation Learning by integrating the consistency loss [32] and the triplet loss [63] to address
the first and second challenges, respectively. Specifically, the consistency loss fully utilizes the labeled data to deal with
the various orientations and visual appearance diversity, while the triplet loss emphasizes the difference of face with
masks and occluded faces. Experimental results on public datasets show that the proposed "CenterFace" outperforms
the state-of-the-art methods by 7.4% and 6.3% for the face with and without masks in terms of the precision, respectively,
while the inference time satisfies the real-time constraint.

The main contributions can be summarized as shown bellows:

• Since enforcing a mask policy is important to control the disease propagated through airborne transmission, e.g.,
COVID-19, and alleviates the burden of healthcare, we propose a new framework, namely, "CenterFace", by
utilizing the Triplet-Consistency Representation Learning to mitigate the effect of visual diversity and various
orientations of the face masks.
• Experimental results on public datasets manifest that the proposed approach outperforms state-of-the-art
methods, while the model size is small and can be adopted on the edge mobile devices. The source codes is
released as a public download for public health improvement.
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4 Yang et al.

The rest of the paper is organized as follows. We present the related work in Section 2. The methodology is then
described in detail in Section 3. Finally, the experimental results are elaborated in Section 4 and we make conclusions
and describe future work in Section 5.

2 RELATEDWORKS

2.1 Object Detection

Conventional face detection methods are based on the handcrafted feature due to the limitation of computing resources
and the lack of large-scale datasets [2, 13, 16, 17, 23–26, 48, 49, 73, 74]. For example, Viola et al. [73] propose the first
real-time human face detector without any constraint by combining the Haar features selection with integral images
and detection cascades. Dalal et al. [13] further propose an improved model by extracting the histogram of the oriented
gradients (HOG)-based scale-invariant feature transformation, which are robust to the translation, scale and illumination
features, as well as different sizes of objects [2, 48, 49]. However, to detect objects of different sizes, the HOG requires
re-scaling input images several times. Therefore, Felzenszwalb et al. [16, 17] propose the extension of HOG with the
advancement of Fourier Transform by integrating the Local Binary Pattern (LBP) to extract the scale-invariant features
map. Girsick et al. [23–26] propose the notion that objects can be modeled by parts in a deformable configuration and
ensemble the detection of different object parts for the final prediction. Nevertheless, the representative DFM consists
of a root-filter and a number of part-filters instead of specifying the size and location of the part filters.

With the advance of deep learning, extracting features from images is now data-driven instead of using the prior
knowledge to handcraft the features. Object detection can be grouped into two categories: one-stage detector and
two-stage detector. The two-stage detectors [23, 24, 35, 61, 67, 68, 87] first extract a set of object candidate boxes by
selective search algorithm [71] as region proposals, and region proposals are warped into a square and fed into a
convolutional neural network for extracting discriminative features. However, a large number of overlapped region
proposals make redundant feature computation, leading to inefficient detection models. Therefore, several works make
progress on improving the computing of the overlapped proposals [23, 43, 61, 61]. Even though, the training process is
still multi-stage with computation redundancy at the subsequent detection stage.

On the other hand, one-stage detectors can be further categorized into anchor-based methods and anchor-free
methods. Redmon et al. propose you only look once (YOLO) series [4, 58–60], which replace the region proposal network
(RPN) with anchor boxes predefined the ratio of width and heights of objects. However, YOLO series still suffers from
improving the localization accuracy as compared with two-stage detectors. To solve the problem of one stage detection
on localization and small object detection, Liu et al. propose a single shot multibox detector (SSD) [46], which focuses
on the multi-scale object detection with a variety of sizes and aspect ratios and computes both the location and class
scores using small convolution filters. Despite the improvement of the speed and accuracy, the performance of one-stage
detectors is usually inferior to two-stage detectors. A recent line of studies proposes anchor-free detectors, which
directly find the objects without using multiple anchors in the input images [37, 39, 44, 70, 86]. There are two popular
kinds of anchor-free detection methods. The first kind is keypoint-based methods [39, 86], which bounds the spatial
extent of objects by locating several predefined or self-learned keypoints. The second one is center-based methods
[37, 70], which defines positive by the center point or region of objects to predict their boundary.

Self-supervised learning has become a popular learning, which creates pretext tasks on unlabeled data and learns in a
supervised manner. In other words, the goal of self-supervised learning is to construct the representation of images with
semantically meaningful content via pretext task while not requiring the semantic annotation for a large training set of
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Fig. 2. The overview architecture of CenterFace. We use an output heatmap from a convolution network to detect a face and/or a
mask as a pair of the bounding box, the network is trained to predict similar embeddings for faces that belong to the same face.

images. For example, Misra et al. [52] use the pretext tasks with image transformation to encourage the representation
of images to be invariant with the image patch perturbation. Xu et al. [80] exploit the similarity from the self-supervised
signals as an auxiliary task, which can effectively transfers the hidden information from the teacher to the student
network. Gidaris et al. [21] propose a self-supervised learning method based on transforming input images in different
rotations, so the framework can learn to estimate the geometric transformations applied to the image, which helps the
downstream tasks, such as object detection. Grill et al. [27] leverage two networks, where an online network is trained
to predict the representation of another network of another augmented view of the identical image.

2.2 Attention Mechanism

Attention has become a popular concept and a useful tool in the deep learning community in recent years [12, 15, 31,
47, 72, 75, 78]. The basic idea is that human visual perception only focuses on some specific regions at one time and
performs well in object detection. Therefore, to mimic human attention as a sequence of partial glimpses, different
kinds of attention mechanisms are proposed to learn “what” and “where” to attend and then focus on the important
features and suppressing unnecessary ones. For example, Vaswani et al. [72] use a decoder-encoder architecture with
the attention mechanism to refine the feature maps. Hu et al. [31] introduce the inter-channel attention by using
global-pooled features to compute their channel-wise attention. Woo et al. [78] demonstrate that channel-wise attention
is insufficient and provides the spatial attention to decide “where” to focus, enabling the attention generation process
for 3D features map with much less number of parameters.
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6 Yang et al.

Fig. 3. Convolution Block Attention Module (CBAM) [78] with a block in ResNet [29]. We utilize CBAM to integrate within the
convolution outputs in each ResNet block.

3 METHODOLOGY

To effectively detect the faces with and without facial masks, we present a new framework, namely, "CenterFace",
for face mask detection with triplet-consistency representation learning. Fig. 2 shows the overview of the proposed
"CenterFace". Specifically, we first use the pre-trained models to extract the low-level features since low-level feature
extraction is usually shared in different tasks, e.g., texture, edges. Afterward, to enhance the basic features without
significantly increasing the number of parameters, the convolution block attention module (CBAM) [78] is leveraged to
attend the channel and spatial features. Fig. 3 illustrates the model architecture of CBAM, which contains channel and
spatial modules. The channel module utilizes both max-pooling outputs and average-pooling outputs for finding the
attention weights on channels, while the spatial module uses similar two outputs and pool along the channel axis to
generate the attention weights on spatial dimensions.

Moreover, since the anchor-free models have been proved to be efficient and effective, the proposed "CenterFace"
uses a key-point heat map to find the center point of its bounding box. Moreover, we propose a new Triplet-Consistency
Representation Learning by integrating the consistency loss [32] and the triplet loss [63] to address the first and
second challenges, respectively. Specifically, the consistency loss fully utilizes the labeled data to deal with the various
orientations and visual appearance diversity, while the triplet loss emphasizes the difference of face with masks and
occluded faces. In the following, we first explain the center loss, which leverages the anchor-free models, and then
the triplet loss and consistency loss for Triplet-Consistency Representation Learning. Finally, the total loss function is
presented, together with the pseudocode. In the following, bold uppercase letters (e.g., X) and lowercase letters (e.g.,
x) denote matrices and column vectors, respectively. Non-bold letters (e.g., 𝑥) and squiggle letters (e.g., X) represent
scalars and tensors, respectively.

3.1 Center Loss

Most of the successful object detection models require enumerating candidate object locations and classifying each
candidate region, which is computationally expensive. Moreover, since the model may predict several candidate
bounding boxes for one object, the predicted bounding boxes require additional post-processing, e.g., non-maximum
suppression [53]. To satisfy the requirement of real-time monitoring, we adopt the anchor-free method, which performs
object classification and bounding box localization simultaneously. Specifically, let I ∈ Rℎ×𝑤×3 denote the input image
tensor with the width𝑤 and height ℎ. The goal is to generate the key-point heatmap Ŷ ∈ [0, 1]

ℎ
𝑠
×𝑤

𝑠
×𝑐 with the stride

Manuscript submitted to ACM



Mask or Non-Mask? Robust Face Mask Detector via Triplet-Consistency Representation Learning 7

𝑠 , where Ŷ𝑖, 𝑗,𝑘 = 1 and Ŷ𝑖, 𝑗,𝑘 = 0 respectively represent a predicted keypoint and the background region at position
(𝑖, 𝑗) belonging to class 𝑘 , 𝑐 is the number of keypoint classes,1

To train the model for predicting the keypoints, given a ground truth keypoint p = (𝑝𝑥 , 𝑝𝑦) ∈ R2, we first calculate
the low resolution equivalence p̃ = (⌊ 𝑝𝑥𝑠 ⌋, ⌊

𝑝𝑦
𝑠 ⌋). We then smooth the groundtruth keypoint by the 2D Gaussian kernel

to derive the heatmap Y ∈ [0, 1]
ℎ
𝑠
×𝑤

𝑠
×𝑐 as follows.

𝑦𝑖, 𝑗,𝑘 = exp
©­­«−
(𝑖 −

⌊ 𝑝𝑥
𝑠

⌋
)2 + ( 𝑗 −

⌊
𝑝𝑦
𝑠

⌋
)2

2𝛿2𝑝

ª®®¬ , (1)

where 𝛿𝑝 is the object-size standard deviation, which is determined by its size to ensure that the pair of radius points
can generate the bounding box around the face by the ground truth annotation for each ground truth keypoint p.

The training objective is a pixelwise logistic regression with a variant of focal loss [44], i.e.,

𝐿𝑝𝑖𝑥 = − 1
𝑁

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑐∑︁
𝑘=1

{
(1 − 𝑌𝑖, 𝑗,𝑘 )𝛼 log(𝑌𝑖, 𝑗,𝑘 ) if 𝑌𝑖, 𝑗,𝑘=1,
(1 − 𝑌𝑖, 𝑗,𝑘 )𝛽 (𝑌𝑖, 𝑗,𝑘 )𝛼 log(1 − 𝑌𝑖, 𝑗,𝑘 ) otherwise,

(2)

where 𝛼 and 𝛽 are the hyperparameters controlling the contribution for each point of the focal loss.2 𝑁 is the number
of the faces in input images 𝐼 , which is applied to normalize all the positive focal instance losses to 1.

As the output stride may cause errors due to the discretization, i.e., p becomes p̃, we predict the local offset
Ô ∈ R

ℎ
𝑠
×𝑤

𝑠
×2 for each center point, where the groundtruth offset can be derived by calculating p

𝑠 − ⌊
p
𝑠 ⌋ for each center

point p. Let p𝑛 denote the position of the 𝑛-th center. The offset loss can be derived as follows.

𝐿𝑜 𝑓 𝑓 =
1
𝑁

𝑁∑︁
𝑛=1

���Ôp𝑛 − ( p𝑛𝑠 − ⌊ p𝑛𝑠 ⌋)��� . (3)

In addition to the centers derived by the keypoint heatmap Ŷ and offset Ô, the next goal is to find the bounding
boxes. Let (𝑥𝑛1 , 𝑦

𝑛
1 , 𝑥

𝑛
2 , 𝑦

𝑛
2 ) be the coordinates of the bounding box of the object 𝑛 with class 𝑐𝑛 , while the center can

be represented by p𝑛 =

(
𝑥𝑛1 +𝑥𝑛2

2 ,
𝑦𝑛1 +𝑦𝑛2

2

)
. We predict the bounding box size Ŝ𝑛 ∈ R

ℎ
𝑠
×𝑤

𝑠
×2 for each center point. It is

worth noting that Ŝ𝑛 is shared for the classes of the faces with or without masks to reduce the computational cost. The
groundtruth for the 𝑛-th center can be calculated by s𝑛 = (𝑥𝑛2 − 𝑥

𝑛
1 , 𝑦

𝑛
2 − 𝑦

𝑛
1 ). As such, the loss for bounding box size,

denoted by 𝐿𝑠 , can be derived as follows.

𝐿𝑠 =
1
𝑁

𝑁∑︁
𝑛=1

��𝑆𝑝𝑛 − s𝑛 �� . (4)

The overall center loss for detecting faces with and without masks is:

𝐿𝑐𝑒𝑛𝑡𝑒𝑟 = 𝜆𝑝𝑖𝑥𝐿𝑝𝑖𝑥 + 𝜆𝑜 𝑓 𝑓 𝐿𝑜 𝑓 𝑓 + 𝜆𝑠𝐿𝑠 , (5)

where 𝜆𝑝𝑖𝑥 , 𝜆𝑠 , and 𝜆𝑜 𝑓 𝑓 are the hyperparameters controlling the weights between different prediction targets.3

3.2 Triplet Loss

Due to the subtle difference between faces with masks and faces with occlusions, it is difficult to train a model by only
using the center loss. Therefore, to further improve the performance on challenging cases, we utilize an online triplet
1We set 𝑠 as 4 according to previous work [8, 54, 55], and set 𝑐 as 2 since the goal is to detect the faces are with or without masks.
2Empirically, we set 𝛼 and 𝛽 as 2 and 4, respectively.
3The hyperparameters are empirically set as 𝜆𝑝𝑖𝑥 = 1, 𝜆𝑜𝑓 𝑓 = 1 and 𝜆𝑠 = 0.01.
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8 Yang et al.

mining method [63], which enforces that the distance between a pair of samples with the same label is smaller than that
between a pair of samples with different labels. Indeed, the triplet loss works directly on features. A triplet is formed by
1) anchor input, 2) positive input (samples with the same label) and 3) negative input (samples with the different labels
or random cropped samples). The distance between the anchor input and the positive input is enforced to be smaller
than the distance between the anchor input and the negative input. Specifically, let R𝑎

𝑖
, R+

𝑖
and R−

𝑖
respectively denote

anchor image region, positive image region and negative image region in the 𝑖-th triplet. The triplet loss can be derived
as follows.

𝐿𝑡𝑟𝑖 =
∑︁
𝑖

[

𝑓 (R𝑎𝑖 ) − 𝑓 (R+𝑖 )


2
2 −



𝑓 (R𝑎𝑖 ) − 𝑓 (R−𝑖 )


2
2 + 𝜖

]
. (6)

The input image regions R𝑎
𝑖
, R+

𝑖
and R−

𝑖
are embedded by the same mapping function 𝑓 . We ensure that the features of

the anchor region R𝑎
𝑖
is particularly close to other positive samples R+

𝑖
and far away from any of the negative images

R−
𝑖
by using the margin 𝜖 to separate positive and negative pairs. In other words, when faces are regarded as anchors

and positive examples, the masks and some regions near the face and mask areas become negative examples. On the
other hand, when the face with masks are regarded as anchors and positive examples, the face area and some regions
near face areas become negative examples. Eventually, the distance from the anchor input to the positive samples is
minimized, while the distance from the anchor input to the negative samples is maximized.

3.3 Consistency Loss

In addition to the triplet loss, we further impose the consistency constraint on the predicted heatmap of the original
image and the predicted heatmap of the horizontally-flipped images to simultaneously stabilize the prediction results
and enlarges the training data. The consistency constraint is especially effective when incorporating the triplet loss since
multiple positive samples can be created at the same time. Specifically, let Ŷ and Ŷ ′ denote the predicted heatmap of
the original image and the predicted heatmap of the horizontally-flipped images, respectively. The prediction probability
at position (𝑖, 𝑗), i.e., Ŷ𝑖, 𝑗,:, should be close to the prediction probability at the horizontally opposite position (𝑖 ′, 𝑗 ′),
i.e., Ŷ ′

𝑖′, 𝑗 ′,:. One way to measure the closeness is to use L2 distance. However, L2 loss regards all the classes equally so
that the irrelevant classes with a low probability may also highly affects the results. Therefore, inspired by [32], we
also use Jensen-Shannon divergence (JSD) to measure the difference between Ŷ𝑖, 𝑗,: and Ŷ ′𝑖′, 𝑗 ′,:. The consistency loss
for classification, denoted by 𝐿𝑐𝑜𝑛−𝑐 , is obtained by calculating the expectation of all bounding box pairs can thus be
derived as follows.

𝐿𝑐𝑜𝑛−𝑐 = E𝑛 [𝐽𝑆𝐷 (Ŷp𝑛 , Ŷ ′p′𝑛 ))] . (7)

On the other hand, the localization result of the candidate box is based on the offset Ô and size Ŝ. Let Ô′ and Ŝ′

denote the predicted offset and size of the horizontally-flipped images, respectively. Unlike the classification, a simple
modification is required to make the prediction equivalent to each other. As the flipping transformation makes the
offset change in the opposite direction, a negation is applied to correct the groundtruth, i.e.,

Ôp𝑛,1 ⇔ −Ô′p′𝑛,1

Ôp𝑛,2, Ŝp𝑛 ⇔ Ô′p′𝑛,2, Ŝ
′
p′𝑛

Afterward, we derive the localization consistency loss by calculating the expectation of the offset and size difference for
each single pair of the candidate box center at position p𝑛 and p′𝑛 as below.

𝐿𝑐𝑜𝑛−𝑙 = E𝑛 [



Ôp𝑛,1 − (−Ô′p′𝑛,1)


2 + 


Ôp𝑛,2 − (Ô′p′𝑛,2)


2 + 


Ŝp𝑛 − Ŝ′p′𝑛 


2] . (8)
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Finally, when the consistency loss is computed with all candidates, the results may easily be dominated by the
backgrounds, which deteriorates the performance of the foreground classification candidates. As such, we have to
build a mask with the same size as the heatmap for every groundtruth bounding box to exclude the boxes with a high
probability of background class. The total consistency loss, denoted by 𝐿𝑐𝑜𝑛 , simply summarizes 𝐿𝑐𝑜𝑛−𝑐 and 𝐿𝑐𝑜𝑛−𝑙 , i.e.,
𝐿𝑐𝑜𝑛 = 𝐿𝑐𝑜𝑛−𝑐 + 𝐿𝑐𝑜𝑛−𝑙 .

3.4 Overall Objective Function

The total loss function is summarized over the center loss, triplet loss and consistency loss, i.e.,

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑒𝑛𝑡𝑒𝑟 + 𝜆𝑡𝑟𝑖𝐿𝑡𝑟𝑖 + 𝜆𝑐𝑜𝑛𝐿𝑐𝑜𝑛, (9)

where 𝜆𝑡𝑟𝑖 and 𝜆𝑐𝑜𝑛 are hyper-parameters controlling the contribution of different loss terms.4 In summary, the keypoint
heatmap prediction works as a general-purpose object detector which extends the keypoint estimator to generate the
face’s bounding box. On the other hand, the triplet loss, which enforces the face margin between each pair of face to
roughly align matching/non-matching face, along with the consistency classification and localization loss are proposed
to localize not only the face classification but also the position. The overall objective loss facilitates the detection model
to be robust enough for any complicated situations among various representation of the face detection, especially from
the masked face detection. The pseudocode of "CenterFace" is presented in Algorithm 1.

Algorithm 1 CenterFace algorithm
Input:
Input image set with groundtruth
Hyperparameters 𝛼 and 𝛽 (focal loss), stride 𝑠 , margin 𝜖 , 𝜆𝑝𝑖𝑥 , 𝜆𝑠 , 𝜆𝑜 𝑓 𝑓 , 𝜆𝑡𝑟𝑖 , 𝜆𝑐𝑜𝑛 , number of iterations 𝑛𝑖𝑡𝑒𝑟

Output:
Bounding box with class represented by Ŷ∗, Ŝ∗ and Ô∗

1: for iter = 1...𝑛𝑖𝑡𝑒𝑟 do
2: Generate heatmaps Ŷ with size Ŝ and offset Ô from 𝐿𝑐𝑒𝑛𝑡𝑒𝑟 according to Section 3.1
3: for each I do
4: Compute 𝐿𝑡𝑟𝑖 according to Eq. 6
5: Compute 𝐿𝑐𝑜𝑛−𝑐 according to Eq. 7
6: Compute 𝐿𝑐𝑜𝑛−𝑙 according to Eq. 8
7: Optimize 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑒𝑛𝑡𝑒𝑟 + 𝜆𝑡𝑟𝑖𝐿𝑡𝑟𝑖 + 𝜆𝑐𝑜𝑛𝐿𝑐𝑜𝑛
8: end for
9: if 𝐿𝑡𝑜𝑡𝑎𝑙 is the smallest so far then
10: Ŷ∗, Ŝ∗, Ô∗← Ŷ, Ŝ, Ô
11: end if
12: end for
13: return Ŷ∗, Ŝ∗ and Ô∗

4 EXPERIMENTS

In this section, we first present the experimental setup in detail. Next, we evaluate the proposed framework on public
datasets with diverse face mask representations including synthetic data, visual diversity, and various orientations.
Finally, the ablation studies are presented to show the effectiveness of each component in the proposed framework.
4Empirically, we set 𝜆𝑡𝑟𝑖 = 1 and 𝜆𝑐𝑜𝑛 = 100.
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Table 1. Detection Accuracy of CenterFace

Model Face Mask
Precision Recall Precision Recall

baseline [1] 89.6% 85.3% 91.9% 88.6%
RetinaMask + MobileNet [34] 83.0% 95.6% 82.3% 89.1%
RetinaMask + ResNet50 [34] 91.9% 96.3% 93.4% 94.5%
CenterFace (MobileNet) 96.8% 88.0% 88.0% 95.2%
CenterFace (ResNet18) 99.3% 96.2% 99.7% 96.7%

4.1 Experimental Setup

Datasets. In this section, we evaluate our detection approach on the AIZOO dataset [1], WiderFace [81] and MAFA
dataset [20] to verify the effectiveness of our "CenterFace" module with baselines. AIZOO dataset is introduced when
the pandemic situation just ransomed for the hope that people in the world can defeat the pandemic as soon as possible.
The data set includes 7,959 images with various illuminations, occlusion, and different poses, and splits into the training,
testing, and validation sets with 4096, 1,226, and 1,839, respectively. Moreover, WiderFace dataset contains 393,703
annotated faces with a variety in poses, crowd, face expression, occlusion, and scenarios from 32,203 images. These
images are split into three subsets: training (40%), validation (10%), and testing (50%) set along with three difficulty
levels: easy, medium, and hard based on the detection rate of EdgeBox benchmark [88]. On the other hand, MAFA
Dataset is a popular facial mask dataset that contains 35,806 masked faces in 30,811 images. This image dataset has
been covered almost incident cases of occluded faces in real-life. In detail, it contains 60 cases of occluded faces with
three different levels of occlusions in daily scenarios. Furthermore, four types of masks and five face orientations are
also provided to diversify the dataset, and if the faces are considerably blurred or smaller than 32 pixels, it is ignored.
All of those properties are divided into three subsets: the whole subset contains 6354 masked faces, 996 unmasked faces,
and 2683 ignored faces. The masked subset and the remaining subset consist of both masked faces and unmasked faces.
Baselines. To the best of our knowledge, only one published paper that focuses on face mask detection with available
source codes. Specifically, in AIZOO dataset, the authors verify their dataset by deploying the structure of SSD [46]
with a light-weight backbone network, which contains 24 layers, of which 8 layers are convolution layers. The input
size is set as 260 × 260, while the total number of parameters is only 1.01M.
Evaluation Metrics We evaluate the above approach by calculating the precision and recall metrics for the facial
detection model and masked facial classifier, which is defined as follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 × 100%

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 × 100%

(10)

4.2 Implementation Details

In the experiment, we follow the evaluation protocol in [79], and use ResNet-18 [29] as the backbone network. The
model is trained on an input image resolution 520 × 520 with a batch size of 10 with Adam optimizer [36]. The learning
rate is 1.25𝑒−4 for 140 epochs, with the learning rate dropped 10× at 30 and 80 epochs, respectively. We implement the
proposed CenterFace with Pytorch [56]. Then, to strengthen the effective attention for feed-forward convolutional
Manuscript submitted to ACM
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Table 2. Flops and Number of Parameters of Models (AIZOO dataset).

Model FLOPs MACs
baseline [1] 1.01 M –

RetinaMask + MobileNet [34] 3.5 M 1.67 G
RetinaMask + ResNet50 [34] 25.56 M 21.53 G
CenterFace (MobileNet) 3.5 M 1.67 G
CenterFace (ResNet18) 11.69 M 9.52 G

neural network, we utilize CBAM [78] to every single block of the CNNs. The attention module not only improves the
effectiveness of the CNNs but also gives a solution to reduce the computation and time consuming of the framework.

4.3 Experiment Results

Performance Comparison on AIZOO Dataset.We evaluate the proposed model with two light-weight backbone
networks, ResNet-18 [29] and MobileNet [30], which are capable to deploy on the edge mobile devices. Table 1 compares
the proposed method with different approaches in terms of precision and recall. The results manifest that our model
significantly outperforms other candidate methods. Specifically, equipped with the proposed Triplet-Consistency
Representation Learning, MobileNet and ResNet improve the RetinaMask [34] by 7.4% and 6.3% in both face and mask
classes in terms of precision. On the other hand, the recall of the proposed approach is almost equaled to the face class
and 2.2% higher in the mask class.
Efficiency Analysis. To evaluate the efficiency of different approaches, we use FLOPs and MACs to measure the
complexity of different models. As shown in Table 2, the results manifest that the number of parameters for ours with
RestNet-18 network is much less than the state-of-the-art results using ResNet-50 since the model size of ResNet-50 is
greater than the of ResNet-18. Nevertheless, even with a deep network, Table 3 still shows that a shallower network
with the proposed triplet-consistency representation learning performs better than that with a deeper network. Even
more, when using the same MobileNet network, our result still outperforms the current state-of-the-artwork. This is
because of the efficiency of the anchor-free techniques and the attention module we utilize in this work, which saves the
computation cost by enhancing the features with fewer parameters, instead of directly increasing the number of layers.
Analysis on Qualitative Results. Fig. 4 demonstrates the qualitative detection results of our methods on the face
class, as well as the results of the baseline. The demonstration cases show the difficulties and challenges of face detection
such as intra-class variation, occlusion, and multi-scale detection [89]. For example, the intra-class variation of human
face may present as a variety of expressions, movements, poses, and skin colors as shown in Figs. 4(c), 4(e), and 4(g).
Moreover, the faces may be occluded by other things as shown in Figs. 4(d) and 4(h) or in a large variety of scales as
shown in Figs. 4(a), 4(b), and 4(f). Although these references are from various perspectives, our model is still able to
extract the salient parts, while the baselines may miss one or two faces. Fig. 5 further demonstrates the qualitative
detection results of our methods on the mask class, as well as the results of the baseline. In details, the qualitative results
of the baseline are worse than that of the proposed method. For example, in various cases such as occluded faces in
Figs. 5(d), 5(f) 5(g), the intra-class issues such as various of expression, blur face, small face as shown in the rest of Fig. 5.

Due to the lack of public video benchmarks, we collect the online video clips with face masks and also conduct a
laboratory experiment. For the qualitative video results, please refer to the following URLs in the footnotes.56 The

5Example 1: https://drive.google.com/file/d/1Tl-8iRXgxMqeM8sbSll0tU9RubccT-lc/view.
6Example 2: https://drive.google.com/file/d/1ld1Nw3-cr1ODvzEBGkKL6hUH2dVjmojQ/view.
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(a) Crowd scene with different scales (b) Multi-pose facial detection

(c) Occlusion faces (d) Reflected faces without masks

(e) Faces of different orientations (f) Small faces in the meeting scene

(g) Unlit faces (h) Makeup faces without masks

Fig. 4. Demonstrations of the detection results on the target image on the Face class, where the results of the baseline and ours are
shown on the left-hand side and right-hand side, respectively. Best views in color.

quantitative results show that 5/40 people in the video clips are missed in some frames. However, most of the missing
ones are in a far distance. In contrast, 10/10 people in the laboratory experiment are correctly detected. The results
manifest that the proposed model is suitable for monitoring the entrance of public transports.
Failure Case Analysis. The objective loss function of "CenterFace" module is comprised of three different losses,
which have different effects on the performance of the detection. For example, a face may be missed if 1) the anchor
is missed, 2) imprecise embeddings relate to multiple false bounding boxes, or 3) the offset threshold is not correct.
To understand how each part contributes to errors, we take a look at Fig. 6. The major causes of qualitative error
results happen when faces are hidden by humans or things as shown in Figs. 6(c), 6(d), and 6(f). In these cases, the
detectors cannot recognize a face with or without facial masks. On the other hand, in Figs. 6(a), 6(b), and 6(e), faces are
misrecognized when the needed detection faces are too small or in cozy environment.

4.4 Ablation Studies

Here, the ablation studies are presented to show the effectiveness of each component in the proposed framework. We
perform the ablation studies on the effectiveness of objective function and training setting. We use WiderFace and
Manuscript submitted to ACM
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(a) Faces with different poses (b) Masks with occlusion

(c) The street view scene with and without masks (d) Occlusion and masks of different colors

(e) Selfie faces (f) An obscure faces by thing

(g) An obscure face by a human (h) An unclear face

Fig. 5. Demonstrations of the detection results on the target image on the Mask class, where the results of the baseline and ours are
shown on the left-hand side and right-hand side, respectively. Best views in color.

Table 3. State-of-the-art comparison

Model Wider Face MAFAEasy Set Medium Set Hard Set
ResNet50 [34] 59.4% 48.9% 26.5% 94.5%
ResNet18 72.6% 71.4% 46.0% 91.5%

CBAM sequence spatial-channel 19.4% 19.6% 10.4% 22.4%
ResNet18 + triplet loss 76.4% 74.0% 47.1% 91.0%

ResNet18 + consistency loss 74.0% 72.2% 45.6% 91.8%
ResNet18 + triplet loss + consistency loss 75.8% 73.0% 46.3% 91.4%

CenterFace (all modules) 90.2% 85.4% 54.1% 91.5%
ResNet18 + self-supervised rotation [22] 65.5% 63.0% 38.3% 91.4%
ResNet18 + self-supervised grayscale [80] 60.2% 61.4% 39.0% 91.5%

ResNet18 + self-supervised random crop [80] 60.3% 58.9% 37.8% 91.9%

Manuscript submitted to ACM



14 Yang et al.

(a) Flipped faces (b) Small faces

(c) Hidden faces by things (d) Occlusion faces by humans

(e) Noisy faces (f) Wrong detection faces

Fig. 6. Failure cases of both classes, where the results of the baseline and ours are shown on the left-hand side and right-hand side,
respectively.

MAFA datasets to show the results. We compare with the recently state-of-the-art detector in WiderFace and MAFA
test-dev in Table 3. We also adopt three objective loss functions in Eq. 9 to evaluate their individual performance.

Please note that the ResNet backbone here is utilized alonewithout the attentionmechanism to certify the performance
of objective loss functions. The results show that our module outperforms the baseline without adding any objective
losses. Afterward, we add the proposed losses one-by-one to observe their effects on the accuracy. This study shows
that the proposed objective loss functions significantly boost the performance on the WiderFace dataset.
AttentionMechanism. In this study, We compare the two different ways of arranging the channel and spatial attention
sub-module in the convolution neural network architecture. As each module has a different setting function, the order
may affect the overall performance. For example, the spatial attention works locally while the channel attention is
applied globally. Indeed, in Table 3 our experiment shows that it yields a lower accuracy if we arrange the sub-modules
channel and spatial in different ways. The reason is that in traditional architecture the channel attention focus on
"what" is an informative part, e.g., the coordinate part in the feature space, which is complementary to the spatial
attention. The informative parts then concatenate with the computed pooling from the spatial attention module to
generate the efficient feature descriptor. the vise-versa architecture of the attention module may make the descriptor
miss to learn some crucial features such as corner area or flipped angle of objects.
Comparisons with Self-Supervised Learning. In addition, we conduct another experiment for demonstrating the
performance of consistency loss. Specifically, we use the other widely-used self-supervised pretext task for face mask
detection, i.e., rotation [22]. Furthermore, following the previous work [80], we also apply other augmentation methods
like grayscale and random crop as the self-supervision tasks. Table 3 shows that all other self-supervision tasks decrease
the accuracy of the framework on the WiderFace dataset while keeping a similar accuracy on the MAFA dataset. This is
Manuscript submitted to ACM
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Fig. 7. Training curve (loss with different numbers of epochs).

Table 4. Training performance comparison, where L1 loss works a bit better than Smooth L1 loss.

Model Wider Face MAFAEasy Set Medium Set Hard Set
Smooth L1 90.0% 85.3% 55.2% 91.2%

L1 90.2% 85.4% 54.1% 91.5%

because of the characteristics of the dataset, i.e., the WiderFace dataset includes people in different angles and various
appearance diversity while most images in the MAFA dataset are the small group or single people with or without
masks. As such, knowing the knowledge from the self-supervised tasks cannot further improve or even deteriorate the
performance. It is also worth noting that the objects are different when applying the self-supervised learning in the
original paper. Therefore, knowing the rotation angles means that the model understands the semantics of the objects.
However, the subjects in the face mask detection are almost about people. As such, knowing the rotation does not mean
that the model understand the semantic information. In contrast, imposing the consistency constraint on the prediction
results of original images and their horizontally-flipped images simultaneously stabilizes the prediction results and
enlarges the training data. Therefore, the consistency loss facilitates the learning process.
Training Curve. The default number of training epochs is 140 epochs with a learning drop at 30 and 80 epochs. We
further train the model to 200 epochs to observe if there is any improvement in performance. As shown in Figure 7, the
results manifest that the medium and hard sets of the WiderFace dataset further increases by 0.2% and 0.3% while the
result of MAFA dataset increases by 0.2%. The improvement is relatively minor while the training requires much longer
training time. Therefore, to keep the performance of the algorithm without wasting the computational resource, we
suggest to train the the proposed model with 140 epochs.
Regression Loss. The regression loss is the distance loss, which enforces the distance between the anchor to the
positive and negative pair. Certainly, the smooth L1 loss is usually a common choice for classification, regression, and
distance loss in object detection problems. Similar with the observation from previous works [65, 66], L1 loss yields
better accuracy at a fine scale as compared to Smooth L1 loss [39]. We compare an L1 loss to a Smooth L1 Loss in
Table 4. The results show that the L1 loss is a bit better than Smooth L1 loss. It is because the L1 loss has a higher
tolerance and thus is more robust to the noise. In contrast, the Smooth L1 loss is smoother but sensitive to outliers.
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Table 5. Sensitivity test of different hyperparameters 𝜆𝑠 and 𝜆𝑐𝑜𝑛 .

Weights Wider Face MAFA
Easy Set Medium Set Hard Set

𝜆𝑠 = 0.01 90.2% 85.4% 54.1% 91.5%
𝜆𝑠 = 0.02 89.9% 84.9% 53.4% 91.7%
𝜆𝑠 = 0.2 90.0% 85.5% 54.7% 90.6%
𝜆𝑐𝑜𝑛 = 1 89.9% 85.3% 54.4% 91.5%
𝜆𝑐𝑜𝑛 = 10 89.9% 84.9% 53.4% 91.2%
𝜆𝑐𝑜𝑛 = 100 90.2% 85.4% 54.1% 91.5%

Sensitivity Test. The default values of hyperparameters are set to 𝜆𝑝𝑖𝑥 , 𝜆𝑜 𝑓 𝑓 = 1, 𝜆𝑠 = 0.01, 𝜆𝑡𝑟𝑖 = 1, and 𝜆𝑐𝑜𝑛 = 100.
Table 5 shows the sensitivity test on different 𝜆𝑠 and 𝜆𝑐𝑜𝑛 , which manifests that the accuracy slightly changes with
different hyperparameter weights. Therefore, 𝜆𝑠 and 𝜆𝑐𝑜𝑛 are respectively set to 0.01 and 100 according to the results.

5 CONCLUSIONS

To prevent the massive infections of the coronavirus and reduce the overloading of healthcare, we propose a new
framework named "CenterFace" to automate the monitoring of wearing face masks. "CenterFace" uses the context
attention module to enable the effective attention of the feed-forward convolution neural network by adapting their
attention maps feature refinement. Moreover, we further propose an anchor-free detector with Triplet-Consistency
Representation Learning by integrating the consistency loss and the triplet loss to deal with the small-scale training
data and the similarity between masks and occlusions. Experimental results show that "CenterFace" outperforms the
other state-of-the-art methods, which is released as a public download to improve public health. In the future, we plan
to study the problem of face recognition with masks and jointly consider the privacy issues.
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