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ABSTRACT 
 
Automatic detection of obstructive sleep apnea (OSA) is in great demand. OSA is one of the 

most prevalent diseases of the current century and established comorbidity to Covid-19. OSA is 

characterized by complete or relative breathing pauses during sleep. According to medical 

observations, if OSA remained unrecognized and un-treated, it may lead to physical and mental 

complications. The gold standard of scoring OSA severity is the time-consuming and expensive 

method of polysomnography (PSG). The idea of online home-based surveillance of OSA is 

welcome. It serves as an effective way for spurred detection and reference of patients to sleep 

clinics. In addition, it can perform automatic control of the therapeutic/assistive devices. In this 

paper, several configurations for online OSA detection are proposed. The best configuration 

uses both ECG and SpO2 signals for feature extraction and MI analysis for feature reduction. 

Various methods of supervised machine learning are exploited for classification. Finally, to 
reach the best result, the most successful classifiers in sensitivity and specificity are combined in 

groups of three members with four different combination methods. The proposed method has 

advantages like limited use of biological signals, automatic detection, online working scheme, 

and uniform and acceptable performance (over 85%) in all the employed databases. These 

advantages have not been integrated in previous published methods. 
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1. INTRODUCTION 
 

Obstructive sleep apnea (OSA) is the most prevalent sleep-related breathing disorder worldwide 

[1]. It has also established as a comorbidity to Covid-19 [2]. Intermittent episodes of airway 
subsidence during sleep characterizes OSA [3]. If OSA remains undetected and untreated, the 

resultant abrupt changes in sympathetic neural activity may cause severe cardiovascular side-

effects [4], type 2 diabetes [5], impaired cognition, and psychiatric symptoms [6]. Hence the 

detection and immediate treatment of OSA is essential. The diagnosis of OSA requires the joint 
evaluation of related clinical features and the visible demonstrations of abnormal breathing 

during sleep. [7]. The gold standard for the detection of abnormal breathing during sleep is 

overnight polysomnography (PSG). The PSG-driven apnea-hypopnea index (AHI) characterizes 
the OSA severity [8, 9]. AHI derivation is currently performed visually according to the 

American Association of Sleep Medicine (AASM) guidelines [8]. This time-consuming and 
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expensive process imposes a heavy burden on the public health section [10]. Therefore, many 
automatic methods for pre-clinic detection and scoring of OSA have been developed in the 

literature [11-27, 31, 32, 34, 35]. These methods use analysis of a variety of biological signals 

and machine learning techniques. In some studies, electroencephalogram (EEG) is used for 

feature extraction based on occurred discrepancies between the right and left hemispheres [11] or 
tracking non-linear behavior of EEG due to fluctuations in sleep depth [12, 29, 30]. Single-

channel ECG or combination of ECG and saturated oxygen level of the blood in peripheral veins 

(SpO2) is also suggested in several studies due to easy and unobtrusive signal acquisition [13, 14, 
16-19, 23].  

 

In the most recent studies, OSA detection is accomplished based on ECG and the newly 
widespread deep learning techniques. In deep learning solutions, the feature extraction/selection 

is generally embedded in the learning algorithm, and no separate step is needed [32]. This 

advantage reduces the computational load. However, for deep learning training, high-

performance computers are required [33], and the methodologies do not suit home-based and 
portable applications where the processing ability and data storage capacity are limited. Apnea is 

detected based on nasal pressure signals with the help of convolutional neural networks (CNN) in 

[34]. Several supervised machine learning methods are tested for OSA detection with a single 
channel ECG signal in [35]. The achieved results are promising, yet in a small database and with 

slightly less accuracy than our suggested strategy. 

 
In this study, several configurations for online detection of OSA are suggested. Employing a 

limited number of biological signals, automatic and real-time detection, and uniform acceptable 

performance over several databases are the merits of our proposed method. To the knowledge of 

the author, these advantages are accumulated in none of the previous studies together. 
 

2. MATERIAL AND METHOD 
 

Automatic detection of respiratory events based on supervised machine learning is generally 
divided into several steps [28]. In the first step, the training set is made from signal records 

labeled as apnoeic and normal (by an expert clinician). In the second step, feature extraction is 

performed for each signal. The extracted features can be reduced to improve the performance of 

the next step. Finally, the last step is the classification of the test records. We will go through 
each step of our work in detail. 

 

We conducted this study based on three databases. The first two databases are public and can be 
reached by anyone: St. Vincent, University College Dublin (UCD) database [36], eight subjects 

of Apnea-ECG database [37] whose data include more signals than one ECG channel. The third 

database is exclusively at our disposal. This database includes clinical records of the sleep 

laboratory of Ibn-e-Sina Hospital, Mashhad, Iran, from July 2012to May 2014. The study was 
approved by the ethics committee overseeing the research proposal (permission no.92/620792, 

date 2014/03/07). We were allowed to use clinical data only, with no deviation from AASM 

protocol. The PSG (model: Alice LE, part no. 1002387, Philips Respironics) recordings were 
conducted in baseline montage with16 channels on the 158 referred patients. Out of all 

participants, 134 subjects were diagnosed with OSA, and 24 healthy according to the 

International Classification of Sleep Disorders II (ICSD-II) [8]. We ascertained sleep apneas as 
≥10 s of airflow pauses and hypopnea as a ≥3% of oxygen desaturation/or arousal proceeded by a 

50% decrement in the amplitude of baseline airflow. From now on, we refer to this database as 

“the exclusive database”. Figure 1 shows a 1-minute frame of polysomnographic records of our 

exclusive database. 
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Figure 1. 1-minute frame of the polysomnographic records of a subject with severe OSA from  

the exclusive database 

 

The three signals of EEG, SpO2, and air pressure/flow have a central role in the clinical 
definition of apnea. We refer to them as “the main signals”. Other biological signals (such as 

ECG, voice, and actigraphy) have a supplementary role in the detection of OSA. We refer to this 

group as “the auxiliary signals”. Relying on the main signals for an OSA detection system is the 
first choice; however, the developed system must be more concise than PSG and perform a pre-

clinic screening. Placing EEG electrodes on the scalp during sleep and pressure/flow sensors is 

rather obtrusive; besides, preparations and installation of electrodes and sensors are not 

straightforward for an ordinary user. For EEG acquisition and conditioning, a relatively 
expensive system is needed. The repeatability of the observed effects of OSA on EEG compared 

to SpO2 signal is also on debate [38, 39]. That is why generally EEG and air pressure/flow 

signals are excluded. 
 

Among the auxiliary signals, ECG is gained more attention in the OSA detection methods. The 

effects of the apneas on ECG signal are well understood [4]. The ECG electrodes are installed 
simpler than EEG and less obtrusive than those of air pressure/flow signal. The apparent effect of 

respiratory events on ECG is called Cyclical Variation of Heart Rate (CVHR) [4]. The challenge 

of ECG-based detection systems is their lower specificity since their modulating factor is not a 

respiratory event only. The presence of cardiovascular problems can also have considerable 
effects on ECG. In the absence of OSA, these effects can increase the false positive detection 

rate. In practice, the number of false-negative detections also increases, and the sensitivity of the 

OSA detection method drops. A decrease in sensitivity is because the database usually includes 
subjects with OSA whose problem has been un-diagnosed for years, and lack of treatment has led 

to cardiovascular complexities for them [4]. Up to 90% of subjects affected by OSA are not 

aware of their problem and have not been treated yet [1].  
 

More successful results are reported for SpO2-based detection methods compared to other single-

channel detection systems. They have reasonable specificity and sensitivity, they can be 
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performed in real-time, and they have non-obtrusive sensors; additionally, some of them are 
realized in smartphones and can serve as useful home-based systems [27, 40]. 

 

In this study, we consider PPG (and SpO2) from “the main signals”, and ECG from “the auxiliary 

signals”. Parallel use of these signals, covers their deficiencies and increases the overall accuracy, 
sensitivity, and specificity of the detection system [16]. The OSA detection based on ECG and 

SpO2 is more popular than other multi-channel detection systems due to simple sensor 

installation and powerful representation of respiratory events [13, 14, 16-19, 23]. 
 

2.1. Pre-processing and Noise Rejection  
 
Considering the ECG sampling frequency is essential. The insufficient sampling frequency may 

negatively affect the resolution and the signal-to-noise ratio of the R-R time series [41, 42]. The 

UCD and the Apnea-ECG databases have less sampling frequency than the specified 250Hz 
value of the American National Standard Institute (ANSI), yet they are good benchmarks for the 

evaluation of automatic OSA detection methods. We have assumed that their subjects are 

carefully selected so that exceptions, where their sampling frequencies are insufficient for 
representing ECG behavior, are deleted [42]. The ECG signals of the exclusive database are also 

down-sampled to 250Hz. 

 

To avoid the aliasing effects of non-integer fractional down-sampling, equating the UCD and the 
Apnea-ECG sampling frequencies is avoided [43]. For de-trending and noise rejection, the 

decimated lifting wavelet transform (DWT) algorithm [44] is employed [13]. The Daubechies 

(D4) wavelet is used with seven levels of decomposition. The R-R time series is extracted by the 
famous and robust method of Hamilton-Tompkins [45, 46]. Impulses more or less than 20% 

distant to the last normal R-R interval, those with more than 30% values in the R-S difference or 

with the negative R-S difference values are assumed to be a sign of ectopic or abnormal beat and 
omitted; the resulting signal is called the R-R tachogram [38]. 

 
Table 1.  The SpO2 features in each 1-minute frame:  {𝑠𝑝𝑜2𝑖}𝑖=1

60  

 

 

 

Name/ Definition 

The minimum value of the frame  

The average value of the frame 

The standard deviation of the frame 

Sequential correlation coefficients [20] 

Sequential mutual information [52] 

Average value crossing points 

The absolute value of the slope of the line fitted over SpO2 [20] 

y-Intercept value of the line fitted over SpO2 [20] 

Approximate entropy [53] 

Sample entropy [53] 

Lempel-Zive complexity measure [54] 

Central tendency measure ( CTMr) (r=0.25, 0.75, 0.5, 1)[54] 

Delta measure () [30] 

Baseline [22] 

odi2, odi3, odi4: The number of 2%,3%, and 4% desaturations to the baseline [30] 

𝑂𝐷𝐼𝑥𝑦: The number of desaturations more than or equal to x% lasting for y seconds [30] 

𝑂𝐷𝐼𝑆𝑥:  The number of desaturations more than or equal to x% [22] 

Time elapsed under saturation level x (%tsax ); x=70, 80,85, 90, 95) [30] 
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2.2. Feature Extraction 
 

We consider values below 50% and fluctuations more than 40% in two consecutive samples of 

SpO2 signal (in the sampling period of 1s) artifacts [16, 19]. We eliminate these values and their 
corresponding values of other PSG signals from the records (2 minutes of the Apnea-ECG 

database, 37 minutes of the UCD database, and 78 minutes of the exclusive database, totally 

equal to 1.9% of available data). The resulting signal is divided into non-overlapping 1-minute 
frames and is used for feature extraction. Table 1 summarizes the SpO2 features. 

 

We process the ECG signal in 1-minute time windows. The R-R tachogram is extracted from 

ECG. It is not a result of uniform ECG sampling. The points of this time series are scattered non-
uniformly across the time axis based on the time interval of consecutive beats. In frequency 

analysis of ECG signal, this crucial fact is usually ignored. The pre-assumption of the fast Fourier 

transform (FFT) is the uniform sampling of the signal under analysis; hence the FFT-based 
frequency analysis of the R-R tachogram and its dependents like the ECG-derived respiration 

(EDR) are not appropriate. Frequency analysis tools needless of the uniform sampling 

assumption like the Lomb-Scargle periodogram are good candidates for calculating quantities 
related to the heart rate variability (HRV) [50]. 

 

The EDR is extracted by the T wave duration method [51, 52] in the UCD and ECG-Apnea 

databases. We calculate the EDR with the help of the area under the QRS graph [53] in our 
exclusive database. 

 

We use the Lomb-Scargle periodogram and the DWT with Daubechies (D4) wavelet (with 18 
levels of decomposition) to extract frequency-domain features of the R-R tachogram, and the 

EDR signals [44]. The ECG features are categorized as the time-domain, and the frequency-

domain features in tables 2, 3 and 4. 
 

Table 2.  The time-domain ECG features 

 

The R-R tachogram: 𝑅(𝑟𝑟𝑡𝑚
) = {𝑟𝑟𝑖}

𝑖=𝑟𝑟𝑡1

𝑟𝑟𝑡𝑚 , the EDR: 𝐸𝐷𝑅(𝑞) = {𝑒𝑑𝑟𝑖}𝑖=1
𝑞

 

Definition Name 

𝑟𝑟̅̅ 𝑡̅ =
1

𝑚
∑ 𝑟𝑟𝑡𝑖

𝑚

𝑖=1
  Time window mid-time 

M length ECG 

𝑟𝑟̅̅̅ =
1

𝑚
∑ 𝑟𝑟𝑖

𝑚

𝑖=1
 Average beat [115]  

𝑁𝑁50𝑣1 = ∑ 𝑈(|𝑟𝑟𝑖 − 𝑟𝑟𝑖+1| − 50𝑚𝑠)
𝑚

𝑖=2
 

U(.): step function 

NN50-version 1 [115] 

𝑁𝑁50𝑣2 = ∑ 𝑈(|𝑟𝑟𝑖+1 − 𝑟𝑟𝑖| − 50𝑚𝑠)
𝑚−1

𝑖=1
 

U(.): step function 

NN50-version 2 [115] 

𝑝𝑁𝑁50𝑣1 =
𝑁𝑁50𝑣1

𝑚
 pNN50-version 1 [115] 

𝑝𝑁𝑁50𝑣2 =
𝑁𝑁50𝑣2

𝑚
 pNN50-version 2 [115] 

𝑆𝑟𝑟 = √
1

𝑚−1
  ∑ (𝑟𝑟𝑖 − 𝑟𝑟̅̅̅)2𝑚

𝑖=1    Tachogram standard deviation 

𝑆𝐷𝑆𝐷 = √
1

𝑚−1
  ∑ (𝑟𝑑𝑖 − 𝑟𝑑̅̅ ̅)

2𝑚
𝑖=1    

𝑟𝑑𝑖 = 𝑟𝑟𝑖+1 − 𝑟𝑟𝑖   و 𝑟𝑑̅̅ ̅ =
1

𝑚−1
∑ 𝑟𝑑𝑖

𝑚−1
𝑖=1  

SDSD [115] 
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Table 3.  The frequency-domain features of the R-R tachogram: 𝑅(𝑟𝑟𝑡𝑚
) = {𝑟𝑟𝑖}𝑖=𝑟𝑟𝑡1

𝑟𝑟𝑡𝑚  

 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑚 − 1
  ∑ 𝑟𝑑𝑖

2

𝑚−1

𝑖=1

 RMSSD [115] 

𝑟𝑘 =
∑ (𝑟𝑟𝑖 − 𝑟𝑟̅̅̅)(𝑟𝑟𝑖+𝑘 − 𝑟𝑟̅̅̅)𝑚

𝑖=1

∑ (𝑟𝑟𝑖 − 𝑟𝑟̅̅̅)2𝑚
𝑖=1

 
 

Sequential correlation 
coefficients [115] 

𝑀𝐼𝑘 = 𝐼({𝑟𝑟𝑖}; {𝑟𝑟𝑖+𝑘})

= ∑ 𝑃𝑛({𝑟𝑟𝑖}, {𝑟𝑟𝑖+𝑘})𝑙𝑜𝑔
𝑃𝑛({𝑟𝑟𝑖}, {𝑟𝑟𝑖+𝑘})

𝑃𝑛({𝑟𝑟𝑖})𝑃𝑛({𝑟𝑟𝑖+𝑘})

𝑚

𝑖=1

 

Pn: Probability distribution function 

 

Sequential mutual information 

[319] 

AT𝑘 =
𝐸 ((𝑁𝑖+1(𝑘) − 𝑁𝑖(𝑘))

2
)

2𝐸(𝑁𝑖+1(𝑘))
 

𝑁𝑖(𝑘): Number of beats in the ith section of a k-second signal 

Allan Factor [124] 

 

𝑁𝐸𝑃𝑘 =
1

𝑚́ − 2
∑ (1 − 𝑈((𝑟𝑟𝑖 − 𝑟𝑟𝑖−1)(𝑟𝑟𝑖+1 − 𝑟𝑟𝑖)))

𝑚́−1

𝑖=2

 Number of Extreme Points [116] 

𝑒𝑑𝑟̅̅ ̅̅ ̅ =
1

𝑞
∑ 𝑒𝑑𝑟𝑖

𝑞

𝑖=1
 Average EDR  

𝑆𝑒𝑑𝑟 = √
1

𝑞 − 1
  ∑(𝑒𝑑𝑟𝑖 − 𝑒𝑑𝑟̅̅ ̅̅ ̅)

2

𝑞

𝑖=1

 Standard Deviation EDR  

Definition Name 

𝑆2
𝐷𝑟𝑟

𝑘 = ∑ (𝑑𝑟𝑟,𝑖
𝑘 − 𝑑𝑟𝑟

𝑘̅̅ ̅̅ ̅̅ )
2

𝐼𝑟𝑟,𝑘

𝑖=1

 

𝑑𝑟𝑟
𝑘̅̅ ̅̅ ̅̅ =

1

𝐼𝑟𝑟,𝑘
∑ 𝑑𝑟𝑟,𝑖

𝑘𝐼𝑟𝑟,𝑘

𝑖=1
  

Sample deviation of  {𝐷𝑟𝑟
𝑘}

k=2

17
  

𝑆2
𝐷𝑟𝑟

𝐿𝐹 = ∑ (𝑑𝑟𝑟,𝑖
𝐿𝐹 − 𝑑𝑟𝑟

𝐿𝐹̅̅ ̅̅ ̅̅ ̅)
2

𝐼𝑟𝑟,𝐿𝐹

𝑖=1

 Sample deviation of  {𝐷𝑟𝑟
𝑘}

k=2

17
 (LF band) 

𝑆2
𝐷𝑟𝑟

𝐻𝐹 = ∑ (𝑑𝑟𝑟,𝑖
𝐻𝐹 − 𝑑𝑟𝑟

𝐻𝐹̅̅ ̅̅ ̅̅ ̅)
2

𝐼𝑟𝑟,𝑉𝐿𝐹

𝑖=1

 

 

Sample deviation of  {𝐷𝑟𝑟
𝑘}

k=2

17
 (HF band) 

𝑃𝑟𝑟
𝑉𝐿𝐹 = ∫ 𝑃𝑟𝑟(𝜔)𝑑𝜔

2𝜋×0.15

2𝜋×0.04
 

𝑃𝑟𝑟(𝜔) : Lomb-Scargel periodogram [348,86] 

HRV Power spectrum (LF band) 

𝑃𝑟𝑟
𝐻𝐹 = ∫ 𝑃𝑟𝑟(𝜔)𝑑𝜔

2𝜋×0.4

2𝜋×0.15
 HRV Power spectrum (HF band) 

𝐿𝐹/𝐻𝐹 = 𝑃𝑟𝑟
𝐿𝐹/𝑃𝑟𝑟

𝐻𝐹 LF-HF power ratio in the HRV spectrum 

𝑃𝑟𝑟(𝜔)|2𝜋×0.04
2𝜋×0.4

 
Lomb-Scargel periodogram samples in LF-HF 

band 

𝜔𝑟𝑒𝑠𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑟𝑟(𝜔)|2𝜋×0.15
2𝜋×0.4 ) 

Estimated respiration frequency (Dominant 

HF-band frequency of HRV) [86] 

𝑟𝑒𝑠𝑝𝑀𝑎𝑔 = 𝑚𝑎𝑥(𝑃𝑟𝑟(𝜔)|2𝜋×0.15
2𝜋×0.4 ) = 𝑃𝑟𝑟(𝜔𝑟𝑒𝑠𝑝) Power at the dominant HF-band frequency of 
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Table 4.  The frequency-domain features of the EDR: EDR(q) = {edri}i=1
q

   

 

 

2.3. Feature Reduction 
 

Most automatic OSA detection methods [11-13, 16-19, 27, 29] use no feature reduction or 
employ linear dependency and correlation-based strategies or principal component analysis 

(PCA) for feature selection. Dependency and mutual information (MI) proved to outperform 

linear methods of feature selection, especially in respiratory event detection [14, 31]. Feature 

selection can be performed by individual analysis of each feature [13, 21, 26]. It is also possible 
to define a measure to evaluate a subset of features [14, 16]. The first method speculates the inter-

relations among features but, the second method searches for features with both the tightest 

relations with the class label and the loosest interaction with each other. We use the second 
strategy for feature reduction. 

HRV 

𝑟𝑒𝑠𝑝𝑃𝑟𝑜𝑏 = 𝑃𝑟𝑜𝑏 (𝑃𝑟𝑟(𝜔𝑟𝑒𝑠𝑝)) 

Probability of estimated respiration frequency 

occurrence with power  𝑃𝑟𝑟(𝜔𝑟𝑒𝑠𝑝)   

𝜔𝑃𝑟𝑜𝑏𝑀𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑟𝑜𝑏(𝑃𝑟𝑟(𝜔)|2𝜋×0.04
2𝜋×0.4 )) 

Most probable frequency of the HRV 

spectrum 

𝑃𝑟𝑜𝑏𝑀𝑎𝑥 = 𝑚𝑎𝑥(𝑃𝑟𝑜𝑏(𝑃𝑟𝑟(𝜔)|2𝜋×0.04
2𝜋×0.4 ))

= 𝑃𝑟𝑜𝑏(𝑃𝑟𝑟(𝜔𝑃𝑟𝑜𝑏𝑀𝑎𝑥 )) 

Probability of ProbMax occurrence with power  

𝑃𝑟𝑟(𝜔𝑃𝑟𝑜𝑏𝑀𝑎𝑥) 

𝑃𝑟𝑜𝑏𝑀𝑎𝑥𝑀𝑎𝑔 = 𝑃𝑟𝑟(𝜔𝑃𝑟𝑜𝑏𝑀𝑎𝑥 ) Power of the HRV spectrum at ProbMax 

Definition Name 

𝑆2
𝐷𝑒𝑑𝑟

𝑘 = ∑ (𝑑𝑒𝑑𝑟,𝑖
𝑘 − 𝑑𝑒𝑑𝑟

𝑘̅̅ ̅̅ ̅̅ ̅)
2

𝐼𝑒𝑑𝑟,𝑘

𝑖=1

 

𝑑𝑒𝑑𝑟
𝑘̅̅ ̅̅ ̅̅ ̅ =

1

𝐼𝑒𝑑𝑟,𝑘
∑ 𝑑𝑒𝑑𝑟,𝑖

𝑘𝐼𝑒𝑑𝑟,𝑘

𝑖=1
  

Sample deviation of  {𝐷𝑒𝑑𝑟
𝑘}

k=2

17
  

𝑆2
𝐷𝑒𝑑𝑟

𝐿𝐹 = ∑ (𝑑𝑒𝑑𝑟,𝑖
𝐿𝐹 − 𝑑𝑒𝑑𝑟

𝐿𝐹̅̅ ̅̅ ̅̅ ̅̅ )
2

𝐼𝑒𝑑𝑟,𝐿𝐹

𝑖=1

 Sample deviation of {𝐷𝑒𝑑𝑟
𝑘}

k=5

17
 (LF band) 

𝑆2
𝐷𝑒𝑑𝑟

𝐻𝐹 = ∑ (𝑑𝑒𝑑𝑟,𝑖
𝐻𝐹 − 𝑑𝑒𝑑𝑟

𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝐼𝑒𝑑𝑟,𝑉𝐿𝐹

𝑖=1

 Sample deviation of {𝐷𝑟𝑟
𝑘}

k=2

4
  (HF band) 

𝑃𝑒𝑑𝑟
𝑉𝐿𝐹 = ∫ 𝑃𝑒𝑑𝑟(𝜔)𝑑𝜔

2𝜋×0.15

2𝜋×0.04
 EDR Power spectrum (LF band) 

𝑃𝑒𝑑𝑟
𝐻𝐹 = ∫ 𝑃𝑒𝑑𝑟(𝜔)𝑑𝜔

2𝜋×0.4

2𝜋×0.15
 EDR Power spectrum (HF band) 

𝐿𝐹/𝐻𝐹𝑒𝑑𝑟 = 𝑃𝑒𝑑𝑟
𝐿𝐹/𝑃𝑒𝑑𝑟

𝐻𝐹 LF-HF power ratio in the EDR spectrum 

𝑃𝑒𝑑𝑟(𝜔)|2𝜋×0.04
2𝜋×0.4

 
Lomb-Scargel periodogram samples in LF-

HF band 

𝜔𝑒𝑑𝑟−𝑟𝑒𝑠𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑒𝑑𝑟(𝜔)|2𝜋×0.15
2𝜋×0.4 ) Dominant HF-band frequency of the EDR 

𝑟𝑒𝑠𝑝𝑀𝑎𝑔𝑒𝑑𝑟 = 𝑚𝑎𝑥(𝑃𝑒𝑑𝑟(𝜔)|2𝜋×0.15
2𝜋×0.4 )

= 𝑃𝑒𝑑𝑟(𝜔𝑒𝑑𝑟−𝑟𝑒𝑠𝑝) 

Power at the dominant HF-band frequency 

of the EDR 

𝑟𝑒𝑠𝑝𝑃𝑟𝑜𝑏𝑒𝑑𝑟 = 𝑃𝑟𝑜𝑏 (𝑃𝑒𝑑𝑟(𝜔𝑒𝑑𝑟−𝑟𝑒𝑠𝑝)) 

Probability of 𝜔𝑒𝑑𝑟−𝑟𝑒𝑠𝑝 occurrence with 

power  𝑃𝑒𝑑𝑟(𝜔𝑒𝑑𝑟−𝑟𝑒𝑠𝑝)  

𝜔𝑒𝑑𝑟−𝑃𝑟𝑜𝑏𝑀𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑟𝑜𝑏(𝑃𝑒𝑑𝑟(𝜔)|2𝜋×0.04
2𝜋×0.4 )) 

Most probable frequency of the EDR 

spectrum 

𝑃𝑟𝑜𝑏𝑀𝑎𝑥𝑒𝑑𝑟 = 𝑚𝑎𝑥(𝑃𝑟𝑜𝑏(𝑃𝑒𝑑𝑟(𝜔)|2𝜋×0.04
2𝜋×0.4 ))

= 𝑃𝑟𝑜𝑏(𝑃𝑒𝑑𝑟(𝜔𝑒𝑑𝑟−𝑃𝑟𝑜𝑏𝑀𝑎𝑥 )) 

Probability of edr-ProbMax occurrence with 

power 𝑃𝑒𝑑𝑟(𝜔𝑒𝑑𝑟−𝑃𝑟𝑜𝑏𝑀𝑎𝑥 ) 

𝑃𝑟𝑜𝑏𝑀𝑎𝑥𝑀𝑎𝑔𝑒𝑑𝑟 = 𝑃𝑒𝑑𝑟(𝜔𝑒𝑑𝑟−𝑃𝑟𝑜𝑏𝑀𝑎𝑥) Power of the HRV spectrum at edr-ProbMax 
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To calculate the mutual interactions, we consider MI rather than a simple statistical correlation. 
We select the features which have the highest MI with the class label (normal of apnoeic) and the 

least MI with each other. The approach to search the feature space is forward feature selection. In 

this approach, the subset of selected features is gradually built by adding single features to an 

initial null set [14, 54]. 
 

2.4. Classification 
 

We employ nine classifiers in this study; support vector machines (SVM) [55], K nearest 

neighbors (KNN) [60], decision table [56], C4.5 [57] decision tree, reduced-error pruning tree 

(REPT) [58], functional trees [59], the meta-algorithm of adaptive boosting accompanied with 
the simple classifier of decision stump [60], and the meta-algorithm of bagging along with the 

alternating decision tree (ADT) [61]. The meta-algorithms make a new data set out of the primary 

data set and devise a new classifier for each set in one trial. These trials are repeated T times, and 
eventually, the results of the T classifiers are combined to achieve a more accurate result. 

 

In this study, four classifier combination methods are also performed on a group of three binary 
classifiers. Combination methods are max probability, average probability, the product of 

probability, and majority voting [16]. 

 

3. RESULTS 
 
Table 5 demonstrates the selected features employing the MI measure. According to table 5, as 

the number of database subjects increases, the number of selected features also increases. There 

are several similarities between the selected measures; fewer ECG features are among the 
selected ones, mostly the time domain ECG features. This result is consistent with the previously 

published reports. Most of the selected features are based on the SpO2 signal, which indicates 

their power for the OSA detection. However, simultaneous use of the ECG and the SPO2 features 

enhances the performance of the OSA detection method [16]. 
 

Table 5.  The selected features through forward feature selection based on the MI criterion. Name and 

definition of features stated in tables 1 to 4 

 

 

Table 6 illustrates the performance of our real-time detection method in each of the databases. 

We obtain the results from a system equipped with Windows 10 Pro, version 1511, the Intel 

processor Core i7CPU M640@2.8GHz and a RAM of 4GB. All the classifiers are realized in 
Java language. Evaluation is 10-fold cross-validation. 

 

Database Selected features 
Numbe

r 

UCD 

MI3, spo2min, NEP1, Sspo2, 𝑀𝐼𝑠𝑝𝑜2,1, , LZdown, odi4, CTM0.5, ODI55, tsa80, 

tsa85, tsa90, 𝑆2
𝐷𝑟𝑟

4, 𝑃𝑟𝑟
𝐻𝐹, 𝑆2

𝐷𝑒𝑑𝑟
6, 𝑃𝑒𝑑𝑟

𝐿𝐹,  ،samples 13th and 55th of 𝑃𝑟𝑟(𝜔)   

sample 4th of 𝑃𝑒𝑑𝑟(𝜔) 

20 

Apnea-

ECG 

Sspo2, 𝑀𝐼𝑠𝑝𝑜2,1, , LZCup, CTM0.25, CTM0.5, ODI55, tsa80, tsa85, tsa90, 𝑆2
𝐷𝑟𝑟

4, 

𝑆2
𝐷𝑒𝑑𝑟

6, 𝑃𝑒𝑑𝑟
𝐿𝐹,  samples 11th, 18th, 22th and 55th of 𝑃𝑟𝑟(𝜔)  and sample 4th of 

𝑃𝑒𝑑𝑟(𝜔) 

18 

Exclusiv

e 

database 

Spo2min,  𝑠𝑝𝑜2̅̅ ̅̅ ̅̅ ̅, Sspo2,  𝑟𝑠𝑝𝑜2,2, ZC, ApEn, SpEn, LZCup, 𝑀𝐼𝑠𝑝𝑜2,3,  𝑀𝐼𝑠𝑝𝑜2,4, , 

ODIS4, ODI23, ODI25, ODI31, ODI35, ODI51, ODI53, ODI55, odi3, odi4, 

odi5, tsa95, tsa85, tsa80, CTM0.5, CTM0.75, CTM1, ، sample 4th of 𝑃𝑒𝑑𝑟(𝜔) 

29 
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In some references, only the classifier`s training time is reported [16]. This parameter is not 
enough to represent the total computational burden of the suggested method. In some previous 

works, the processing time is reported for a specified number of samples [14]. In our study, “the 

processing time for a fixed number of data samples” is not an accurate measure since several 

databases with different ECG sampling rates are observed. 
 

Table 6. The performance of the suggested detection method in each of the databases: DT (Decision 

Table), REPT (Reduced-Error Pruning Tree), FT (Functional tree), AB+DS (Adaptive boosting + decision 

stump), B+ REPT (Bagging + REPT), B+ADT (bagging + alternating decision tree), AECG (Apnea-ECG 

database), EX (Exclusive database). Maximums in each column are shaded. 

 

 
Observing the processing time in table 6 reveals that the parameter value does not exceed 1s in 

the UCD and Apnea-ECG databases and 2s in our exclusive database. These margins are the 

minimum time needed for pre-processing and feature extraction at the specified sampling 
frequencies. Smaller values for processing times belong to the Apnea-ECG database with the 

lowest number of data points. The processing time for our exclusive database is the highest of all, 

nearly two times the minimum value. Regarding this quantity, two classifiers have the highest 

computational burden; the ADT and the SVM. The processing time for the SVM is more than 
two times higher than the others`. For the real-time OSA detection, these computationally 

intensive classifiers are not chosen despite their high classification ability. 

 
Accuracy, sensitivity, and specificity in all the databases are satisfactory but, slightly better in the 

Apnea-ECG database compared to the others. The two unsupervised classifies (the SOM and the 

K-means) do not exhibit acceptable results. Best sensitivity, but the worst specificity/accuracy 
belongs to adaptive boosting accompanied with the decision stump. On the other hand, bagging 

along with REPT achieves the best accuracy and specificity at the price of degrading sensitivity. 

Classif

ier 

Sensitivity (%) Specificity (%) Accuracy (%) 
Processing time for 

10 frames 
UC

D 

AE

CG 
EX 

UC

D 

AEC

G 
EX UCD 

AEC

G 
EX 

UC

D 

AEC

G 
EX 

SVM 
81.0

2 
96.6

8 
80.9 93 89.8 91 82 95.3 88.3 11.9 11.8 19 

KNN 80.5 89 
80.0

1 
83 94 

84.

7 
82 90.4 82.9 2.09 2.98 7 

DT 82.9 83 82.9 82 84.9 83 82 83.7 82 
2.50

3 
3.001 5.68 

C4.5  72 82.1 73 85 89 
86.
1 

81.7 85.6 82 
1.07
6 

1.45 
4.00
1 

REPT 81.5 83.5 82.9 84 92.6 
84.

9 
83.6 91.6 84.6 

1.00

2 
1.045 2.32 

FT 71.5 81.4 73 81.7 90.7 82 79.8 88.8 80 
4.34

5 
4.7 

9.86

7 
AB+D

S 
88 92.6 89.9 78 79.3 

93.

3 
79 87.3 92.6 

1.20

5 
1.32 

2.38

3 
B+ 

REPT 
81.0

3 
89 82.1 86.3 92.2 

89.

9 
85 91 88.5 

2.16

4 
2.97 

4.79

4 
B+AD

T 
85 89.9 

86.7

8 
83 95 85 84.5 95 85.6 

13.9

8 
15 29.9 

SOM 59 65 
55.0

1 
54.3 57 

55.

8 
57 63 55.1 8.99 9 18 

K-

means 
37.3 40.1 38.4 33 37 33 34.5 38.6 35.6 

4.89

7 
5.7 10 
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To reach a method with acceptable sensitivity and specificity, the combination routines declared 
in section 2.4 are used to fuse a group of three classifiers. Because the “boosting with the 

decision stump” and the “bagging along with the REPT” have better performances than others, 

they are the two fixed members of the group. The third member is chosen from the rest of the 

classifiers. We exclude the SVM and the “bagging with ADT” due to excessive computational 
load, so five options remain. These classifiers shape five different classifier groups to be fused. 

The classifier combination results are reported in tables 7 to 9.  

 
According to tables 7 to 9, performance is nearly equal in all databases (slightly better 

performance for the Apnea-ECG database). Combining the classifiers, balances the performance 

measures in values around 80%. The most successful combination happened when the third 
group member is the KNN or the decision tree. In these cases, all the measures of performance, 

including sensitivity, specificity, and accuracy, have achieved values of more than 85%. These 

results outperform all the suggested methods to date [13, 14, 16, 19, 32, 35]. The principal 

difference between the KNN and the decision tree lies in their nature. KNN benefits from slow, 
moment-based training. It is appropriate for subject-dependant applications, in which models are 

built and tested with the same data. In subject-dependant applications each classifier model 

should be trained (i.e. updated) with the user data before utilization. On the other hand, the 
decision table is suitable for subject-independent applications where the classifier model is 

trained with a database of several subjects before being tested by the user. 

 
Surveying the processing time shows that this quantity is approximately equal to the sum of the 

processing time needed for each classifier of the group. There is no distinguished difference 

between different combination routines. It is worth saying that combination methods based on 

probability need the sensitivity and the specificity of the classifier to weigh their decisions. This 
issue entails a more complex online realization than that of majority voting. Therefore, in online 

realization, the majority voting method will suffice. 

 
Table 7. The performance of the suggested classifier combination detection method in the UCD database. 

Three classifiers are combined with four different methods (MP: Maximum probability, PP: Probability 
product, AP: Average probability, MV: Majority voting). Other abbreviations are similar to table 6. The 

two highest values in each column are shaded. 

 

 

3rd 

classi

fier 

Sensitivity (%) Specificity (%) Accuracy (%) 
Processing time for 10 

frames 

M

P 

P

P 
AP 

M

V 

M

P 
PP AP 

M

V 

M

P 
PP AP 

M

V 

M

P 
PP AP MV 

KNN 
85

.8

7 

87

.1

9 

87.

41 
87.

55 
86.

07 
86.

16 
86.

03 
85.

25 
86.

12 
86.

2 
86.

12 
85.

28 
4.4 

4.4

7 
4.6

8 
4.3

6 

DT 
86

.1

4 

86

.5

7 

86.

68 
87.

61 
85.

47 
85.

42 
85.

35 
84.

16 
85.

64 
85.

7 
85.

68 
85 

4.8

69 
4.7

6 
4.6

5 
4.5

5 

  
C4.5 

81

.8

7 

82

.1

9 

82.

41 
83.

55 
82.

07 
82.

16 
82.

03 
81.

25 
82.

02 
82.

17 
82.

12 
81.

81 
3.9

63 
3.7

9 

3.9

2 
4 

REP
T 

82
.1

4 

82
.5

7 

82.
68 

83.
61 

81.
47 

81.
42 

81.
35 

80.
16 

81.
64 

81.
70 

81.
68 

81 
3.2
45 

3.3
9 

3.5
6 

3.6
5 

FT 
81

.8

2 

82

.2

5 

82.

41 
82.

9 
80.

69 
80.

57 
80.

48 
80.

43 
80.

96 
80.

98 
80.

95 
81.

03 
5.5

6 
5.6

3 
5.3

4 
5.2

1 
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Table 8. The performance of the suggested classifier combination detection method in the Apnea-ECG 

database. Three classifiers are combined with four different methods (MP: Maximum probability, PP: 

Probability product, AP: Average probability, MV: Majority voting). Other abbreviations are similar to 

table 6. The two highest values in each column are shaded. 

 

3rd 

class

ifier 

Sensitivity (%) Specificity (%) Accuracy (%) 
Processing time for 

10 frames 

M

P 
PP 

A

P 
M

V 

M

P 
PP 

A

P 
M

V 

M

P 

P

P 
AP 

M

V 

M

P 
PP AP MV 

KN

N 
86 

87.

2 

87

.5 

87

.6 

86

.1

7 

86.

23 

8

6.

1 

85.

34 

86.

15 

8

6.

2

7 

86.

2 

85.

38 

5.2

9 

5.5

55 

5.6

34 

5.6

8 

DT 
86.

23 

86.

6 

86

.7

3 

86

.7

0 

85

.5 

85.

48 

8

5.

3

9 

84.

2 

85.

2 

8

5.

8 

85.

7 

85.

02 

5.2

91 

5.3

4 

5.1

25 

5.2

3 

  
C4.5 

81.

94 

82.

2 

82

.5 

83

.6 

82

.1 

82.

2 

8

2.
1 

82.

33 

82.

23 

8

2.
2 

82.

25 

82.

4 

3.4

9 

3.6

5 
3.7 

3.9

9 

REP

T 

82.

15 

82.

6 

82

.7 

83

.6

9 

81

.5 

81.

49 

8

1.

3

8 

80.

2 

81.

7 

8

1.

7

5 

81.

71 
81 

3.1

1 

3.1

28 

3.0

68 

3.0

25 

FT 
81.

91 

82.

31 

82

.5 
83 81 

80.

7 

8

0.

6 

80.

57 
81 

8

1.

0

1 

81.

2 

81.

1 
5.9 

5.8

7 

5.7

9 

5.9

69 

 
Table 9. The performance of the suggested classifier combination detection method in the exclusive 

database. Three classifiers are combined with four different methods (MP: Maximum probability, PP: 
Probability product, AP: Average probability, MV: Majority voting). Other abbreviations are similar to 

table 6. The two highest values in each column are shaded. 

 

3rd 

class

ifier 

Sensitivity (%) Specificity (%) Accuracy (%) 
Processing time for 10 

frames 
M

P 
PP 

A

P 
M

V 

M

P 
PP 

A

P 
M

V 

M

P 
PP AP 

M

V 

M

P 
PP AP MV 

KN

N 
85.

67 
87.

1 

87

.3

5 

87.

23 
86 

86.

11 
8

6 
85.

24 
86 

86.

13 
86.

03 
85.

32 
12 

11.

6 
11.

81 
12.

05 

DT 86 
86.

6 

86

.6

5 

87.

5 
85

.5 
85.

34 

8

5.

3

0 

84.

14 
85

.6 
85.

7 
85.

48 
84.

9 
10.

56 
10.

68 
10.

54 
10.

43 

  
C4.5 

81.

85 
82.

17 

82

.1
3 

83.

51 

82

.0
1 

82.

14 
8

2 
81.

20 

81

.9
5 

82.

13 
82.

10 
81.

78 
9.0

4 
9.2

4 

9.4

7 
9.3

4 

REP

T 
82.

1 
82.

55 
82

.7 
83.

6 

81

.4

6 

81.

43 

8

1.

3

3 

81.

55 

81

.6

4 

81.

67 
81.

68 
82.

1 
7.3

2 
7.4

89 

7.3

67 
7.3

49 

FT 
81.

72 
82.

15 
82

.3 
82.

8 

80

.5

9 

80.

44 

8

0.

3

6 

80.

32 

80

.9

2 

80.

93 
80.

87 
81.

01 
14.

86 
14.

62 
14.

96 
15.

004 
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4. CONCLUSIONS 

 
In this study, several configurations for online detection of the OSA are suggested. The 

advantages of the proposed method are: exploiting only two channels of biological signals, 

automatic and real-time detection, and uniform acceptable performance over several databases 

(over 85%). To date, no other study has achieved all these merits together. Acceptable 
performance in well-known databases is due to classifiers that do not possess database-related 

parameters (e.g. sampling frequency of signals). The classifiers have covered deficiencies of each 

other in a combinational configuration. To reach the best result, the most successful classifiers 
are combined in groups of three members with four different combination methods. The features 

are also calculated and selected considering generality; in frequency-domain analysis, the refined 

Lomb-Scargle periodogram is used to care for the inherent non-uniform sampling of the R-R 

tachograms and unequal sampling frequency of the ECG signal in different databases [50]. 
Feature selection is based on the MI. The MI measure considers non-linear correlations among 

features and selects effective features to decrease the computational burden of the classifiers and 

avoid over-fitting problems.  
 

On the other hand, the MI feature reduction has an important impact on the family of decision 

tree classifiers. MI-based feature selection accompanied by decision tree classifiers, avoids the 
classifier sensitivity to MI-biased estimates. In other words, the decision-tree classifiers may be 

misled by a fake replica of a feature with more marginal samples and higher maximum entropy 

value [62]. Selection of the more appropriate feature with an entropy-normalised MI estimator is 

helpful [62, 63]. 
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