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Abstract

This document details the methodology of the Los Alamos National Laboratory COVID-19

forecasting model, COFFEE (COVID-19 Forecasts using Fast Evaluations and Estimation).1

COFFEE Methodology

COFFEE is a probabilistic model that forecasts daily reported cases and deaths of COVID-

19. COFFEE is fit to geographic regions independently, facilitating parallelization for fast

computations.

Notation

• t indexes time, where t is the number of days from a reference starting date (index)

• T is the day of the last observation (index)

• K is the forecast window size, in days (index)

• yc,t is the number of reported cases of COVID-19 on day t as reported on the COVID-19

Dashboard by the Centers for Systems Science Engineering (CSSE) at Johns Hopkins

University (JHU) (observable)

• ÿc,t =
∑t
j=1 yc,j is the cumulative number of reported cases of COVID-19 through day

t as reported by CSSE at JHU (observable)

• yd,t is the number of reported deaths of COVID-19 on day t as reported by CSSE at

JHU (observable)
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• ÿd,t =
∑t
j=1 yd,j is the cumulative number of reported deaths of COVID-19 through day

t as reported by CSSE at JHU (observable)

• δc,t is the underlying number of reported cases on day t (unobservable)

• δ̈c,t =
∑t
j=1 δc,j is the underlying number of cumulative reported cases through day t

(unobservable)

• δd,t is the underlying number of reported deaths on day t (unobservable)

• δ̈d,t =
∑t
j=1 δd,j is the underlying number of cumulative reported deaths through day t

(unobservable)

• δs,0 is the underlying number of susceptible individuals at the start of the pandemic

(unobservable)

• δs,t = δs,0− δ̈c,t is the underlying number of susceptible individuals on day t (unobserv-

able)

We use the convention that bolded quantities are vectors and unbolded quantities are

scalars. For concreteness, yc,t is a scalar while yc,1:t = (yc,1, yc,2, . . . , yc,t)
′ is a t× 1 vector.

Cases Model

Let

yc,t|δc,t, α ∼ NB

(
δc,t,

δc,t
α

)
(1)

where NB(a,b) is a Negative-Binomial model with mean parameter a > 0 and size parameter

b > 0 where

E(yc,t|δc,t, α) = δc,t (2)

Var(yc,t|δc,t, α) = δc,t(1 + α). (3)

Figure 1 shows the daily reported cases for New Mexico, the United States (US), and

France. All three regions have gone through rising and declining periods of cases with various

levels of noise in the reported cases.

In what follows, we outline the steps COFFEE takes to produce forecasts of reported

cases.

Step 1: Identify and Adjust Outliers

COFFEE automatically identifies and adjusts outliers [2]. It runs five different outlier detec-

tion algorithms on the reported data, taking into account possible day-of-week (DOW) effects.

A datum is declared an outlier if three or more of the five detection algorithms identify that

datum as an outlier. The outliers are not removed, but rather adjusted to ensure all values

are non-negative. Figure 2 shows the result of this process on daily cases for New Mexico, the

US, and France. All subsequent modeling steps are conducted with outlier adjusted data.
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Figure 1: The daily reported cases of COVID-19 for New Mexico, the US, and France.

Figure 2: The reported daily cases of COVID-19 (top) and the outlier adjusted daily cases (bot-

tom). (Top) Magenta points were identified as outliers. (Bottom) Magenta points are the adjusted

outliers.

Step 2: Compute the Empirical Growth Rate, κ̂t

The model for the underlying number of reported daily cases, δc,t, is a dynamic susceptible-

infectious (SI) model [1], where

δs,t = δs,t−1 − δc,t (4)

δ̈c,t = δ̈c,t−1 + δc,t, (5)
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and

δc,t = κt
δs,t−1

δs,0
δ̈c,t−1. (6)

The quantity δ̈c,t−1 is the cumulative number of underlying cases on day t − 1,
δs,t−1

δs,0
is the

proportion of the population still susceptible at time t− 1, and κt is the growth rate on day

t.

When
δs,t−1

δs,0
≈ 1 (when most of the susceptible population is still susceptible), we can

rearrange Equations 4, 5, and 6 to identify a crude estimator of κt:

κ̂t ≈

(
ÿc,t
ÿc,t−1

− 1

)
. (7)

Estimates for κt are shown in Figure 3. It is clear that κ̂t is dynamic and changes over time.

This is what makes forecasting COVID-19 so challenging; parameters of epidemiologically-

motivated models are dynamic and forecasting with them requires anticipating how these dy-

namic parameters will change in the future, not just tracking where they have been in the past.

In what follows, we describe how we forecast κ̂t.

Figure 3: κ̂t starting in May for New Mexico, the US, and France.
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Step 3: Compute κ̂∗t = logit(κ̂t)

After the initial portion of the outbreak, κ̂t is almost always between 0 and 1. COFFEE logit

transforms κ̂t, where logit(p) = log(p/(1 − p)) for p ∈ (0, 1). For all days with no reported

cases, κ̂t = 0, an incompatible value with the logit transform. Thus, we compute κ̂∗t =

logit(κ̂t) as follows:

κ̂∗t =


logit(κ̂t) if κ̂t > τc and κ̂t < 1− τc

logit(τc) if κ̂t ≤ τc

logit(1− τc) if κ̂t ≥ 1− τc,

(8)

where τc = 0.95 ∗ min({κ̂t|κ̂t > 0}), ensuring that if κ̂t ≥ κ̂t′ , then κ̂∗t ≥ κ̂∗t′ . The logit

transformed κ̂t are shown in Figure 4.

Figure 4: The quantities κ̂∗t starting in May for New Mexico, the US, and France.

Step 4: Split Data into Training and Testing Sets

Let T be the last observed day. We only consider the last 42 days of data when fitting a

model for κ̂∗t and split those days into training and testing data [3]. Days T − 41 through

T − 14 constitute the training data, while T − 13 through T constitutes the testing data. We

will denote the last day of the training data by T train = T −14. The splits are shown for New

Mexico, the US, and France in Figure 5.

Step 5: Compute κ̂trendt

We fit a weighted regression to the training data, where we downweight influential points that

could have an outsized influence on the regression using the inverse of Cook’s distance. The

regression has a linear trend over time and a DOW effect:

κ̂∗t = β0 + β1t+ β2I(t = Monday) + β3I(t = Tuesday) + . . .+ β7I(t = Saturday). (9)
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Figure 5: The quantities κ̂∗t for New Mexico, the US, and France. Circles are training data, left

of the vertical dashed line, while testing data are the triangles to the right of the dashed vertical

line.

Variable selection is performed, potentially resulting in a subset of the model parameters in

Equation 9. We refer to the fits and predictions from this linear model as κ̂trend
t where

κ̂trend
t = β̂0 + β̂1t+ β̂2I(t = Monday) + β̂3I(t = Tuesday) + . . .+ β̂7I(t = Saturday) (10)

where, if a variable was removed during the variable selection phase, then the corresponding

β̂ is set equal to 0. Figure 6 shows κ̂trend
t for the training and testing windows.

Figure 6: The quantities κ̂∗t for New Mexico, the US, and France. Circles are training data, left

of the vertical dashed line, while testing data are the triangles to the right of the dashed vertical

line. Solid line represents the fits (train) and predictions (test) of κ̂trendt based on the regression.
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Step 6: Compute κ̂constantt

There is a κ̂t trajectory corresponding to a constant new number of cases day over day. Let

ȳc,T train =
1

7

T train∑
t=T train−6

yc,t (11)

be the average number of daily reported cases over the last week of the training window.

Then

κ̂constant
t = logit

(
ȳc,T train

[(
δs,0 − ÿc,t−1

δs,0

)
ÿc,t−1

]−1)
(12)

where we set δs,0 = 0.55N , where N is the population of the forecasted region and 0.55

is a nominal attack rate for COVID-19. Figure 7 shows κ̂constant
t for t = T train + k and

k ∈ 1, 2, . . . , 14.

Figure 7: The quantities κ̂∗t for New Mexico, the US, and France. Circles are training data, left of

the vertical dashed line, while testing data are the triangles to the right of the dashed vertical line.

Solid line represents the values of κ̂constantt , the trajectory corresponding to a constant number of

new reported cases, equal to ȳc,T train .

Step 7: Compute a Joint Probability Distribution over Tuning Parameters

The form of the forecasting model for κ̂forecast
t is

κ̂forecast
t (η, ω, φ) = λt(φ)[wtmin(η∗, κ̂trend

t ) + (1− wt)κ̂constant+DOW
t ] (13)

for t = T train + k and k ∈ 1, 2, . . . , 14. The objective is to produce forecasts for κ̂t. The way

COFFEE does this is be creating a blended combination of κ̂trend
t and κ̂constant+DOW

t where

κ̂constant+DOW
t =κ̂constant

t +

β̂2I(t = Monday) + β̂3I(t = Tuesday) + . . .+ β̂7I(t = Saturday), (14)

which is κ̂constant
t with the DOW effects estimated in Equation 10 added.
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There are three tuning parameters in Equation 13, each playing a role in controlling the

form of κ̂forecast
t .

The first tuning parameter η puts a cap on how large κ̂trend
t can get. A forecast can blow

up if κ̂trend
t is growing in an unmitigated fashion. The parameter η is a safeguard against this

unmitigated growth. We set

η∗ = median({κ̂∗T train−6, κ̂
∗
T train−5, . . . , κ̂

∗
T train})η (15)

for η ∈ [0, 1].

The second tuning parameter is ω. The basic form of the forecasting model is to transition

from a forecast that relies on the current trend κ̂trend
t to a forecast that relies on κ̂constant+DOW

t .

If κ̂trend
t is trending up, this transition keeps the forecasts from blowing up. If κ̂trend

t is trending

down, this transition keeps the forecasts from flat-lining at 0 new cases. The assumption

behind this modeling choice is that, as cases are going up, people will take action to curb

the growth of the pandemic, either through independent choices of personal responsibility or

governmental policies. As cases are going down, however, we assume policies will be relaxed

or people will become more comfortable engaging in activities that will increase transmission

pathways. The tuning parameter ω ≥ 1 determines how quickly the forecast transitions from

κ̂trend
t to κ̂constant+DOW

t . The closer ω is to 0, the quicker the transition occurs.

wT train+k =


1−

(
k−1
ω

)2

if k ≤ ω + 1

0 otherwise

(16)

where k is a positive integer. Figure 8 shows weight trajectories wt for various choices of

ω. When wT train+k = 1, all weight is on κ̂trend
t ; when wT train+k = 0, all weight is on

κ̂constant+DOW
t .

The third tuning parameter is φ. The trajectory λt is defined as

λT train+k = 1 + k
φ− 1

30
, (17)

a linear trend starting at 1 when k = 0. The tuning parameter φ > 0 determines whether

λT train+k trends up (φ > 1) or down (φ < 1). Examples of λT train+k are shown in Figure 9.

For a combination of η, ω, and φ, we compute κ̂forecast
t (η, ω, φ) and compute the inverse-

distance between the inverse-logit of κ̂forecast
t (η, ω, φ) and κ̂t over the test period:

d−1(η, ω, φ) =

(
T train+14∑
t=T train+1

[
logit−1

(
κ̂forecast
t (η, ω, φ)

)
− κ̂t

]2)−1

. (18)

Finally we compute a joint probability distribution over η, ω, and φ as the normalized

inverse-distance. The probability distributions for New Mexico, the US, and France are shown

in Figure 10.
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Figure 8: Weight trajectories wT train+k for different values of ω. The smaller ω is, the quicker

wT train+k transitions from 1 where all weight is assigned to κ̂trend to 0 where all weight is assigned

to κ̂constant+DOW
t .

Figure 9: The trajectories λT train+k for different values of φ. For φ less than 1, λT train+k tilts the

blended combination of κ̂trendt and κ̂constant+DOW
t up. When φ is greater than 1, λT train+k tilts it

down.

Step 8: Produce the Reported Cases Forecast

The final step is to simulate reported cases. The purpose of the previous steps was to get a

joint probability distribution over the tuning parameters that can be used to sample from.

If more than 14 of the last 28 days had zero reported cases, we take independent and

identically distributed (iid) samples of future reported cases from the empirical distribution

of outlier adjusted reported cases over the last 28 days. If no cases were reported over the
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Figure 10: (Top) κ̂∗t for the training period (circles) and testing period (triangles). Lines in the

testing period are κ̂forecastt . Each line corresponds to a combination of η, ω, and φ. The color of the

line is proportional to d−1(η, ω, φ) with darker lines corresponding to better agreement between

κ̂forecastt and κ̂∗t in the test set. (Bottom) The normalized inverse-distance values for ω (x-axis), φ

(y-axis), and η (panels). Darker tiles correspond to larger inverse-distances.

last 28 days, we sample future reported cases as iid Bernoulli draws with success probability

equal to 1/29. If 14 or more of the last 28 days observed at least 1 reported case, we simulate

κ̂forecast
T+k for k ∈ 1, 2, ...,K by doing the following:

1. Do Step 5, treating the training data as days T to T − 27, resulting in a fitted linear

model in the form of Equation 9. Use this to compute κ̂trend
T+k .

2. Do Step 6 to compute κ̂constant+DOW
T+k , replacing T train with T in Equations 11 and 12.

3. Draw a vector of (ω, φ, η) from the joint distribution computed in Step 7.

4. Compute κ̂forecast
T+k following Equation 13.

5. Compute logit−1(κ̂forecast
T+k ).

6. Draw an attack rate p ∼ Uniform(0.4, 0.7) and set δforecasts,0 = pN .

7. Set δ̈c,T = ÿc,T and δs,T = δforecasts,0 − ÿc,T

8. For k = 1, 2, . . . ,K, compute

(a) δforecastc,T+k = logit−1(κ̂forecast
T+k )

(
δforecasts,T+k−1

δforecasts,0

)
δ̈forecastc,T+k−1

(b) δ̈forecastc,T+k = δ̈forecastc,T+k−1 + δforecastc,T+k

(c) δforecasts,T+k = δforecasts,T+k−1 − δforecastc,T+k

9. Draw yforecastc,t |δforecastc,T+k , α̂ ∼ NB

(
δforecastc,T+k ,

δforecastc,T+k

α̂

)
where α̂ is the maximum likelihood

estimate.
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Figure 11 shows the forecasts for New Mexico, the US, and France.

Figure 11: The median (black line) and 50% and 80% prediction intervals (ribbons) for New

Mexico, the US, and France for daily reported cases.
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Deaths Model

Figure 12 shows the daily deaths for New Mexico, the US, and France.

Figure 12: Daily reported deaths for New Mexico, the US, and France.

The COFFEE deaths model is

δd,t = γtf(δc,1:t, ν) (19)

where γt is the case fatality ratio and f(δc,1:t, ν) is a moving average of δc,1:t with window

size equal to ν:

f(δc,1:t, ν) =
1

ν

t∑
j=t−ν+1

δc,j . (20)

The deaths model proceeds with the following steps.

Step 1: Identify and Adjust Outliers

COFFEE uses the same outlier identification and adjustment routine as with cases, resulting

in outlier adjusted deaths which are used for all subsequent forecasting steps. The outlier

adjusted deaths are shown in Figure 13.

Step 2: Compute the Case Fatality Ratio, γ̂t

We estimate γt by rearranging Equation 19 and replacing δd,t with yd,t and δc,1:t with yc,1:t

for t ≤ T :

γ̂t = yd,t/f(yc,1:t, ν). (21)

Figure 14 displays γ̂t for ν ∈ 7, 14, 21, 28, 35.
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Figure 13: The originally reported daily deaths of COVID-19 (top) and the outlier adjusted daily

deaths (bottom). (Top) Purple points were identified as outliers. (Bottom) Purple points are the

adjusted outliers.

Figure 14: The values γ̂t for New Mexico, the US, and France (rows) for different moving average

window sizes of ν (columns).

Step 3: Compute γ̂∗t = logit(γ̂t)

COFFEE logit transforms γ̂t, setting all values of γ̂t < τd equal to τd and all values of

γ̂t > 1− τd equal to 1− τd where τd = 0.95 ∗min({γ̂t|γ̂t > 0}). The logit transformed γ̂t are
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shown in Figure 15.

Figure 15: The values of γ̂∗t for New Mexico, the US, and France (rows) for different values of ν

(columns).

Step 4: Split Data into Training and Testing Sets

Split γ̂∗t in a training and testing data set, same as with the cases model.

Step 5: Compute γ̂trendt

Fit a regression model with a linear date term and a DOW effect to γ̂∗t , analogous to Equation

9. Variable selection is then performed. The fitted regression and predictions (γ̂trend
t ) are

shown in Figure 16.
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Figure 16: The quantities γ̂∗t for New Mexico, the US, and France. Circles are training data, left

of the vertical dashed line, while testing data are the triangles to the right of the dashed vertical

line. Solid line represents the fits (train) and predictions (test) of γ̂trendt based on the regression.

The US and France have a DOW effect, while New Mexico had the DOW effect removed in the

variable selection phase.

Step 6: Compute a Joint Probability Distribution over Tuning Parameters

The form of the forecasting model for γ̂forecast
t is

γ̂forecast
t (ν, θlower, θupper) =


θlower if γ̂trend

t < θlower

θupper if γ̂trend
t > θupper

γ̂trend
t otherwise

(22)

for t = T train + k and k ∈ 1, 2, . . . , 14. The parameters θlower and θupper act as a floor and

a ceiling to γ̂forecast
t , keeping it from getting too large or too small. We evaluate γ̂forecast

t

on a grid over ν, θlower, θupper and compute the joint distribution as proportional to the

inverse-distance between logit−1(γ̂forecast
t ) and γ̂t, similar to Equation 18. The estimated

joint probability distribution over tuning parameters is shown in Figure 17.

Step 7: Produce the Reported Deaths Forecast

The final step is to simulate reported deaths. The purpose of the previous steps was to get a

joint probability distribution over the tuning parameters that can be used to sample from.

If more than 14 of the last 28 days had zero reported deaths, we take iid samples of future

reported deaths from the empirical distribution of outlier adjusted reported deaths over the
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Figure 17: Joint probability distributions over tuning parameters ν (columns), θupper, and θlower

for New Mexico, the US, and France (rows).

last 28 days. If no deaths were reported over the last 28 days, we sample future reported

deaths as iid Bernoulli draws with success probability equal to 1/29. If 14 or more of the last

28 days observed at least 1 reported death, we simulate γ̂forecast
T+k for k ∈ 1, 2, ...,K by doing

the following:

1. Fit the regression outlined in Step 5 to days T to T − 27. Use this to compute γ̂trend
T+k .

2. Draw a vector of (ν, θlower, θupper) from the joint distribution computed in Step 6.

3. Compute γ̂forecast
T+k following Equation 22.

4. Compute logit−1(γ̂forecast
T+k ).

5. For k = 1, 2, . . . ,K, compute

(a) yforecastd,T+k = logit−1(γ̂forecast
T+k )f(δforecastc,1:t , ν), where δforecastc,t = yc,t if k − ν ≤ 0 and

δforecastc,t = yforecastc,t if k − ν > 0.

Figure 18 shows the daily deaths forecasts for New Mexico, the US, and France.
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Figure 18: The median (black line) and 50% and 80% prediction intervals (ribbons) for New

Mexico, the US, and France for daily reported deaths.
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