
Proceedings of the 16th Virtual International Meeting on
Fully 3D Image Reconstruction in
Radiology and Nuclear Medicine

Editors: Georg Schramm, Ahmadreza Rezaei, Kris Thielemans and
Johan Nuyts

16th Virtual International Meeting on 
Fully 3D Image Reconstruction in 
Radiology and Nuclear Medicine

FULLY3D  Leuven Belgium (CEST) 19 - 23 JULY 2021



Preface

Welcome to the Proceedings of the 2021 International Meeting on Fully Three-Dimensional Image Reconstruction
in Radiology and Nuclear Medicine, which was to be held in Leuven, Belgium, but had to be transformed in a
virtual meeting because of the covid-19 pandemic.
This was the 16th in a series of meetings that have served as one of the major forums for presentation of new
results in the field of 3D image reconstruction, primarily with applications in x-ray computer tomography, PET
and SPECT. The proceedings of the 2021 meeting are deposited in arXiv, and these proceedings and those of all
past meetings are archived at http://www.fully3d.org/index.html.
Over the life-time of the meeting the focus has shifted to reflect recent developments in the field. Many of the
major developments in fully 3D PET and SPECT imaging were first presented at Fully3D, as were the key results
for analytic reconstruction methods in cone beam x-ray CT. Also in this meeting, a broad range of topics has been
presented. As expected, deep learning methods are being used increasingly: they are used as post-processing
tools or incorporated in the reconstruction, often aiming at improved noise and/or artifact suppression. This year
we had three keynote speakers. The talk by Prof. Bart Preneel, COSIC KU Leuven and IMEC, Belgium, an
expert in cryptography, cybersecurity and privacy, was entitled “The Future of Security and Privacy”. Prof. Koen
Van Laere, Head of Nuclear Medicine at KU Leuven, discussed “Ultrahigh spatial resolution for PET - The
holy grail in clinical nuclear medicine?”, and Prof. Marcel Van Herk, University of Manchester, UK, talked on
“History and future of image guided radiotherapy”, which he helped and helps shaping.
Fully3D has always been an independent meeting and we have continued the tradition. We are therefore
particularly grateful to our sponsors (listed on the next page) for their valuable financial support. In this regard
we would like to thank Scott Metzler and Samuel Matej, chairs of Fully3D 2019, for passing on starting funding
to us. We would also like to express our appreciation to the Scientific Committee for their prompt reviews of the
large number of papers submitted to the meeting and to our team members at KU Leuven and UCL for their
valuable help. We would especially like to thank Ann Moerenhout and the KU Leuven Congress Office, for
taking care of a powerful conference website and providing excellent administrative support.

Johan Nuyts and Kris Thielemans, conference chairs
Georg Schramm and Ahmadreza Rezaei, organizing committee
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Abstract Photon-counting detectors are expected to be a great im-
provement for CT technology. One of its strong potentials is the
accuracy in material discrimination in the CT image. Material de-
composition is typically solved in a model-based manner, such as a
maximum-likelihood estimation of the material concentrations. In this
abstract we propose a series of methods to solve successfully the mate-
rial decomposition that combine model-based and data-driven strate-
gies in a good balance with “physics-aware" deep neural networks. We
present three different deep learning approaches and compare their per-
formance with a model-based maximum-likelihood estimate. The deep
learning methods Significantly outperformed the maximum-likelihood
estimate. The results show that physics-aware deep neural networks is
a promising approach for photon-counting CT reconstruction.

1 Introduction

Photon Counting Computed Tomography (PCCT) is a cutting-
edge technology, that is gaining important prominence in the
future of CT [1] [2] [3]. Photon-count detectors provide
great improvements. One of these is the enhancement in
the material decomposition of CT data, opening new and
better possibilities for accurate clinical studies. However,
the material decomposition methods are still an on-going
research area due to the very new launch of this technology
of detectors.
Material decomposition is a non-linear inverse problem that
consists in obtaining material concentration signals from the
measured PCCT data, and it typically solved in the projection
domain, that is, before reconstructing the sinograms. The
most accepted solution to this inverse problem is a maximum-
likelihood estimate [4] [5] [6]. This is a model-based method
that does not take any advantage of available training data and
relies on an accurately defined forward model. This forward
model depends on the spectral responses of the detector and
source, and it is usually obtained by a calibration process that
may introduce imprecision. Furthermore, the optimization
solvers may become slow or provide noisy results due to the
ill-posedness and non-linearity of the problem.
Several solutions have been proposed in the last few years
to improve the material decomposition. The authors in [6]
introduce regularization to improve noise performance. They
prevent certain singularities of the Poisson likelihood with
a least-squares approximation and add a regularization term.
However, how to choose a good regularization functional and
its parameters remains an open question. Another method is
to use deep learning, which allows including prior informa-
tion from training data. In [7] the authors consider a U-Net
to solve the inverse problem. This architecture is well-known

in medical image processing, nevertheless it is not specific
for this material decomposition problem and is agnostic to
the physics and statistics of the problem. In order to improve
the image quality, it is desirable to incorporate information
about the physics of the image acquisition. In the area of
CT reconstruction there are interesting solutions that already
consider a good balance between model- and data- based ap-
proaches. In [8] and [9] the authors propose neural network
architectures that are inspired by iterative solutions to the
reconstruction problem, where a series of residual convolu-
tional blocks mimic the updates. In this abstract we propose
to use this type of solutions in the material decomposition.
We aim to design a new a better method to solve the mate-
rial decomposition in PCCT. For this, we search for a good
balance between model-based and data-driven approaches,
considering the physics and statistics behind the problem in
our solution, as well as making use of state-of-the-art deep
learning and available training data.

2 Materials and Methods

In this section we overview the technology of PCCT and
the models behind it. We also formulate the material de-
composition as an inverse problem, and present the typical
model-based solution (a maximum-likelihood estimation) as
well as our proposed deep learning strategies.

2.1 Photon Counting CT and material decomposi-
tion

A Photon Counting detector consists in a multi-bin system
with B > 2 energy bins. Each of the bins, j = 1, . . . ,B, regis-
ters the projected energy from different sections of the energy
spectrum, and therefore has a different energy response. Let
us consider a simplified 2-dimensional (x,y) image space,
and a detector model that is uniform along its length. The
expected value of the number of photon counts in bin j at
projection line ` follows the polychromatic Beer-Lambert
law, given as

λ `
j =

∫ ∞

0
ω j(E)exp

(
−
∫

`
µ(x,y;E)ds

)
dE, (1)

where ω j(E) models an ensemble of effects: an energy de-
pendent X-ray source, the detector efficiency, and the energy
response in bin j [1]. In order to perform material decomposi-
tion in photon-counting CT, we assume that the X-ray attenu-
ation coefficient, µ(x,y;E) , can be linearly decomposed into
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M components as µ(x,y;E) ≈ ∑M
m=1 αm(x,y)τm(E), where

M is the number of potential materials in the image. The de-
composition is typically considered in the sinogram domain
(before reconstruction). Therefore, the target variable is the
line integral of the materials, defined as

am(`) =
∫

`
αm(x,y)ds = R (αm) , (2)

where R is the Radon transformation operator.

2.2 The inverse problem

The material decomposition is a non-linear inverse problem
that consists in mapping the measured photon counts from
the multi-bin detector to the material line integrals as de-
fined in Eq. (2). Let us define the Hilbert spaces X for
the material variables (solution space) and Y as the photon
counts (measurement space). The solution variable a ∈ X is
a vector containing the components of every material, i.e.,
a = [a1(`), . . . ,aM(`)] (for simplicity, and without loss of
generality, we omit the line ` from notation).
Given the expected value of bin counts as described in Eq. (1),
and line integrals of materials in Eq. (2), the forward operator
F : X → Y considers the poly-chromatic Beer-Lambert law
on each jth component as

λ j(a) =
∫ ∞

0
ω j(E)exp

(
−

M

∑
m=1

amτm(E)

)
dE, (3)

so that the forward model is given by

F (a) = [λ1(a),λ2(a), . . . ,λB(a)], (4)

and the measured data y ∈ Y by

y = [y1, . . . ,yB]
T , (5)

where a Poisson noise model is considered in the photon
counts, so each jth energy component in the measured data
distributes as y j ∼ Poisson(λ j(a)).

2.3 A maximum-likelihood solution

Most accepted methods to solve the material decomposition
are a model-based. The solution to this non-linear inverse
problem is often interpreted as a Maximum Likelihood (ML)
estimation of a [5] [4]. This estimation consists, after apply-
ing log and simplifying the Poisson likelihood expression, in
solving the following optimization problem:

minimize
a

∑B
j=1 (λ j(a)− y j log(λ j(a)))

subject to ai ≥ 0 ∀i = 1, . . . ,M
(6)

where the cost function L (a) =

∑B
j=1 (λ j(a)− y j log(λ j(a))) is the negative log-likelihood

function. Then, considering an iterative algorithm, such

as, for instance, a Log-Barrier method for constrained
optimization [10], a solution is found

aML = argminL (a). (7)

However, this iterative solution may be computationally ex-
pensive to obtain. Also, the convexity of the problem is often
ignored in the choice of the solver [6].

2.4 Deep Learning for the material decomposition

Deep learning together with training data can improve the
model-based solutions, such as the ML estimate. In this ab-
stract, we present three different deep learning architectures
designed to provide a good balance between the physics and
statistics models, and the training data and learning strategies.
The proposed architectures contain a set of convolutional
residual blocks (ResBlocks in Fig. 1). Each block consists in
three convolutional layers followed by a rectified linear unit
activation [11].
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Figure 1: Proposed deep learning architectures. (a) A post-
processing technique that mimics updates with residual blocks.
(b) An unrolled gradient-descent scheme, that also incorporates
the gradient on the likelihood in every update (or block). (c) An
unrolled primal-dual, that also considers a dual variable, so two
different chains of residual blocks are trained in the network (red:
the dual chain, blue the primal chain).

2.4.1 Learned Denoiser

We first propose a data-driven post-processing ML. This
is a residual net that can denoise the output from the ML
optimization methods. After each ResBlock, as represented
in Fig. 1, the new solution is updated as

an+1 = an−Ψθ n (an) , (8)

where Ψθ n (an) is the nth residual block, parametrized by
θ n, which represents the values of the convolution filters,
and with a starting point in the ML estimate, i.e., ao = aML.
These blocks represent a few more learned iterative steps of
an ML estimation solver. The physics and statistical model
are implicitly contained in the starting point aML.
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2.4.2 Unrolled gradient-descent iterations

Our next proposed architecture moves one step further, and,
following the same philosophy of mimicking iterative up-
dates, we consider a gradient-descent iteration scheme. A
gradient-descent solution to the ML estimation would in-
volve iterative updates of the form an+1 = an− γδL (an,y),
that is, the derivative of the likelihood term L (an,y) is used.
The unrolled gradient-descent learns the update function on
each nth iteration, i.e., Ψθ n . Therefore, the expression of the
residual block operation remains

an+1 = an−Ψθ n (an,δL (an,y)) , (9)

with an starting point at ao = aML, and where the function for
L (an,y) is determined as ∂L

∂a = [ ∂L
∂a1

, . . . , ∂L
∂aM

] with elements

∂L

∂am
=

B

∑
j=1

(
y j

λ j
−1)

∫ ∞

0
τmw j exp

(
−

M

∑
i=1

aiτi(E)

)
dE.

(10)
We therefore incorporate information from the physics and
the statistics providing structure at the input of every block
creating a dependency with the derivative of the likelihood
function.

2.4.3 Unrolled primal-dual iterations

The next proposed architecture is a learned primal-dual
scheme, inspired by the Primal Dual Hybrid Gradient used
in regularized optimization problems in tomographic recon-
struction [11]. This architecture incorporates a dual variable,
hn ∈Y (in data space), so the network alternates between two
different types of residual blocks: one in the dual space and
one in the primal space (as illustrated in Fig. 1). The network
performs then in every pair of blocks

hn+1 = hn−Γκn (hn,F (an),y) ,

an+1 = an−Ψθ n
(
an, [δF (an)]∗hn+1) , (11)

with a starting point of ao = aML. The derivative of the
forward operator follows the expression

∂λ j

∂am
=−

∫ ∞

0
τmw j exp

(
−

M

∑
i=1

aiτi(E)

)
dE, (12)

for every combination of j and m. Consequently, the physics
model is explicitly incorporated to the architecture by means
of the forward operator F (an) and the adjoint of its derivative
[δF (an)]∗.

2.5 Antropomorphic phantoms and training process

Our antropomorphic phantoms are based on the KiTS19 Chal-
lenge kidney dataset [12]. Three materials are considered:
bone, soft-tissue and iodine as contrast agent. The simulated
values of a are concentration-based. For bone and soft-tissue

these are approximated from the Hounsfield units. Iodine
is placed on the tumors (masks are available in KITS19)
and concentration is random between 0 and 10 mg/ml. One
example of a antropomorphic phantom is shown in Fig. 2.
Using the ODL library [9], we simulate 600 two-dimensional
spectral CT cases. We consider an 8-bin silicon PCCT detec-
tor Model Carlo simulated response, and a 120 keV X-ray
source. The image size is 512x512 pixels and the current-
time product approximately 100 mAs. A flat 9 mm aluminum
filter is assumed. Fan-beam geometry with 512 angles and
512 detector elements is used in the Radon transformations,
and a filtered back projection (FBP) to calculate the inverses.
From these samples, 500 are used as training and 100 as
test. For the deep learning calculations we use PyTorch and
one NVIDIA GPU GeForce RTX 2080 Ti. We use Adam
optimizer with a learning rate of 10−4.

3 Results and discussion

We have conducted a simulation study to compare our pro-
posed deep learning methods to the classical maximum-
likelihood estimation. First, we generate a set of simulations
using antropomorphic numerical phantoms constructed from
real energy integrating CT volumes (not PCCT) with patients
of kidney cancer. Then, we discuss the results of solving the
material decomposition with the different competing meth-
ods.

3.1 Test results

In this study investigate the ability of deep-learning sinogram
processing for improving the material basis decomposition.
The benchmark and starting point of the study is a solution
to the ML estimation, aML. As shown in Table 1, the results
obtained after applying deep learning have improved con-
siderably the ML estimate: all three proposed architectures
enhanced the test MSE of the material decomposition. Also,
the three proposed methods have a similar order of training
parameters and computational time.
In order to also get a qualitative evaluation of the results, we
have computed the virtual monoenergetic image at 70 keV,
using the calculated concentrations of bone and soft-tissue
in a and the FBP transformation. We also depict the over-
lay of iodine and bone concentrations, as shown in Fig. 2.
From this evaluation, we have observed that, even though
the post-processing approach is best is terms of test MSE,
the resolution of the reconstructions from the unrolled ap-
proaches seems better (see Fig. 2). In particular the unrolled
gradient-descent is the best in terms of resolution quality
(this is also reflected in the SSIM in Table 1), while the un-
rolled primal-dual looks more noisy. On the other hand, the
material concentrations are more accurate in the unrolled
primal-dual than in the other two. We have also realized that,
in both unrolled test results there are more outlier cases, that
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ML + FBP ML + uGD + FBPML+ Resblocks + FBP

TRUE + FBP

Iodine concentration

bone concentration

ML + uPD + FBP

Figure 2: Qualitative results. A virtual monoenergy image with material overlay. The antropomorphic phantom is one sample from
KiTS19. Filter-back projection (FBP) has been considered as reconstruction strategy. ML corresponds to Maximum Lilehood, Resblocks
referes to the Learned Denoise, uGD to the unrolled Gradient Descent, and uPD to the unrolled Primal Dual.

ML LD uGD uPD

MSE 0.78 0.05 0.07 0.17
error mean 0.029 0.021 0.018 0.020
SSIM 0.27 0.45 0.83 0.49

Table 1: Quantitative results (MSE: mean squared error; error
mean and SSIM: structural similarity index metric) of Maximum
Likelihood (ML), Learned Denoiser (LD), unrolled Gradient De-
scent (uGD) and unrolled Primal Dual (uPD) . Averaged over 100
test samples.

is, particularly bad test samples that decrease the average of
the test MSE.
Also, we have observed that the unrolled networks may
require a more sophisticated training than the learned de-
noiser, that is, a good initialization or a dynamic learning
rate could significantly boost the performance of the unrolled
approaches. Considering a good training strategy will be part
of our future work.

4 Conclusion

We propose to combine the benefits from new photon count-
ing detectors with the outstanding performance of deep learn-
ing in medical image analysis. In order to find a good balance
between model-based and data-driven, inside our proposed
deep learning solutions we have considered the structure of

the underlying inverse problem and the physics from PCCT.
We present three different deep learning methods to solve
the material decomposition. Our proposed data-driven ap-
proaches have improved considerably the accuracy of the
typically used model-based ML estimates.
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Abstract Dual energy CT is a promising technique for several medical
applications, including dynamic angiography. Recently, a dynamical
two-step method has been proposed : first, the water and iodine sino-
grams are computed from the multi-energy sinograms, then, a dynamic
image of the iodine contrast is reconstructed using 4D Total-Variation
(TV) constrained reconstruction from the iodine sinogram. In contrast
to the 2-step methods, one-step methods use a model relating directly
the multi-material images to the multi-energy sinograms. This kind of
methods are well-known to reduce the noise correlation between the
material images by avoiding the intermediate decomposition step. In
this work we propose a dynamical one-step method using an empirical
model and based on the Non-Linear Primal–Dual Hybrid Gradient
Method (NL-PDHGM). From simulations which consider a CBCT
system with dual layer spectral detector and a dynamic software phan-
tom, we compare reconstructions obtained with the dynamical 2-step
method and the proposed dynamical one-step method.

1 Introduction

Dual-energy CBCT data are of interest to medical applica-
tions, notably with the possibility to decompose the object
onto some physical (photo-electric/comptom,...) or mate-
rials basis (water/bone,water/iodine,...) [1]. The material
decomposition problem can be tackled by different strategies.
First of all, in 2-step methods the materials sinograms are
computed from the multi-energy sinograms, then, a recon-
struction method (FDK, iterative methods,...) is used to re-
construct material specific images from the multi-material de-
composed sinograms [2, 3]. In general, the material decompo-
sition step greatly amplifies noise due to the ill-conditioning
of the inversion step in the basis change. In contrast to the
2-step methods, one-step methods propose to solve the de-
composition problem in a constrained one-step inversion,
i.e. estimate multi-material reconstructions images from
multi-energy sinograms [4–6]. All theses methods consider
a static object. On the other hand, several works proposed
approaches for dynamic reconstructions based on the 4D
TV regularization with different medical applications includ-
ing in cardiac, thoracic, pulmonary and brain imaging [7–9].
These methods require to solve a non-smooth large-scale op-
timization problem, therefore it is crucial to use an efficient
optimization strategy to have an acceptable computation time.
In the last decade, many works proposed computationally
efficient implementations based on the primal-dual optimiza-
tion algorithm of Chambolle and Pock [10] for dynamic
reconstructions [11–13] as well as for one-step methods [4].
Recently we have proposed a dynamical iodine reconstruc-
tion based on a 2-step method with data acquired with dual-
energy (DE) CBCT devices [14] with a motion-correction
extension [15]. The main objective of these works is to pro-

pose a dynamic iodine reconstruction which can be used to
visualize the flow of contrast agent through the brain vas-
culature, which has a large diagnostic potential in the acute
ischemic stroke workflow. In this work we propose a dynam-
ical one-step method to tackle this reconstruction problem.
This dynamical one-step method is based on a polynomial
empirical imaging model and the Non-Linear Primal–Dual
Hybrid Gradient Method (NL-PDHGM) [16] which is a non-
linear adaptation of the Chambolle-Pock method [10]. To
assess the capabilities of this algorithm we simulate data of
a dual-energy dynamic angiography of the brain. For these
simulations we consider a CBCT system that obtains dual-
energy data by using a stack of two detector layers, where
the first layer acts as an energy dependent filter for the sec-
ond. From these simulated data, we compare reconstructions
obtained by the proposed dynamical one-step method with
the dynamical 2-step method [14].

2 The dynamical one-step method

2.1 An empirical model

In this work, we consider the following empirical model
which estimates the expectation of the log-converted mea-
sured dual-energy sinogram as follows,

mc(lw, li) = a5cl2
w +a4cl2

i +a3clwli +a2clw +a1cli (1)

where c is the index of the detector layer, li (respectively
lw) is the iodine equivalent thickness (respectively the water
equivalent thickness). Polynomial coefficients ac are esti-
mated by fitting with a set of attenuation values observed by
each detector layer, for different combinations of water and
iodine thicknesses. These attenuation values can be obtained
with calibrated data [2, 6, 17] or calculated using a physical
model which requires knowledge of the source spectrum and
the detector response. In this work, where the method is
evaluated with simulations, we use the latter strategy. For
dual-energy CBCT data, we define m̃c the vectorized version
of the empirical model (Eq.1). Therefore, each energy layer
sinogram sc can be expressed as,

sc = m̃c (sw,si)+ ec (2)

where si (respectively sw) is the iodine sinogram (respec-
tively the water sinogram) and ec is the error vector between
measurements and the empirical model (including detection
noise, electronic noise and modeling errors).
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2.2 The proposed dynamical one-step method

Most of the time, one-step methods consider a static ob-
ject [5]. Assuming errors vectors ec=1,2 as non-correlated
gaussian noise with constant variance in (Eq.2), the data
fidelity term F of the conventional one-step approach (pro-
portional to the negative log-likelihood), will be expressed as,

F(xw,xi) =
2

∑
c=1
‖m̃c (Axw ,Axi)− sc‖2

2 (3)

where A denotes the forward tomographic projector matrix
and xi (respectively xw) is the iodine image (respectively the
water image). In this work we propose a dynamical one-
step method which considers a static water image xw and T
different iodine images xi,1, ...,xi,T to have a dynamic recon-
struction of the iodine according to T time frames. Therefore,
the data fidelity of the proposed dynamical one-step method
is defined as,

F̃(xw,xi,.) =
2

∑
c=1

P

∑
p=1

∥∥m̃c
(
Apxw, Ãpxi,.

)
− sc,p

∥∥2
2 (4)

where sc,p the projection with index p measured by the de-
tector layer c, Ap denotes the forward tomographic projector
matrix associated to the projection index p, and Ãp is the
linear operator including the forward tomographic projector
matrix associated to the projection index p and the linear
time interpolation. Then, we have Ãp = ApLp, where Lp

is a linear interpolator along the time dimension associated
to the projection index p [8, 11]. For example, if xi,. con-
tains ten time frames (T = 10) and the dual-energy projec-
tions sc,p has been acquired at the phase p−1

P−1 = 0.47, then
Lpxi,. = 0.3xi,4 +0.7xi,5.
In this work, we aim to reconstruct the dynamic iodine im-
age from a single CBCT acquisition over 360 degrees or
even less. In our example with ten time frames (T=10) and
a CBCT acquisition over 360 degrees, each time frame xi,t

is linked only with projections over 360
T = 36 degrees. This

problem is severely ill posed, so good 3D+time regularization
is mandatory. That is why we propose a regularized dynami-
cal one-step method which can be written as the following
constrained optimization problem,

{x̂w, x̂i,.} ∈ argmin
xw,xi,.≥0

F̃(xw,xi,.)+R(xw,xi,.)+ IΩ (xi,.) (5)

where Ω is the set of sequences of volumes in which all
voxels included in a static mask remain constant over time,
IΩ is the convex indicator function, and the regularization
function R which introduces sparsity constraints,

R(xw,xi,.) = β1 ‖xw‖TV 3D +β2 ‖xi,.‖TV 4D +β3 ‖xi,.‖1 (6)

where β are regularization hyper-parameters, ‖.‖TV 3D is the
conventional 3D isotropic Total-Variation and ‖.‖TV 4D is the
3D+time Total-Variation defined as,

‖x‖TV 4D = ∑
jkvt
|(∇4Dx) jkvt | (7)

with,

|(∇4Dx) jkvt |=
(

3

∑
d=1

(∇dx)2
jkvt +

(
γ∇4x)2

jkvt
)
)1/2

(8)

where the ∇d is matrix corresponding to the first order finite
difference over the dimension d, and γ factor gives a different
weight in the time direction. Note that in the Algorithm 1,
∇4D represent the finite difference for a 4D volume, whereas
∇3D represent the finite difference for a 3D volume.

3 Reconstruction algorithm

To solve the non-smooth and non-linear optimiza-
tion problem (Eq.5), we propose to use the Ex-
act NL-PDHGM framework [16]. In Algorithm 1,
we detail the proposed algorithm to solve (Eq.5).

Algorithm 1: Proposed reconstruction algorithm

1 Initialize all variables, choose θ ∈ [0,1] and τ , σ ≥ 0 ;
2 for n = 0 to niter-1 do

3 yn+1
1,c =

2
2+σ

(
yn

1,c +σ
(
m̃c
(
Ax̄w, Ãx̄i,.

)
− sc

))

4 xn+1
1,w = AT (∑2

c=1
(
2a5cAx̄w +a3cÃx̄i,.+a2c1

)
·yn+1

1,c )

5 xn+1
1,i,. = ÃT

(∑2
c=1
(
2a4cÃx̄i,.+a3cAx̄w +a1c1

)
·yn+1

1,c )

6 yn+1
2,w = pro jβ1P

(
yn

2,w +σ∇3Dx̄w

)

7 yn+1
2,i,. = pro jβ2P

(
yn

2,i,.+σ∇4Dx̄i,.

)

8 xn+1
2,w =−div

(
yn+1

2,w

)

9 xn+1
2,i,. =−div

(
yn+1

2,i,.

)

10 xn+1
w = pro jRN+

(
xn

w− τxn+1
1,w − τxn+1

2,w

)

11 xn+1
i,. = S+τβ3

(
xn

i,.− τxn+1
1,i,. − τxn+1

2,i,.

)

12 x̄n+1
w = xn+1

w +θ
(
xn+1

w −xn
w
)

13 for t = 1 to T do x̄n+1
i,t = xn+1

i,t + θ
(

xn+1
i,t −xn

i,t

)
end

14 x̄n+1
i,. = proxIΩ

(
x̄n+1

i,.

)

15 end

The operator · in lines 4-5 represents the element-wise prod-
uct. In lines 6-7 the projection on the set pro jβiP projects
each gradient voxel-wise onto the `2-ball of radius βi, while
in line 11 the positive soft-thresholding operator S+α is applied
voxel-wise:

S+α (u) j =





u j−
α
2

if u j >
α
2

0 if u j ≤
α
2
.

(9)

In line 10, pro jRN+ enforces each element of a vector in RN

to be positive, while in the line 14 the proximity operator
proxIΩ of the indicator function IΩ is defined by :

proxIΩ (u) j,t =

{
∑T

t=1 u j,t/T if u j,t ∈Ω
u j,t if u j,t /∈Ω.

(10)
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In Algorithm 1, the forward projection A (respectively Ã)

and backward projection AT (respectively ÃT ) are scaled
such that the largest eigenvalue of AT A (respectively ÃT Ã)
equals one. These scaling constants are obtained via power it-
erations. Also the difference finite operators and their adjoint
are normalized accordingly.

4 Simulations: context and experiment

4.1 A dynamic brainweb phantom

Figure 1: Dynamic brain phantom.

To test the capabilities of the prosposed one-step method
and compare it with the dynamical 2-step method [14], we
simulate dual-energy CBCT scans from a dynamic brain
phantom. This dynamic brain phantom (see Fig.1) is similar
to the phantom described in [14]. The static part of this brain
phantom is based on the brainweb phantom [18], a voxelized
head phantom composed by 10 different tissue classes. For
the dynamic part, we generated a vascular tree, which has a
wide initial artery segment low in the brain, and generation
of arterial output terminals was constrained to gray/white
matter tissue classes. Each tube segment was considered
to possess laminar flow so that dispersion and time delays
can be calculated analytically [19], therefore a realistic time
behaviour of the flow of contrast is obtained. In addition, no
draining venous network was simulated, and the contrast will
disappear at the arterial output terminals of the vascular tree.
The artificial vascular tree was voxelized, and added to the
brainweb phantom as an additional dynamic class. For each
projection in the sinogram, an appropriate time point was cal-
culated, and the corresponding iodine contribution from the
vascular tree determined. Forward projection was obtained
with a dual-energy CBCT simulator. The energy spectrum
for each detector layer was simulated with a discretization of
1 KeV from 12 KeV to 150 KeV.

4.2 Experiment

Data were simulated to reproduce acquisitions of a dual-
energy dynamic angiography of the brain. The simulated
CBCT system uses a 2D detector of 198×256 pixels with
a 1.48 mm pitch and 620 acquisitions angles over 205 de-
grees. The distance source-detector is 1195 mm whereas the

distance object-detector is 390 mm. We simulated a source
voltage of 120 kV and the tube current was set to 1.25 mAs.
A photonic poissonian noise is added for each dual-energy
measurement before the log transform was applied.

5 Results

Fig. 2 shows a comparison between the dynamical 2-step
method [14] (first row), the proposed dynamical one-step
method (second row) and the ground truth (third row). Note
that Fig.2 shows a Maximum Intensity Projection (MIP) of
results. In both methods, we reconstruct 10 times frames
(T=10) of 181×217×181 voxels with a 1 mm3 voxel size.
For each method Fig.2 shows only 5 digital subtractions be-
tween times frames and the first time frame (one in two).
For both methods every time frame was initialized with the
same static iodine reconstruction from a static 2-step method,
and the one-step method is also initialized with the water
reconstruction from this same method. In both methods, we
use the same static mask, obtained from a thresholding on a
combination between water and iodine static reconstruction,
to define Ω in Eq.5. The comparison shows that one-step
method provides better dynamical reconstructions of the io-
dine than 2-step method.

6 Conclusion & Discussion

We have proposed a dynamical one-step method for dual-
energy CT including sparsity constraints and based on the
optimization strategy NL-PDHGM [16]. This algorithm con-
verges to a critical point which is a local minimum but with-
out guarantee to be the global minimum [16]. Using a dual
energy CBCT simulation obtained from a dynamic brain
phantom, we compare the proposed dynamical method with
the dynamical 2-step method [14]. This promising result
should be validated on real patient data. For clinical applica-
tion, fast computation times are important. For both methods,
when we initialize with a static 2-step reconstruction, 200
iterations are enough to reach practical convergence. A good
initialization is crucial to reduce drastically numbers of it-
erations for convergence, while a GPU implementation is
another key to reduce the time of calculation. Another crit-
ical point for a good dynamical reconstruction is to have
a good static mask. A perspective will be to optimize this
mask to have an accurate estimation of static voxels (typi-
cally the skull is static). To conclude, note that an extension
for data from energy-resolved photon counting detectors is
straightforward.
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Figure 2: MIP visualization of dynamical iodine reconstructions obtained with the dynamical 2-step method [14] (first row) and the
proposed dynamical one-step method (second row), and the ground truth (third row).
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Abstract Spectral CT offers enhanced material discrimination over
single-energy systems and enables quantitative estimation of basis
material density images. Water/iodine decomposition in contrast-
enhanced CT is one of the most widespread applications of this technol-
ogy in the clinic. However, low concentrations of iodine can be difficult
to estimate accurately, limiting potential clinical applications and/or
raising injected contrast agent requirements. We seek high-sensitivity
spectral CT system designs which minimize noise in water/iodine
density estimates. In this work, we present a model-driven framework
for spectral CT system design optimization to maximize material sep-
arability. We apply this tool to optimize the sensitivity spectra on a
spectral CT test bench using a hybrid design which combines source
kVp control and k-edge filtration. Following design optimization, we
scanned a water/iodine phantom with the hybrid spectral CT system
and performed dose-normalized comparisons to two single-technique
designs which use only kVp control or only k-edge filtration. The ma-
terial decomposition results show that the hybrid system reduces both
standard deviation and cross-material noise correlations compared to
the designs where the constituent technologies are used individually.

1 Introduction
Spectral CT systems use data acquisition schemes involving
varied spectral sensitivities across photon energies. Thus,
compared to single-energy CT systems, spectral CT systems
can provide more information about the energy-dependent at-
tenuation of the subject being scanned. In particular, spectral
CT enables estimation of basis material densities which has
many benefits in quantitative clinical imaging.
Contrast-enhanced imaging of iodine is one of the most
widespread clinical applications of spectral CT. Iodine den-
sity estimates show contrast-agent concentration, and water
density estimates provide virtual non-contrast enhanced im-
ages for characterizing patient anatomy [1]. However, the
similarity of the attenuation spectra of water and iodine make
accurate material decomposition and density estimation chal-
lenging. As compared to standard estimation of overall at-
tenuation (as provided by single-energy CT systems), the
relative noise is much higher in the individual basis material
density estimates provided by spectral CT [2]. For some
clinical applications, such as imaging pancreatic cancer, very
low levels of differential contrast-enhancement can have a
meaningful impact on diagnosis [3]. Therefore, development
of spectral CT systems which are capable of high-sensitivity
water/iodine decomposition is an important goal with direct
clinical implications.
One way to improve sensitivity is with advanced data pro-
cessing. For example, model-based approaches have been
widely adopted in single-energy CT for their improved dose-
image quality tradeoffs. In this work, we use a direct one-
step model-based material decomposition (MBMD) algo-
rithm rather than a two-step reconstruction-decomposition

approach, allowing for incorporation of measurement statis-
tics as well as advanced regularization approaches to help
reduce noise.
Another strategy for improving sensitivity, and the focus of
this work, is to optimize the spectral CT system design. There
are several technologies which can modulate the spectral sen-
sitivity of a CT system: rapid kVp switching [4], multiple
x-ray sources [5], source filtration (e.g. k-edge filters) [6],
dual-layer/multi-layer detectors [7], photon counting detec-
tors [8]. Each of these spectral modulation technologies
have potentially tuneable design parameters such as kVp
separation or k-edge filter thickness. There is evidence that
combining these methods can improve sensitivity [9]. In
previous work, we demonstrated that combining spectral
modulation technologies into a hybrid system offers greater
control over designed spectral sensitivities [10] [11]. Our
previous simulation results showed that joint optimization
of these design parameters in a hybrid system can result in
higher sensitivity than systems using the constituent spectral
modulators individually.
Recently, we have also proposed a mathematical formula for
material separability index which models the performance
of a spectral CT system and its advantage over single-energy
CT. The metric takes into account polyenergetic models of
x-ray sources, attenuation, and detector sensitivity, as well as
noise and correlations [12].
In this work, we apply these theoretical models to the system
design optimization of a prototype spectral CT test bench
which incorporates both kVp control as well as k-edge filtra-
tion. We describe the specific spectral CT model that includes
polyenergetic x-ray physics as well as a quantitative metric
of water/iodine separability for the modeled system. We de-
scribe a spectral CT system design optimization process for a
physical prototype including parameters of the design space
and optimization methods. Finally, we present the results of
a water/iodine imaging study which compares the optimized
hybrid kVp control/k-edge filtration design with kVp control
individually and k-edge filtration individually.
2 Methods
2.1 Spectral CT Physical Models
A general forward model for spectral CT is given by:

ȳ(x) = GSexp
(
−QAx

)
, (1)

where x is a column vector containing basis material den-
sities, A is a forward projection operator, Q contains mass
attenuation coefficients of basis materials, S models the sys-
tem spectral sensitivity, and G is a gain. This work will
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Figure 1: Comparison between two spectral CT system designs. Design B results in a greater separability index than design A. As shown
by the basis material densiity estimates, the noise correlation is lower in design B and therefore it is easier to detect a positive impulse of
idoine plus a negative impulse of water.

focus on modeling flat-panel energy-integrating detectors,
for which we can expand S as follows:

ȳ(x) = GS2S1S0 exp
(
−QAx

)
, (2)

where S0 models the spectrum of photons emitted by the
source (including filtration), S1 models the probability of in-
teraction with the scintillator, and S2 models the generation of
secondary quanta in the scintillator, as well as detection and
integration by the photodetector. With this spectral CT sys-
tem model, we can simulate systems with different designs
and predict how they will respond to different multi-material
objects. For example, we can predict the energy attenuated
by an object, x, using the following formula:

Dose = εT S0

(
1− exp

(
−QAx

))
, (3)

where ε is a vector containing the energy, in mJ.
We can also use this model to estimate material density im-
ages from spectral CT measurements via MBMD. Assuming
a multivariate gaussian noise model with mean, ȳ(x), and
covariance, Σy, a maximum-likelihood estimator of basis
material densities, x̂(y), is given by the following formulae:

Φ(x,y) =
(
y− ȳ(x)

)T Σ−1
y
(
y− ȳ(x)

)
(4)

x̂(y) = argmin
x

Φ(x,y). (5)

Note that the above formula does not include a regularization
term. While we focus on unbiased estimators in this work,
further noise reduction is possible using the cross-material
regularization strategies described in [13] [14]. To perform
the numerical optimization, we use the separable parabolic
surrogates algorithm described in [15] and a cross material
preconditioner defined in [16] to improve convergence rates.
We note that in following sections this MBMD approach
will be used for water/iodine decomposition. However, the
same estimator can be applied as single-material model-based
iterative reconstruction (MBIR) with built-in polyenergetic
corrections by using water as the sole basis material.

2.2 Material Separability
In this section we present a quantitative metric for material
separability originally described in [12]. The metric applies

to maximum-likelihood MBMD and is based on the Fisher
information matrix which is defined below:

F = ATQTDTSTGTΣ−1
y GSDQA (6)

D = D{exp(−QAx)}. (7)
Note that this expression is object-dependent. That is, differ-
ent objects, as described by x, will affect the weights in D
and will therefore have an impact on F. This is not surprising
since CT image quality is known to be object-dependent.
The detectability index of a signal, w, which is in the same
multi-material image space as x, is defined below:

d2(w) = wTΣ−1
x w = wTFw. (8)

For two signals, wA and wB which are normalized such that
d(wA) = d(wB), the separability index is defined by the ratio
between the detectability of their difference to the detectabil-
ity of their sum as shown below:

s2(wA,wB) =
(wA−wB)

TF(wA−wB)

(wA +wB)TF(wA +wB)
. (9)

In theory this formula can characterize the separability of
any two signals, but for the purposes of characterizing wa-
ter/iodine separability, we may assume that wA is a voxel
impulse of iodine only at a certain position and wB is a voxel
impulse of water at the same position. Note that a single-
energy CT system would be capable of detecting (wA +wB)
but it would be effectively impossible to detect (wA−wB)
leading to a material separability index near 0.0%. In con-
trast, a spectral CT system with two or more distinct spectral
channels should be capable of detecting the differential sig-
nal.
2.3 Spectral CT System Design Optimization
Our goal in this section is to apply the theoretical models
above to maximize water/iodine separability in a prototype
spectral CT test bench using a combination of kVp control
and k-edge filtration. The spectral sensitivity design consists
of two channels. Each channel was parameterized by three
quantities: kVp setting, filtration material, and exposure. We
explored six possible kVp settings: 70, 80, 90, 100, 110, and
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120 kVp. Eight possible filter materials and thicknesses were
250 µm praseodymium, 250 µm erbium, 127 µm lutetium,
250 µm hafnium, 100 µm tungsten, 100 µm gold, 250 µm
lead, and no filter. For each spectrum there are 48 unique
combinations of filter material and kVp settings. Therefore,
there are 1128 unique spectral profiles. Exposure settings
were optimized in a nested optimization for each possible
shape.

Figure 2: Hybrid method spectral CT test bench and water/iodine
phantom.

For each possible design, we established a physical model,
and computed the separability index for a 0.5 mm voxel im-
pulse of iodine and water at the center of an 80 mm cylinder
of water. The final design was chosen as the one which
maximized the water/iodine separability metric. The process
above was also repeated for the two spectral modulation tech-
nologies acting individually. That is, the design space was
constrained to cases with no filtration for kVp control design.
For the k-edge filtration design, the space was constrained to
designs with static kVp settings. For the hybrid design, we
used the full parameter space which includes combinations
of kVp settings and filtration materials.
The three optimized designs were implemented physically on
the x-ray CT test bench as shown in Figure 2. We constructed
a water/iodine phantom using cylindrical targets designed
for CT calibration. Each cylinder is approximately 27 mm
in diameter and the composition of each cylinder has been
designed to match the attenuation spectra of water plus some
concentration of iodine. The nominal iodine concentrations
are 0.0, 2.5, 5.0, 7.5, 10.0, 15.0, and 20.0 mg/mL and they
are arranged as shown in Figure 2. We used a 2-dimensional
fan-beam system geometry with a source-to-axis distance of
831.58 mm and a source-to-detector distance of 1766.54 mm.
The detector pixel size is 0.278 × 0.278 mm and the central
60 detector rows were binned to produce the one-dimensional
projection measurements for each view.
Exposure settings were calibrated using preliminary scans for
each design and approximating photon counts according to
the variance in the gain measurements. A voxelized approxi-
mation of the water/iodine phantom was used to approximate
the dose attenuated by the phantom as defined by (3). The
target exposure was then established in such a way that the
predicted dose attenuated by the phantom was normalized to
1 mJ and the ratio of exposures was matched to the design op-

timization results. The source mAs was scaled in proportion
to the ratio between the target exposure and initial exposure
estimates. The system spectral sensitivity was calibrated
by scanning a phantom containing known concentrations of
water and iodine and fitting a parameterized spectral model.
After calibration was complete, we scanned the water/iodine
phantom using each of the three optimized designs. Two-
dimensional material density images with 200 × 200 voxels
of size 0.5 mm were reconstructed via MBMD using 1000
iterations of the separable quadratic surrogates algorithm
described in [15]. We also ran a standard model-based itera-
tive reconstruction to estimate attenuation. This was accom-
plished using the same polyenergetic model used for MBMD
but with a single-material (water) basis. To evaluate image
quality, we computed means and cross-material covariances
in 7 ROIs centered on each cylinder for the water and io-
dine basis material density images resulting from MBMD.
We also computed variance in the same ROIs for the MBIR
reconstructed image results.

3 Results
The optimized kVp control design was found to be 48.47%
of photons at 70 kVp and 51.53% of photons at 120kVp.
This design results in a water/iodine separability index of
2.54%. This result in not particularly surprising, since this
is the largest possible kVp separation, matching intuition
that spectra which are very different from one another enable
greater material separability. The optimized k-edge filtration
design was found to be 58.16% of photons at 70 kVp with
a 250 µm praseodymium filter and 41.84% of photons at
70 kVp with a 250 µm lead filter. This design results in
a water/iodine separability index of 7.32%. The optimized
hybrid design was found to be 34.88% of photons at 70 kVp
with a 250µm lead filter and 65.12% of photons at 120 kVp
with a 250 µm praseodymium filter. This design results in a
water/iodine separability index of 12.52%.
The sample mean of estimated density for all ROIs was within
10% of the nominal value for both water and iodine for all
three designs. As shown in Figure 3 sample variance in the
attenuation image estimated via MBIR is comparable for
all three designs. This is expected because the total dose
absorbed by the phantom was normalized for each design.
The sample covariance in the water and iodine density images
estimated with MBMD shows that the noise is much lower for
the hybrid design than for either of the spectral modulation
technologies acting individually. The correlation coefficient
is also closer to zero for the hybrid design than either of the
individual designs.

4 Conclusion
In this work we apply a previously developed quantitative
metric of material separability based on the Fisher informa-
tion matrix. We have shown that this metric can be used to
optimize spectral CT system design for higher sensitivity and
demonstrated efficacy in a physical system. Furthermore, the
results of the imaging study show that spectral CT systems
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Figure 3: Spectral sensitives for each design, MBIR and MBMD reconstruction results, and covariance metrics by ROI.

which use a combination of multiple spectral modulation
technologies have the potential for improved performance
with respect to designs using the constituent individual tech-
nologies.
There are several limitations in this preliminary work which
should be acknowledged. First, we used a relatively small
phantom compared to the size of a human patient. Material
decomposition will be a more poorly conditioned problem
for larger objects. Additionally, we did not incorporate a
scatter model. For low-contrast applications, scatter and
other systemic biases are a concern and must be addressed.
These topics are the subject of ongoing studies.
Despite these limitations, the results suggest that hybrid de-
sign is a promising strategy for spectral CT with the potential
to overcome low-concentration limits of more traditional
single-technology spectral methods. While this work has
concentrated on two more traditional spectral technologies,
other combinations including other source-side modulation
schemes or energy-sensitive detectors (such as dual-layer or
photon counting detectors) could provide additional advan-
tages. Jointly optimizing such hybrid systems for material
separability may potentially have a significant benefit for clin-

ical applications involving high sensitivity to low contrast
concentrations, and will be investigated in future work.
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Abstract Photon counting detector based spectral CT imaging has gained 
a lot of attention in these days. Basis material decomposition is a 
commonly used step in spectral CT reconstruction. The aim of this work 
is to take advantage of the power of neural networks to find a method that 
can get accurate basis material decomposition. To research on the charge 
sharing correction, we constructed a pixel-wise network architecture as a 
starting point, named single pixel interweaving network (SPIN). Then we 
improved it to a patch-wise operation, named patch-wise interweaving 
network (PIN). To help the network focus on charge sharing better, data 
simulating random material thickness was used for training. For SPIN, it 
could deal with charge sharing to some extent, but the bias was 
unsatisfying. For PIN, it used the information from neighboring pixels 
and resulted in less bias and total error. Moreover, to reduce the influence 
of noise, we used the averages of noise realizations to approximate the 
noiseless input and train the PIN. This method decreased the bias a lot, 
but was poor with denoising. PIN provided a potential way to get more 
accurate basis material thickness by using additional information 
extracted from neighboring detector pixels.  

1 Introduction 
Over the past decades, spectral CT has been widely 
researched and used. It can take use of attenuation at 
different energy and decompose the imaged object into two 
or three basis materials. The decomposition results of 
material thickness give valuable information of object 
materials. Spectral CT can decrease the effect of beam 
hardening and increase the ability of distinguishing 
different materials. 
Photon counting detectors (PCDs) can record the number 
and energy of incident photons and provide detailed spectral 
information. Detailed spectral information could improve 
the quality of CT images and reduce X-ray dose [1]. 
However, the performance of PCDs is not ideal because of 
charge sharing, pile-up and some other problems. They 
cause spectral distortion and limit the application of PCD. 
This paper focuses on charge sharing. When a photon 
injects the PCD, the charges from it are not constrained in 
one detector pixel and then collected and detected by 
several neighboring pixels. As Fig. 1 shows, charge sharing 
includes spill-in sharing and spill-out sharing. Considering 
a 3×3 region and the yellow pixel is the pixel of interest 
(POI). In Fig. 1(a), a photon injects a neighbor pixel and 
some charges diffuse into the POI. Then POI records more 
photons and this is spill-in charge sharing. In Fig. 1(b), a 
photon injects the POI and some charges diffuse into a 
neighbor pixel. Then POI records lower energy and this is 
spill-out charge sharing. Both of them distort the detected 
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spectrum and generally speaking increase bias and noise of 
spectral CT images. 

 
Figure 1. Two types of charge sharing. (a) spill-in sharing to a pixel of 

interest; (b) spill-out to a pixel of interest 
To improve the performance of PCDs, many methods or 
new detectors have been researched. Lee et al used 
algorithm based on charge sharing model to correct spectral 
distortion [2]. Some detectors were invented to correct 
counts or energy errors according to communications 
between pixels [3]. Some PCDs were used to get 
undistorted spectrum by rejecting charge sharing events [4]. 
Hsieh’s detector records extra information about charge 
sharing and deals with it later [5]. These methods have 
different problems, including long processing time, 
insufficient accuracy and difficulty of data processing. 
Except traditional methods, neural network has been used 
to solve spectrum distortion problem recently. Holbrook et 
al proposed Image Domain CNN and Projection Domain 
CNN to correct spectral distortion separately [6]. Energy 
integrating detector data were used as labels for the two 
networks to correct PCD data. Li et al designed WGAN to 
correct spectral distortion. Two subnetworks in generator 
dealt with pile up and charge sharing separately and connect 
by a UNet [7]. It achieved obvious noise suppression and 
accurate spectral correction in both projection and 
reconstruction domains. Touch et al used an ANN to reverse 
the spectral distortion [8].  Zheng et al analyzed the factors 
of spectrum distortion, then designed WeaveNet, which has 
advantages on spectrum correction [9]. 
Following the idea of WeaveNet, we designed a network for 
single pixel at the start point, which are used to deal with 
charge sharing problem. Then we improved the architecture   
to take advantage of the relationship between the pixel of 
interest and its neighboring pixels to get basis material 
thickness with smaller relative error. We applied the 
network to conventional PCD data to get basis material 
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thickness. Furthermore, in order to reduce the influence of 
noise, we used the means of noise realizations as input to 
train the network. Simulation results are demonstrated in 
this paper. Taguchi invented Multi-energy Inter-pixel 
Coincidence Counters (MEICC) [10][11]. By recording the 
number and direction of charge sharing events, the CRLB 
calculated in the light of MEICC data decreases by at least 
50% compared to conventional PCDs. In the future, we are 
to take advantages of the additional MEICC data to improve 
material decomposition accuracy. 

2 Methods 
2.1 Basic model 
For spectral CT, several energy bins are set for detecting 
process. Each detector pixel counts the incident photons in 
different energy bin.  
When a photon injects an object, some processes will 
happen, including photoelectric effect, Compton effect, 
electron pair effect and so on. Because of them, the energies 
and numbers of the photons decay. Attenuation coefficient 
𝜇𝜇  is used to characterize the decaying process. It’s the 
function of material types and energy and can be expressed 
by basis function composition, and with basis material 
decomposition, it can be written as: 

𝜇𝜇(𝐸𝐸) = � 𝑎𝑎𝑖𝑖𝜇𝜇𝑖𝑖(𝐸𝐸)
𝑁𝑁material

𝑖𝑖=1

(1) 

Where 𝑎𝑎𝑖𝑖 is the equivalent thickness of the ith basis material 
and 𝑁𝑁material is the number of basis materials. 
In this work, we set 

𝑁𝑁material = 2 (2) 
The photon numbers in the two energy bins are as follow. 

𝑁𝑁L���� = 𝑁𝑁0 � 𝑆𝑆(𝐸𝐸)𝑒𝑒−𝜇𝜇1(𝐸𝐸)𝑇𝑇1−𝜇𝜇2(𝐸𝐸)𝑇𝑇2𝑑𝑑𝐸𝐸
Low energy bin

(3) 

𝑁𝑁H���� = 𝑁𝑁0 � 𝑆𝑆(𝐸𝐸)𝑒𝑒−𝜇𝜇1(𝐸𝐸)𝑇𝑇1−𝜇𝜇2(𝐸𝐸)𝑇𝑇2𝑑𝑑𝐸𝐸
High energy bin

(4) 

Here, 𝑁𝑁L���� and 𝑁𝑁H���� are the means of photon numbers in the 
low/high energy bin, 𝑁𝑁0 is the initial photon number, 𝑆𝑆(𝐸𝐸) 
is the spectrum, 𝑇𝑇1 and 𝑇𝑇2 are the basis material thickness, 
𝜇𝜇1(𝐸𝐸) and 𝜇𝜇2(𝐸𝐸) are the attenuation coefficients of the two 
basis materials. Two virtual energies, 𝐸𝐸L  and 𝐸𝐸H , are 
chosen to calculate equivalent line integrals of attenuation 
coefficients, 𝑌𝑌L and 𝑌𝑌H. 

�𝑌𝑌L𝑌𝑌H
� = �𝜇𝜇1

(𝐸𝐸L)  𝜇𝜇2(𝐸𝐸L)
𝜇𝜇1(𝐸𝐸H)  𝜇𝜇2(𝐸𝐸H)�× �𝑇𝑇1𝑇𝑇2

� (5) 

�𝑇𝑇1𝑇𝑇2
� = �𝜇𝜇1

(𝐸𝐸L)  𝜇𝜇2(𝐸𝐸L)
𝜇𝜇1(𝐸𝐸H)  𝜇𝜇2(𝐸𝐸H)�

−1
× �𝑌𝑌L𝑌𝑌H

� (6) 

According to Eq. (6), we can calculate basis material 
thickness when the line integrals are obtained. 
2.2 The architecture of single pixel interweaving 
network (SPIN) 
Charge sharing happens in each detector pixel. Therefore, 
as a starting point, we focus on a single pixel case. We 
borrowed the idea from Zheng’s Interweaving Network[6]. 

It has two branches to correct spectrum and deals with the 
whole CT image. The architecture of SPIN is as Fig. 2. 

 
Figure 2. The architecture of single pixel interweaving network. The 
circled numbers represent numbers of nodes in layers. The inputs are 

the photon numbers of POI and the outputs are the line integrals. 
SPIN is a two branch fully connected network. Each circled 
number is the number of nodes in each layer. The inputs, 
𝑁𝑁L and 𝑁𝑁H, are the photon numbers in low/high energy bin 
of the pixel of interest. The outputs, 𝑌𝑌L and 𝑌𝑌H, are the line 
integrals of attenuation coefficients at two virtual energies. 
The green and blue arrows in the firgue represent fully 
connected layer with and without leaky relu activations. At 
the end of the two branches, there is  matrix multiplication 
to connect them together. The output of the branch below, 
a 4×1 vector, is transformed to a 2×2 matrix, and then be 
multiplied with the output of the branch above. 
The loss function we used to train SPIN is 

𝐿𝐿SPIN =
1
2
��
𝑌𝑌L − 𝑌𝑌L∗

𝑌𝑌L∗
�
2

+ �
𝑌𝑌L − 𝑌𝑌H∗

𝑌𝑌H∗
�
2

� (7) 

Here, 𝑌𝑌L∗ and 𝑌𝑌H∗ are the ground truths of line integrals. 
2.3 The architecture of patch interweaving network 
(PIN) 
Let’s analyze charge sharing by a 5×5 patch, as shown in 
Fig. 3. The POI is the yellow one. The blue ones are the first 
neighboring pixels and the green ones are the second 
neighboring pixels. Focused on the POI, charge sharing 
happens between blue pixels and the yellow central pixel, 
as the black arrows shown, which represent the direction of 
charge sharing. For data of the POI, the extra counts and 
photon energy changes caused by charge sharing is related 
to the photon numbers of the blue ones. Therefore, we need 
these information in order to correct charge sharing. 
Focusing on the blue pixels, their data are further related to 
the green ones, the same as the POI. Therefore, the data 
from green pixels is helpful to correct charge sharing of POI. 
Hence, charge sharing correction is a cascading problem. 
Moreover, the pixel is farther away from the POI, the effect 
mentioned before is smaller. Combined, a 9×9 patch is 
chosen in our study. 
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Figure 3. A 5×5 patch to show the relationship of charge sharing. It 

happens between POI and its blue neighboring pixels. 
Based on the above analysis, we are to correct charge 
sharing patchwise, hence propose PIN. The architecture of 
PIN is as Fig. 4. PIN is a two-branch convolution network. 
The meshes represent patches in each layer. The black 
numbers are the size of patches and the red numbers are the 
numbers of channels. The green arrows represent 
convolution. The inputs are the photon numbers in the 
low/high energy bin of each pixel within the patch. The 
outputs are the line integrals of attenuation at the two virtual 
energies of the POI. 

 
Figure 4. The structure of patch interweaving network. Black numbers 
are the patch size in each layer. Red numbers are the channel numbers. 
The inputs are the photon numbers of each pixel within the patch. The 

outputs are the line integrals. 
The loss function we used to train PIN is 

𝐿𝐿PIN =
1
2
��
𝑌𝑌L − 𝑌𝑌L∗

𝑌𝑌L∗
�
2

+ �
𝑌𝑌L − 𝑌𝑌H∗

𝑌𝑌H∗
�
2

� (8) 

Here, 𝑌𝑌L∗ and 𝑌𝑌H∗ are the ground truths of line integrals. 
Finally, we calculate the basis material thickness by using 
the outputs of the networks according to the formular (7). 
2.4 Configuration for data simulation 
We build our dataset by simulating X-ray passing through 
two materials as shown in Fig. 5. We set the thickness of 
basis materials for each detector pixel. 

 
Figure 5. Diagram of data simulation. X-ray passes through material 1 

and material 2, then injects the detector. 

There could be several ways to configure thickness 
distribution within a patch, as shown in Fig. 6. Part (a) 
shows a flat-field and an edge. For a flat-field, all pixels 
have the same thickness. For an edge, all pixels can be 
devided into two spatially connected parts. The two parts 
have different thickness but uniform within each part. The 
two forms are realistic, but have structural information we 
should avoid, because the information might mislead the 
network and we hope the network learn the principle of 
charge sharing only. Part (b) shows a patch with randomly 
distributed thickness without any structural information. 
We use data from patches of random thickness to train and 
test our networks. 

 
Figure 6. Different data forms. (a) has structure information. (b) doesn’t 

have structure information. 

3 Experimental studies 
To train and test the networks, Monte Carlo simulation was 
done to generate noisy conventional data. Water and bone 
were chosen as basis materials. Human’s head is our 
targeted object, so the range of water thickness is from 0cm 
to 12cm and the range of bone thickness is from 0cm to 2cm. 
Specificly, in training dataset, 

𝑇𝑇w = {1,2, … , 40} × 0.3cm (9) 
𝑇𝑇b = {1,2, … ,10} × 0.2cm (10) 

where 𝑇𝑇w is the water thickness and 𝑇𝑇b is the bone thickness. 
The ground truths of line integrals 𝑌𝑌L and 𝑌𝑌H are calculated 
according to Eq. (5). There are 15 noise realizations for each 
thickness. 
In test dataset, 

𝑇𝑇w = 0.5, 2.5, 5, 7.5, 10cm (11) 
𝑇𝑇b = 0.3, 0.5, 0.9, 1.5, 1.9cm (12) 

which is non-overlap of training setting. There are 90 noise 
realizations for each thickness. 
3.1 Results from SPIN and PIN 
We analyzed the bias and standard deviation of basis 
material thickness for the test dataset. Bias of material 
thickness for difference water and bone composition 
resulted from SPIN and PIN were shown in Fig. 7. The PIN 
gets smaller bias and more uniform results. This tells us that 
the information from neighboring pixels helps the network 
to correct charge sharing better. We also plotted bias curves 
at 0.9cm bone for water and at 5cm water for bone in Fig. 
7(b) with error bars representing standard deviation. We can 
see the standard deviations are similar for most points, but 
the bias of PIN is smaller than SPIN. In Fig. 7(c), we show  
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Figure 7. Results for SPIN and PIN. (a) are color maps showing the 

distribution of bias for bone and water. (b) are profiles at 0.9cm bone 
and 5cm water with error bars. (c) are histograms showing the 

distribution of bias and total error. 

the distribution of bias and total error for water and bone to 
further illustrate their performance. While the bias is 
smaller, the total error has decreased a lot for PIN. 
3.2 Improvement for PIN 
There is still room for improvement according to the results 
in the last part. We used noisy data to train PIN and the noise 
might interfer the learning process. We tried to use the 
means of noise data for different thickness to train PIN: 

𝑁𝑁L����� = � 𝑁𝑁L,𝑚𝑚

15

𝑚𝑚=1

,𝑚𝑚 ∈ {1,2, … ,15} (13) 

𝑁𝑁H����� = �𝑁𝑁H,𝑛𝑛

15

𝑛𝑛=1

,𝑛𝑛 ∈ {1,2, … ,15} (14) 

Here, 𝑁𝑁L,𝑚𝑚 and 𝑁𝑁H,𝑛𝑛 are the noise realizations in low/high 
energy bin. We used these means to approximate the ground 
truths of photon numbers without noise to eliminate the 
influence of noise. In this way, we hope PIN can concentrate 
on charge sharing more and give better results. 
The results are in Fig. 8. 
In Fig, 8(a), bias distribution for two materials by SPIN and 
PIN are demonstrated. It is obvious that the bias is much 
smaller than those in Fig. 7. For all the points, the absolute 
bias is close to zero. We also plotted the profiles at 0.9cm 
bone for water and at 5cm water for bone with error bars, in 
Fig. 8(b). 
Although the bias is satisfying, the standard deviations 
become larger. Because we almost removed all the noise 
information in the training dataset by using the means of 
noise realizations, so the network is poor in dealing with 
noise. Histograms in Fig. 8(c) show the distribution of bias 
and total error. Because of poor denoising, the total error is 
slightly larger compared with using noisy data. 

4 Discussion 
In this paper, we propose pixel-wise charge sharing 
correction by neural network. The network dealt with the 
data in 9×9 patch and learned relationship of photon 
numbers between central pixel and neighboring pixels. By 
comparing SPIN and PIN trained with noisy data, we 
verified that using information from neighboring pixels was 
effective and it could estimate thickness of basis materials 
with small bias for most conditions. By using mean data to 
train PIN, we further lower the bias of results and verified 
that using ground truths without niose during training could 
be an effective way for charge sharing correction. However, 
without providing enough information about noise, the 
performance can be affected by noise significantly.  
In the experiment, the relative error is still not satisfying for 
situations of small material thickness. Charge sharing is 
different in low energy bin and high energy bin, but our 
current loss fucntion doesn’t model this. That leads to  
different error levels in  results between low energy bin and 
high energy bin, and between water and bone. We will 
further improve our design to improve the network 
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Figure 8. Results for training with noisy data and mean data. (a) are 

color maps showing the distribution of bias for bone and water. (b) are 
profiles at 0.9cm bone and 5cm water with error bars. (c) are histograms 

showing the distribution of bias and total error. 

performance. 
There are also other shortages. In this paper, we used 
supervised training method. Therefore, the ground truths of 
line integrals are necessary. In reality, it is hard to get these 
ground truths. Using mean is a possible and reasonbale 
choice to as a substitute for ground truths. Another solution 
is unsupervised training method or semi-supervised training 
method, which is to be studied in our future work. 

5 Conclusion 
This paper proposes a patch interweaving network to 
correct charge sharing. Different from conventional 
methods and neural networks for whole images, our 
network focuses on the relationship between neighboring 
pixels and central pixel, and uses photon numbers in 
neighboring pixels to help correct charge sharing. It has 
good potential to deal with MEICC data and calculate basis 
material thickness with very small relative error. 
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Abstract Diagnostic of stroke and proton therapy treatment planning
require accurate non-contrast head CT imaging. Dual energy CT offers
improvements in this field by enabling material decomposition and
virtual mono-energetic images. Such a computation in the projection
space requires an energy response model for the CT system and a selec-
tion of materials for data decomposition. In this work, we use incorrect
response models and materials to study the effects of imperfections
on the quality of the material decomposition. The experiments are
carried out in fanbeam geometry with noise-free computer simulated
data of two head phantoms. The results show that small errors in the
energy response can quickly lead to small inhomogeneity and to beam
hardening errors between close bones. They also show that the differ-
ence between soft tissues and water lead to soft tissue leakage in the
bone image, but may not have a negative effect on the mono-energetic
image.

1 Introduction

Accurate non-contrast head computed tomography (CT)
imaging is critical for effective management of stroke pa-
tients. There are two types of stroke requiring urgent clinical
care: hemorrhagic stroke, which corresponds to a vessel
rupture; and ischemic stroke, which corresponds to a vessel
blockage. Treatment for the second type can only be initiated
once hemorrhagic stroke has been ruled out, which cannot
be done with contrast agent. Accurate non-contrast head CT
imaging is also needed in the context of treatment planning
for brain cancer with proton-based therapy. To be most ef-
fective, this treatment option requires precise computation of
proton-stopping power ratios using CT.
Despite the many advances of CT over the last decades, head
CT imaging remains a challenging problem due to X-ray
beam hardening. The entire brain is affected, with major
variations across patient populations due to differences in
bone thicknesses; and the base of the skull is the most difficult
region, as the bones are particularly thick and complex in
shape in this region. Dual energy CT (DE-CT) may offer
further improvements, and has for this reason recently been
under investigation (see, e.g., [1–3]).
A number of important factors can affect the accuracy of
DE-CT for non-contrast head imaging. There are physical
effects like quantum noise and scatter; and there are data mod-
eling aspects used for image reconstruction. Here, we are
interested in assessing the effect of imperfections in data mod-
eling, under the assumption of no noise and perfect scatter
subtraction. From a statistical viewpoint, such an assessment
is akin to performing a bias study. Understanding the magni-

tude and appearance of bias due to various imperfections in
system modeling is as important as understanding the effect
of noise and scatter, as it provides an upper bound on the best
reachable image quality.
For this work, we assume that DE-CT is implemented as
two CT scan repetitions, with tube voltage being the only
difference between the two scans. Hence, two measurements
are obtained for each detector pixel and view angle, and these
can be separated into material-length measurements prior to
filtered-backprojection reconstruction. Two modeling aspects
are studied: assumptions regarding the energy response, and
assumptions regarding the two materials used for DE data
decomposition. The study relies on computer-simulated data.

2 Materials and Methods

The experiments are performed in fanbeam geometry. The
basis for the simulations are two phantoms. First, we use
the FORBILD head phantom, as described in 2-D in [4],
which is a simplified representation of a human head based
on (clipped) ellipses. This phantom was specifically designed
to challenge image reconstruction algorithms in terms of con-
trast and shapes. Following [4], the FORBILD head phantom
can be defined so as to represent a physical object composed
of two materials, chosen here as water and bone. Second,
Subject 04 from the BrainWeb family of anthropomorphic
head phantoms [5] is used; these were created from slices of
patient MRI data labeled pixel-by-pixel for their containing
tissue. For our purpose, all 12 materials used in the Brain-
Web phantoms are modeled using the X-ray mass attenuation
coefficients of tissues suggested in Schneider et al. [6]. The
two phantoms are forward projected either analytically, in
case of the FORBILD head phantom, or using the distance-
driven method for the BrainWeb phantom. The parameters
used to model the CT geometry correspond to state-of-the-art
scanners and can be found in Table 1.
The energy response of the scanner is modeled analytically
as a normalized product of a filtered source spectrum S and a
detector response D, each depending on the energy E. Exam-
ples of realistic source spectra and detector response based
on Monte Carlo transport of photons can be found in the
literature [7], [8]. For the dual energy data simulation, the
projections are computed for two different kVp-settings of
the X-ray tube, namely the high energy scan at 140 kVp and
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Table 1: Parameters of scanner geometry

Scan trajectory 360◦

Number of projections 2304
Number of detector channels 736
Source to detector distance 108.56 cm
Source trajectory radius 59.5 cm
Angular detector width 0.067864◦

Flying focal spot option off

the low energy scan at 80 kVp. Similar to real CT systems,
we model two pre-object filtrations of the X-ray spectrum,
using a flat pre-filter followed by a bowtie-shaped filter. The
pre-filter is defined as 0.25 mm of copper and the material
of the bowtie filter is aluminum. The filters are designed
to closely match the filtered source spectrum of a real CT
system. The use of a bowtie filter makes the source spectrum
depend on the detector pixel location. Mathematically, the
normalized energy response for each tube voltage (index k)
and detector pixel (coordinate u) can be written as

Wk(E,u) =
Sk(E,u)D(E)

Emax∫
0

Sk(E,u)D(E)dE
, with k = {140,80}kVp.

After the high and low energy projection data is created,
the material decomposition is performed in the projection
domain. Water and bone are used for the two decomposi-
tion materials. The decomposition itself proceeds as follows.
First, we simulate measurements of different lengths of water
and bone using the energy response model. The resulting
pairs of material lengths and dual energy measurements are
used to model the relationship with two polynomials using
least-square fitting. Then, the polynomials are applied to
transform the high and low energy measurements into pro-
jection data of the two materials.
Finally, the projections of each material are individually re-
constructed using fanbeam filtered backprojection with a
Hanning apodization window. The reconstructed material
images are further used to calculate virtual mono-energetic
images, the linear attenuation coefficients of water and bone
at the desired energy acting as weight for the linear combina-
tion of the water and bone images.
To simulate various imperfections in energy response, we
make the following changes to the energy response used for
the material decomposition:

• Option 1: Simplification of the detector response by
only using the linear attenuation and the thickness of
the detector material, Gd2O2S, also known as Gadox.

• Option 2: Reduction of the pre-filter thickness by 8%.

• Option 3: Removal of the flat pre-filter and application
of a narrower bowtie-filter used for cardiac imaging.

Options 1 and 2 represent a rather small error for the as-
sumptions on the detector response or the source spectrum,
respectively. By contrast, option 3 is meant to simulate a
major mismatch for the applied source spectrum.
For the study on imperfections on the material knowledge,
we use two versions of the BrainWeb phantom. The first
version is the original one, which involves 11 soft tissues
plus bone. The second version is obtained from the original
one by replacing each soft tissue with water of a specific
mass density, chosen so that the two versions of the phantom
are identical at 80 keV.

3 Results

3.1 FORBILD head phantom
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Figure 1: Reconstructed water images for the FORBILD head
phantom. Left to right: Correct energy response, incorrect options
1-3. To save space, only the left half of the phantom is displayed.
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Figure 2: Reconstructed bone images for the FORBILD head
phantom. Left to right: Correct energy response, incorrect op-
tions 1-3.

Figure 3: Reconstructed virtual mono-energetic images of the
FORBILD head phantom corresponding to 50 keV. Left to right:
Correct energy response, incorrect options 1-3. C/W=50/40 HU.
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Image Corr. Opt. 1 Opt. 2 Opt. 3

Water, mean 1.050 1.031 1.051 1.083
Water, std 0.001 0.003 0.002 0.034
Bone, mean 0.000 0.008 −0.002 −0.027
Bone, std 0.001 0.001 0.001 0.023
Mono [HU], mean 50.2 59.5 46.0 −13.0
Mono [HU], std 1.7 2.5 2.5 50.4

Table 2: Quantitative measurements for the FORBILD head phan-
tom for the correct energy response and incorrect options 1-3. The
mean value and the standard deviation over pixels covering the
brain matter (relative density of 1.05 and 50 HU at 50 keV) are
reported for the water image, the bone image, and the mono image.

Fig. 1 shows the reconstructed water images with a gray
scale centered around the relative density of brain matter to
water, namely 1.05. The left image acts as ground truth as
the correct energy response is used in the decomposition.
Incorrect option 1 leads to a clearly visible underestimation
of water with a cupping shape, whereas option 2 leads to a
slight, difficult to notice overestimation. Incorrect option 3
leads to a major error.
The reconstructed bone images are presented in Fig. 2. Here,
the colorbar is centered around 0, to highlight leakage of
water into the bone image. As expected, the observations
are very similar and consistent with those made for the water
images.
When the two material images are combined into a virtual
mono-energetic image at 50 keV, as in Fig. 3, a light cup-
ping artifact is now clearly visible for incorrect option 2. In
addition to the capping artifact in option 1, there is a beam
hardening error where the sinus bone gets closest to the skull.
Option 3 leads to strong artifacts making the grayscale win-
dow too narrow for close inspection.
The visual impressions are supported by quantitative mea-
surements given in Table 2, where mean values and standard
deviations over the brain matter region (i.e., the pixels of
groundtruth value equal to 1.05) are reported.

3.2 BrainWeb phantom

We start with the results of the experiments on the imperfect
material knowledge. As presented in Fig. 4, the decomposi-
tion into water and bone is not exact when the object contains
other soft-tissue materials. Some brain tissue becomes visi-
ble in the bone image, showing that the soft tissues require a
small component along the bone material when expressed as
a mixture of water and bone.
However, when looking at the 50 keV mono-energetic im-
ages, the perfect (Fig. 5) and imperfect material knowledge
(Fig. 6) yield similar accuracy relative to the ground truth.
Quantitatively, the RMSD in a large region covering the brain
is equal to 6.26 HU in the perfect case and to 6.46 HU in the
imperfect case. In both cases, the deviation from the ground
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Figure 4: Reconstructed images of materials for the BrainWeb
data. Top row: water images, bottom row: bone images. In both
cases, the modified phantom containing only water and bone (left)
is compared to the original one with 12 materials (right).

truth appears dominated by sampling errors; also, resolution
losses and the narrow grayscale window cause bone bloom-
ing. Note that the contrast between gray and white matter
is not expected to be the same in both cases, as the soft
tissues are represented by different materials with identical
attenuation value occurring only at 80 keV.
When repeating the experiments on the imperfect energy
response with the BrainWeb phantom, similar observations
as for the FORBILD phantom can be made. For the sake of
space, we only show images for incorrect option 1 applied
to the modified version of the phantom, which only contains
water and bone. The errors induced by the imperfect response
are visible in all images, bone, water, and mono, especially
in the posterior fossa region. Over the same brain region as
previously used, a mean of 0.010 and a standard deviation
of 0.003 can be measured over the pixels in the bone image;
and the mono image has an RMSD of 13.0 HU relative to the
ground truth.

4 Discussion and Conclusion

In this 2-D simulation study, we investigated the bias induced
by imperfections in energy response or material knowledge
for non-contrast head DE-CT. As expected, the results firstly
show that major imperfections lead to major error in the re-
constructed images. Secondly, the results show that small
errors in energy response can quickly lead to non-uniformity
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Figure 5: Reconstructed virtual mono-energetic image of the
BrainWeb phantom for 50 keV next to the ground truth (left). Mod-
ified phantom containing only water and bone. C/W=50/100 HU.

Figure 6: Reconstructed virtual mono-energetic image of the
BrainWeb phantom for 50 keV next to the ground truth (left). Orig-
inal phantom made of 12 different materials. C/W=50/100 HU.

errors (capping/cupping) and unattractive beam hardening er-
rors between bones that are close to each other. These errors
are not ideal for detection of small bleeding or computation of
proton stopping power ratio. Thirdly, an imperfect material
knowledge reduces the quality of the material decomposition
but may not have much impact on the virtual mono-energetic
image. Note that our observations are limited to one specific
spectra separation between the high and low energy scans.
We plan to further complement this study with alternative
spectra separations, as well as imperfections in the definition
of the bone material and inspections of other slices within
the BrainWeb phantom.
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Abstract We consider reconstruction problems in CT where an exact
reconstruction of a region-of-interest (ROI) of the object is possible
from a limited data set. Does the measurement of additional line
integrals, which do not cross the ROI, improve the reconstruction
within the ROI? We consider a general discrete model of this question
and prove a theorem, which defines a condition under which the ROI
estimation cannot be improved by the additional data. The theorem is
illustrated by a small dimension toy problem and by simulated data of
the thorax phantom.

1 Introduction

This work deals with region-of-interest (ROI) reconstruction
in CT. The two-dimensional (2D) filtered backprojection
algorithm requires measuring all line integrals crossing the
object, but several papers in the last 20 years have shown
that unique and stable reconstruction of ROIs of the object
is possible from specific subsets of line integrals. Examples
include the long object problem in 3D cone-beam CT [1],
the super-short scan 2D algorithm [2], and several 2D and
3D configurations based on the relation between the Hilbert
transform and the backprojection of the data derivative [3, 4].

Consider for instance the 2D CT problem in Figure 1 and the
limited data subset consisting of all line integrals crossing
the ROI A. In the absence of noise these limited data are suf-
ficient to reconstruct A [3]; in this case measuring additional
line integrals would not improve the already perfect estima-
tion within the ROI. The situation is different when the data
are noisy, because the measured line integrals crossing A are
contaminated by the regions of the object outside A (e.g. by
the “spine”). Measuring additional line integrals, which do
not cross A but convey information on these contaminating
regions, might therefore improve the image estimation inside
A.

The goal of this work is to determine conditions for when
additional measurements will, or will not, improve ROI re-
construction. We consider a general discrete model of the
problem, introduced in section 2. Section 3 defines a con-
dition under which the ROI estimation cannot be improved
by the additional data. An illustration with a toy problem is
given in section 4, and a preliminary numerical example is
proposed in section 5.

Figure 1: Left: the thorax phantom with superimposed the ROI A (white rect-
angle). The thin white line is the boundary of the assumed object support. Right:
The limited sinogram data y (lines crossing the ROI A), and the added data z (two
small rectangles). The colored band in the left plot is the backprojection of unit
added data z≡ 1 (i.e. the backprojection of a sinogram equal to 1 in the two small
rectangles and equal to 0 elsewhere).

2 A discrete model

The data model is < y>= Sx, with the data y ∈ Rm, the
object x ∈ Rn, and a known m× n system matrix S. The
solution space Rn = RnA

⊕
RnB is the direct sum of two sub-

spaces A = {x ∈Rn |x j = 0, j = nA +1, . . . ,n} and B = {x ∈
Rn |x j = 0, j = 1, . . .nA}. In the CT case, S is the system
matrix that maps the image vector x onto the discretized
sinogram subset y, and A is the ROI. The voxels are indexed
such that the first nA components of x are the ROI voxels. In
this discrete setting all prior information on the support of
the object is introduced in the choice of the set of n “voxels”.

• Assumption A1. The system matrix S is singular but
the data y, if noise free, determine x within the ROI A:

Sx = 0⇒ x j = 0 for j = 1, . . . ,nA. (1)

• Assumption A2. The covariance matrix of the data,
W =<(y−<y>)(y−<y>)T >, is diagonal with uni-
form noise variance σ2: W = σ2 Id.

Because S is singular, the least-squares (LS) estimate is not
unique, and the usual approach is to select the LS solution of
minimum norm (generalized solution),

x† = S†y = arg min
x∈N(S)⊥

L(x) (2)

with S† the Moore-Penrose inverse (generalized inverse) of
S, N(S) = {x ∈ Rn |Sx = 0} the null-space of S, and L(x) =
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‖y−Sx‖2. The orthogonal projector onto the null-space of
the system matrix is denoted PN(S), and PN(S)⊥ = Id−PN(S) =

S†S.
Using the same notations the matrix of the projection onto
the ROI subspace A is:

(PAx) j =

{
x j j = 1, . . . ,nA

0 j = nA +1, . . . ,n
(3)

and PB = Id−PA. It can be shown that assumption A1 is
equivalent to the identity PAPN(S) = 0 and also to the identity
PN(S)PA = 0. Using these projectors we express any x ∈ Rn

as x = xA + xB + xN , where

xA = PAx = PN(S)⊥PAx is the ROI component,

xB = PN(S)⊥PBx is the visible component of the region B,

xN = PN(S)x = PN(S)PBx is the null-space component,

‖x‖2 = ‖xA‖2 +‖xB‖2 +‖xN‖2. (4)

The following properties are straightforward extensions of
well-known properties of minimum norm LS solutions [6]
when A1 and A2 hold:

• Lemma 1. x† is an unbiased estimate in the ROI A.

• Lemma 2. The covariance of x† is σ2F†, with F† the
Moore-Penrose inverse of the Fisher matrix F = ST S.

• Lemma 3. Let H be any n×m matrix such that PAHS =
PAPN(S)⊥ . Then the estimator x̂ = Hy has the same ex-
pectation as x† within A and PA(Cov(x̂)−Cov(x†))PA

is a non-negative matrix. This means that x† has the
lowest variance among all unbiased linear estimates of
x within the ROI A.

3 Do additional data improve the estimation in the
ROI ?

Consider an additional data vector z ∈ Rq with mean value
<z>=Cx, for some known q×n matrix C. We assume that
A2 also holds for the data z. The k-th added data zk ∈ R is
defined by the LOR vector ck =Ck,. ∈ Rn, for k = 1, . . . ,q.

• Assumption A3. The additional LORs do not intersect
the ROI A, i.e. Ck, j = 0 for j = 1, . . . ,nA and k = 1, . . . ,q.
This can also be written PACT = 0.

• Assumption A4. The rows of C are linearly indepen-
dent and are linearly independent of the rows of S :
Range(C) = Rq and Range(CT )∩Range(ST ) = {0}.

In the context of tomography, the matrices ST and CT corre-
spond to the backprojection operation. The second condition
in A4 then means that it is impossible to find a non-zero pair
of vectors y ∈ Rm and z ∈ Rq which yield the same image
when backprojected onto the image space Rn. In the example

of Figure 1a, the backprojection of any added data vector z is
zero outside the colored region. Therefore, assumption A4
is satisfied unless one can find a data vector y (set of values
for the LORs crossing the square ROI A), the backprojection
of which, ST y, is zero everywhere except within the colored
region, where it must be equal to CT z.
We will also use the following equivalent formulation of
assumption A4 (proof in Appendix):

Lemma 4. Range(C) = Rq and Range(CT )∩Range(ST ) =
{0} ⇔ Range(CPN(S)) = Rq.

The main result of this work is the following theorem:

Theorem 1. If the assumptions A1-A4 are verified, the added
data z do not improve the estimation of x in the ROI A.

Some remarks are in order.

• Theorem 1 provides a necessary condition: if A1, A2
and A3 are satisfied, the additional data are susceptible
to improving the estimation in the ROI A only if assump-
tion A4 does not hold, i.e. if there exists a non-zero pair
y ∈ Rm and z ∈ Rq such that CT z = ST y.

• Theorem 1 is easily generalized if the data covariance
W is any positive diagonal matrix, by substituting S→
W−1/2S and y→W−1/2y, and similarly for C and z.

• Theorem 1 can be generalized to Poisson data, replac-
ing the least-squares solution x† by the minimizer of
the Kullback-Leibler divergence. This generalization,
however, only holds for the unconstrained estimator, i.e.
if one does not enforce the non-negativity of x†.

• A generalization to a continuous setting is not straight-
forward because the generalized inverse is not a contin-
uous operator for ill-posed problems such as the Radon
transform.

Proof of Theorem 1

Let x† be the generalized solution (2) of the original problem
y = Sx. Decompose that solution according to (4), thus x† =
x†

A + x†
B + x†

N , with x†
N = 0 because x† is the minimum norm

LS solution. For any x = xA + xB + xN ,

L(x†) = ‖y−Sx†
A−Sx†

B‖2 ≤ L(x) = ‖y−SxA−SxB‖2. (5)

Quantities with the added data z will be denoted by a tilde.
The generalized solution with the added data is found by
minimizing the combined data fit

L̃(x) = ‖y−Sx‖2 +‖z−Cx‖2

= ‖y−SxA−SxB‖2 +‖z−CxB−CxN‖2, (6)

(the second line uses assumptions A1 and A3).
Consider the following system of q equations:

CPN(S)w = z−Cx†
B. (7)
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This equation has at least one exact solution for w because by
Lemma 4, assumption A4 implies that Range(CPN(S)) = Rq.
Therefore (7) is a consistent system of equations for any right
hand side vector. Let w∗ be the minimum norm solution of
(7). One easily verifies that w∗ ∈ N(S). We will verify that
x̃† = x̃†

A + x̃†
B + x̃†

N with

x̃†
A = x†

A ; x̃†
B = x†

B ; x̃†
N = w∗, (8)

is the generalized solution with added data, i.e. x̃† is the
minimum norm minimizer of L̃(x). To see this, note first
from (8) and (5) that for any x = xA + xB + xN ∈ Rn,

‖y−Sx̃†
A−Sx̃†

B‖2 = ‖y−Sx†
A−Sx†

B‖2 ≤ ‖y−SxA−SxB‖2

(9)
because x† is a minimizer of L(x). In addition, with x̃†

N = w∗

chosen as a solution of (7),

‖z−Cx̃†‖2 = ‖z−Cx̃†
B−Cx̃†

N‖2 = ‖z−Cx†
B−Cw∗‖2 = 0

≤ ‖z−CxB−CxN‖2 (10)

for all x = xA + xB + xN ∈ Rn. Adding this inequality to (9),

‖y−Sx̃†
A−Sx̃†

B‖2 +‖z−Cx̃†
B−Cx̃†

N‖2

≤ ‖y−SxA−SxB‖2 +‖z−CxB−CxN‖2 (11)

and therefore L̃(x̃†)≤ L̃(x) for all x ∈ Rn.
Having shown that x̃† defined by (8) minimizes L̃, it remains
to verify that it is the minimum norm minimizer. Suppose
x̂ = x̂A + x̂B + x̂N also minimizes L̃, so that L̃(x̂) = L̃(x̃†), i.e.

L(x̂)+‖z−Cx̂‖2 = L(x̃†)+‖z−Cx̃†‖2 = L(x†) (12)

where we used ‖z−Cx̃†‖ = 0 (eq. (10)) and L(x̃†) = L(x†)
(first equality in (9)). Since x† minimizes L(x) and ‖z−
Cx̂‖ ≥ 0, equation (12) implies L(x̂) = L(x†). Therefore
x̂ ∈ x† +N(S), and in particular x̂B = x†

B = x̃†
B. Inserting this

again in (12), x̂ must be solution of (7),

‖z−Cx̂B−Cx̂N‖2 = ‖z−Cx̃†
B−Cx̂N‖2 = 0. (13)

But x̃†
N = w∗ is the minimum norm solution of that equation

so that by (4) x̃† is the minimum norm minimizer of L̃.
Recalling the optimal property of the generalized inverse
(Lemma 3), and noting from (8) that x̃†

A = x†
A, completes the

proof that the added measurement z does not improve the
estimation of x in the ROI A.

4 Illustration with a toy problem

We illustrate the previous result with the toy problem
sketched in Figure 2, with n = 4 “voxels” and the 3× 4
system matrix

S =




1 1 0 0
1 0 1 1
0 1 1 1


 (14)

The null-space of S is spanned by the vector (0 0 1/
√

2 −
1/
√

2)T hence the two first components of x can be recon-
structed exactly from y = Sx: the ROI is A = {x ∈ R4 |x3 =
x4 = 0}. Assuming uniform noise (σ = 1), the covariance of
x† is the Moore-Penrose inverse of the Fisher matrix F = ST S:

Cov(x†) = F† =
1
8




6 −2 −1 −1
−2 6 −1 −1
−1 −1 3/2 3/2
−1 −1 3/2 3/2


 (15)

Figure 2: Sketch of the toy problem. The limited data y correspond to the green
LORs. The additional data z corresponds to the red LOR. The estimation within
the ROI is improved only in the case shown in the right plot.

Add a single additional measurement (q = 1) with 1× 4
matrix C = (0 0 1 0), which satisfies PACT = 0 (A3). The
combined system matrix with the added data is

S̃ =

(
S
C

)
=




1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 0


 (16)

The covariance of the estimator x̃† derived from the combined
data (y,z) is

Cov(x̃†) = (S̃T S̃)† =
1
4




3 −1 0 −1
−1 3 0 −1
0 0 4 −4
−1 −1 −4 7


 (17)

Comparing (15) with (17) shows that Cov(x̃†)i, j∈{1,2} =
Cov(x†)i, j∈{1,2}: the added data z =Cx does not improve the
estimation in the ROI. This result is expected from Theorem
1, because

(
Range(CT ) = {x ∈ R4 |x1 = x2 = x4 = 0}

)
∩(

Range(ST ) = {x ∈ R4 |x3 = x4}
)
= {0}, hence A4 is satis-

fied.
If the added measurement is replaced by C = (0 0 1 1), as
in the right plot in Figure 2, the combined system matrix
becomes

S̃ =

(
S
C

)
=




1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 1


 (18)

In this case Range(CT ) = {x ∈R4 |x1 = x2 = 0,x3 = x4} has
a non-trivial intersection with Range(ST ) hence A4 is not
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satisfied. The covariance matrix is:

Cov(x̃†) = F̃† =
1

14




10 −4 −1 −1
−4 10 −1 −1
−1 −1 3/2 3/2
−1 −1 3/2 3/2


 (19)

Comparing (15) with (19) shows that Cov(x†)i, j∈{1,2} −
Cov(x̃†)i, j∈{1,2} is a non-negative matrix, with eigenvalues
0 and 1/14. We conclude that the added data improves the
covariance in the ROI A (in this particular example, only the
estimation of the sum x1 + x2 is improved).

Remark. When a single data item is added (q = 1), as in
this toy problem, explicit expressions of F̃† can be found.
Denote c ∈ Rn the unique row of the 1×n matrix C. When
c ∈ Range(ST ) the condition A4 is not satisfied and the co-
variance with the added data is given by (Theorem 3 in [7])

F̃† = (F + ccT )† = F†− 1
β

F†ccT F† (20)

where β = 1+ cT F†c.

5 The thorax phantom

This section presents results with one slice of the thorax phan-
tom (Figure 1), a rectangular ROI A, and the object support
in a slightly larger ellipse. The phantom intensity values
are rescaled such that the value in the background is 1. The
data y = Sx contain all rays intersecting A. In a continuous
setting these data would allow an exact reconstruction of the
ROI [3, 4]. Here we consider a discrete approximation of
this problem, with the image matrix and the (full) parallel
beam sinogram discretized in a 600×600 pixel matrix (so
that n = 360000 and m = 177052).
Even in discretized setting, the inversion of the Radon trans-
form is an ill-conditioned problem. The Moore-Penrose so-
lution x† considered in Theorem 1 must be regularized, and
the relevance of that theorem is therefore questionable. An
added difficulty is to define regularization parameters, which
act in a similar way for the full data and for the limited data.
Here we apply the Landweber algorithm with a fixed relax-
ation parameter and a fixed number of iteration, this choice
was motivated by the excellent stability of this algorithm
and its property to smoothly and progressively introducing
increasing spatial frequencies.
We consider additional data z = Cx corresponding to a set
of roughly horizontal lines through the phantom (Figure 1);
these lines do not intersect A. The number of additional LORs
is q = 2946. A heuristic argument suggesting that A4 is valid
for this geometry is based on the central section theorem.
Consider in Figure 3a the point P located in the spine. We
argue that the backprojection of the additional data in a neigh-
borhood of point P cannot be the same as the backprojection
of the original data. The data y(φ ,s) correspond to all LORs

crossing the ROI A; therefore, at point P the backprojection
(ST y)(P) only involves the angular range shown by the red
lines that connect P to the lower corners of the ROI. Similarly,
the backprojection (CT z)(P) of the added data z(φ ,s) (the
two small rectangles in Figure 1b) only involves the angular
range shown by the blue lines. Therefore the limited angular
ranges covered by the data y and by the additional data z at
point P do not overlap. Assuming that the central section the-
orem can be applied locally at P, the support of the Fourier
transform of ST y and CT z near P are shown in Figure 3b,
and because these supports do not overlap, one conjectures
that A4 holds true because it is impossible to find functions
y(φ ,s) and z(φ ,s) yielding identical backprojections. We
have no proof of this conjecture.

Figure 3: Left: the geometry of Figure 1, with the thorax phantom and the
rectangular ROI A. The red and blue lines are the limits of the angular ranges cov-
ered when backprojecting the data and added data at a point P located in the spine.
The two angular ranges do not overlap. Right: assuming local shift invariance, the
supports of the 2D Fourier transform of the backprojection of the data (red sector)
and added data (blue sector) near P.

Data were simulated analytically. Uniform gaussian noise
was added (post-log, σ = 0.02× the maximum in the com-
plete sinogram). We use 1000 iterations of the Landwe-
ber algorithm, with a fixed relaxation parameter (0.0116 =
0.95/‖S‖2), and we apply a post-reconstruction gaussian
smoothing with FWHM of 2 pixels (truncated to a 11×11
discrete kernel). There was no positivity constraint. Figure
4 shows mean images and standard deviation images (40
reconstructions from independent noise realizations).
The differences between the reconstructions from full sino-
gram, ROI data y, and combined ROI and added data (y,z)
were calculated within the ROI A. Results are given in Table
1 for the mean and for the standard deviation images:

eMean =
‖PA(< x̂1 >−< x̂2 >)‖

‖PA < x̂1 > ‖

eStdev =
‖PA(stdev(x̂1)− stdev(x̂2))‖

‖PAstdev(x̂1)‖
(21)

where x̂1 and x̂2 are the two reconstructions being compared,
and <> and stdev() are the sample mean and standard devi-
ation images over the 40 noise realizations.
Even though the data are noisy, the three reconstructions are
very similar within the ROI, with differences smaller than the
differences between the reconstructions from noise-free and
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Figure 4: Reconstructions of the thorax phantom. Landweber algorithm, 1000
iterations, post-smoothed 2 pixels FWHM. Left column: mean reconstruction
(scale 0.8,1.2). Right column: standard deviation images (scale 0, 0.15). Top
row: reconstruction from the full sinogram. Middle row: reconstruction using the
ROI data only. Bottom row: reconstruction using the ROI+ additional data. Thin
white line : boundary of the ROI.

Table 1: Relative mean square root differences (RMS) between pairs of mean
reconstructions and pairs of standard deviation images. See eq. (21). The RMS
includes only the pixels in ROI A. Reconstructions with 1000 Landweber iterations
from complete data (“full”), ROI data (lines crossing A),”ROI”, and combined data
(“ROI+”).

image x̂1 image x̂2 RMS difference
eMean full full, no noise 0.0180

full ROI 0.0122
full ROI+ 0.0080
ROI ROI+ 0.0055

eStdev full ROI 0.0044
full ROI+ 0.0044
ROI ROI+ 0.0007

from noisy data. Even adding the whole missing data to the
limited ROI data has only a small impact on the variance of
the Landweber reconstructions interrupted at 1000 iterations.
The same simulated data were reconstructed using 200
iterations of the conjugate gradient algorithm (restarted
when L(xk+1) > L(xk)), again with post-smoothing (2 pix-
els FWHM). Although different converging algorithms may
follow different paths to the pseudo-solution, a similar obser-
vation holds as with the Landweber reconstructions (Figure 5
and Table 2): the added data has a small impact on the image
and its variance within the ROI. Outside the ROI however the
standard deviation is much larger with the conjugate gradient
reconstruction than with the Landweber reconstruction (Table
3). We tentatively attribute this difference to the introduction
by the conjugate gradient algorithm of singular components
with smaller singular values. Refering to known properties of
the finite Hilbert transform [8], these components are known
to have significant values only outside the ROI.

Figure 5: Top row: Mean reconstructions (scale 0.8, 1.2). Conjugate gradient
algorithm, 200 iterations, post-smoothed 2 pixels FWHM. Left: ROI data only.
Right: ROI+ added data. Bottom row: Standard deviation images (scale 0, 0.15).
Left: ROI data only. Right: full data. Thin white line : boundary of the ROI.

Table 2: Same as Table 1 for the conjugate gradient reconstructions.

image x̂1 image x̂2 RMS difference
eMean full full, no noise 0.0211

full ROI 0.0101
full ROI+ 0.0097
ROI ROI+ 0.0040

eStdev full ROI 0.1130
full ROI+ 0.1156
ROI ROI+ 0.0087

6 Conclusion

Even when a region of interest can be exactly reconstructed
from a limited tomographic data set in the absence of noise,
it appears reasonable to expect that the measurement of addi-
tional line integrals should improve the ROI in the presence
of noise. We show that this is not necessarily the case, and
introduce in Theorem 1 a condition, which, when satisfied,
implies that the additional data do not improve the estima-
tion in the ROI. The theorem only applies to the unbiased
minimum norm least-squares solution. Evaluating the rel-
evance of this result requires further numerical tests and a
generalization of the theorem to regularized solutions.

Table 3: Mean standard deviation in the images reconstructed from the full
data (two first rows) and from the ROI data only (two last rows). Recall that the
background value in the thorax phantom is equal to 1.

Mean st. dev. Landweber conj. gradient
full data within ROI 0.087 0.098

outside ROI 0.084 0.095
ROI data within ROI 0.087 0.107

outside ROI 0.066 0.261
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7 Appendix: proof of Lemma 4.

Lemma 4. Range(C) = Rq and Range(CT )∩Range(ST ) =
{0} ↔ Range(CPN(S)) = Rq.

Proof.

• →. Suppose that Range(C) = Rq and
Range(CT ) ∩ Range(ST ) = {0}. Suppose by con-
tradiction that Range(CPN(S)) ⊂6= Rq. Because
Rq = Range(CPN(S))

⊕
N(PN(S)CT ) this implies that

N(PN(S)CT ) 6= {0} so there is a z ∈ Rq such that z 6= 0
and PN(S)CT z = 0, i.e. CT z ∈ N(S)⊥ = Range(ST ).
Note also that N(CT ) = {0} because Range(C) = Rq

and therefore CT z 6= 0. There is therefore a vector
0 6=CT z ∈ Range(CT )∩Range(ST ), a contradiction.

• ←. Suppose that Range(CPN(S)) = Rq. This immedi-
ately implies Range(C) = Rq. Next, suppose by contra-
diction that Range(CT )∩Range(ST ) 6= {0}, so there is
a pair y ∈ Rm and z ∈ Rq such that CT z = ST y = x 6= 0.
But ST y ∈ Range(ST ) = N(S)⊥ therefore x ∈ N(S)⊥,
and PN(S)x = PN(S)CT z = 0. Therefore N(PN(S)CT ) 6=
{0}→ Range(CPN(S))⊂ Rq, a contradiction.
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Abstract In the context of two-dimensional (2D) image reconstruction
from truncated projections, we describe five implementations, each
based on a different formula derived from the virtual fan-beam (VFB)
method. Three formulae are already known: (a) and (b) perform the
back-projection in the parallel-beam geometry and (c) performs the
back-projection in the virtual fan-beam geometry. Two new formulae,
(d) and (e), perform the back-projection in the acquisition geometry.
Our simulation results using the Shepp-Logan phantom suggest that
the best accuracy is obtained from the implementations of formulae
(b), (d) and (e).

1 Introduction

The reconstruction of a region-of-interest (ROI) in two-
dimensional (2D) tomography from truncated data is possible
with both iterative and analytical methods. Iterative meth-
ods are more flexible but analytical methods, based on exact
inversion formulae, are significantly faster. Many iterative
methods have been used to solve this problem, e.g. maximum-
likelihood expectation-maximization (ML-EM) [1, 2]. The
analytical solutions follow two different approaches: the vir-
tual fan-beam (VFB) method, which is the focus of this paper,
and the differentiated back-projection (DBP) method. The
VFB method was mainly introduced in [3, 4]. The DBP
method was developed simultaneously by several groups [5–
7]. Both methods are relevant as they can each solve par-
ticular ROI reconstruction problems that the other cannot
[5].
The principle of the VFB method is that, since many exact
analytical reconstruction formulae require non-truncated pro-
jections, one identifies virtual source points for which the
corresponding virtual projections are non-truncated. The
real truncated projections are then rebinned into these virtual
non-truncated projections. To do so, we define the field-of-
view (FOV), which is the region viewed by every source
position. Considering a full scan acquisition trajectory, it
follows that every line passing through the FOV is measured
so any FOV point which is also outside the convex hull of the
object is a valid virtual source point. We then use super-short-
scan formulae, which enable exact reconstruction inside the
convex hull of the super-short-scan trajectory, in case of
non-truncated projections.
In this work, we use super-short-scan formulae from [8] with
the VFB method, but many other super-short-scan formulae
have been proposed for 2D ROI reconstruction, either for a
circular trajectory [9–11] or a free-form trajectory [12].

Previous contributions in the VFB area were applied to trun-
cated parallel-beam projections. The filtered sinogram was
either computed after explicitly rebinning to the virtual fan-
beam geometry [4], or with a shift-variant “convolution” [3].
In both cases, parallel back-projection was used.
In this work, we apply these two approaches to truncated
fan-beam projections along a circular source trajectory in-
stead of a parallel-beam sinogram. For the first approach,
we rebin the acquired fan-beam projections into virtual non-
truncated fan-beam projections. These virtual projections are
suitably filtered and then rebinned into filtered projections
corresponding either to a parallel-beam geometry (formulae
(a) and (b) below) or to the fan-beam acquisition geometry
(formula (d)), also called the real geometry (as opposed to
the virtual geometry). The back-projection is computed in
the corresponding geometry. We note that the reconstruction
is also possible with a back-projection directly in the virtual
fan-beam geometry (formula (c)), thus avoiding the second
rebinning step. These four formulae assume that both virtual
and real geometries have a circular source trajectory. Follow-
ing the same approach as [3] we also derive in proposition 2
a direct formula of the filtered projections in the geometry of
the acquired truncated projections (formula (e)).

2 Theory

2.1 Notation

Let f denote the 2D object density to be reconstructed.
The parallel-beam projections of f are defined by p(φ ,s) =∫
R f (l~θφ + s~ηφ )dl where ~θφ = (cosφ ,sinφ) and ~ηφ =
(−sinφ ,cosφ). Let hF(s) =

∫
R |σ |e2iπσs dσ denote the ramp

filter. The parallel-beam ramp filtered projections are defined
by

pF(φ ,s) =
∫

R
hF(s− s′)p(φ ,s′)ds′. (1)

Let hH(s) =
∫
R−i sign(σ)e2iπσs dσ denote the Hilbert filter.

The parallel-beam Hilbert filtered projections are defined by

pH(φ ,s) =
∫

R
hH(s− s′)p(φ ,s′)ds′. (2)

The fan-beam projections of f for a circular source tra-
jectory of radius R are defined by gR(λ ,γ) =

∫ ∞
0 f (R~θλ +

t~θλ+π+γ)dt where λ ∈ Λ ⊂ [0,2π) and R~θΛ is the set of
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vertices (fan-beam source locations) of the trajectory. The
fan-beam Hilbert filtered projections are defined by

gR
H(λ ,γ) =

∫ π

−π
hH(sin(γ− γ ′)) gR(λ ,γ ′)dγ ′. (3)

The fan-beam ‘differentiated and Hilbert filtered’ projections
are defined by

gR
F(λ ,γ)=

∫ π

−π
hH(sin(γ−γ ′))

(
∂

∂λ
− ∂

∂γ ′

)
gR(λ ,γ ′)dγ ′.

(4)

2.2 Use of the VFB method

In our formulae, the key step is the computation of gR
H(λ ,γ)

or gR
F(λ ,γ). Equations (3) and (4) require non-truncated fan-

beam projections. Therefore, we determine a virtual source
trajectory for which the associated fan-beam projections are
non-truncated, we rebin the initial data into this virtual ge-
ometry and we compute gR

H or gR
F for this trajectory.

The fan-beam ray parameters (λ1,γ1) and (λ2,γ2) (for circu-
lar source trajectories of radius R1 and R2, respectively) are
linked by G1 : {R1 sinγ1 = R2 sinγ2 and λ1 + γ1 = λ2 + γ2}
(see figure 1). To apply this, we assume that the virtual

Figure 1: A ray of parameters (φ , s) in parallel geometry and the
ray parameters (λi, γi) at the point Si for a circular trajectory of
radius Ri with i ∈ 1,2. The angles (λi, γi), measured counterclock-
wise, verify s =−Ri sinγi and φ = λi + γi.

source trajectory is an arc of circle of radius R1. We use
gR1(λ1,γ1) = gR2(λ2,γ2) where G1 is satisfied to rebin the
truncated projections acquired with a source trajectory of
radius R2 (with R2 ≥ R1) into the virtual source trajectory.

2.3 Formulae with parallel-beam back-projection

The parallel-beam parameters (φ ,s) and the fan-beam param-
eters for a virtual source trajectory of radius R1 (λ1,γ1) of a
ray are linked by either P1 : {s =−Rsinγ and φ = λ + γ} or
P2 : {s = Rsinγ and φ = λ + γ +π}..
A first reconstruction formula (a), derived from [8, eq. (8),
(10)], is

f (~x) =
1

4π

∫ 2π

0

[
∂
∂ s

pH(φ ,s)
]∣∣∣∣

s=~x·~ηφ

dφ (5)

where the available values of pH are obtained through the
virtual filtered projections gR1

H using:
{

P1 =⇒ pH(φ ,s) = −gR1
H (λ1,γ1),

P2 =⇒ pH(φ ,s) = gR1
H (λ1,γ1).

(6)

A second reconstruction formula (b), derived from [8, eq.
(2), (14)], is

f (~x) =
1
2

∫ 2π

0

[
pF(φ ,s)

]∣∣
s=~x·~ηφ

dφ (7)

where the available values of pF are obtained through the
virtual filtered projections gR1

F using:

P1 or P2 =⇒ pF(φ ,s) =−
1

2πR1 cos(γ1)
gR1

F (λ1,γ1). (8)

In both formulae, we replace the half rotation over [0,π) by a
full rotation over [0,2π) since it reduces numerical artefacts.

2.4 Formulae with fan-beam back-projection

A third reconstruction formula (c), derived from [8, eq. (33),
(34)], is

f (~x)=− 1
2π

∫

ΛR1

1

||R1~θλ1−~x||
wR1(λ1,γ~x,λ1)g

R1
F (λ1,γ~x,λ1)dλ1

(9)
where ΛR1 ⊂ [0,2π) is the angle extent of the virtual source
trajectory, γ~x,λ1 = arctan(−~x ·~ηλ1/(R1−~x ·~θλ1)), wR(λ ,γ) =
cR(λ )/(cR(λ ) + cR(λ + π + 2γ)) and cR is a smooth 2π-
periodic function such that λ /∈ ΛR =⇒ cR(λ ) = 0 (see
[8, eq. (46)] for more details).
In formula (c), the back-projection is done along the virtual
source trajectory. To apply the same formula along the real
source trajectory, we need to determine gR2

F . Since the real
projections are truncated, we cannot compute it directly with
(4). However, one can show the following:

Proposition 1.

G1 =⇒ gR1
F (λ1,γ1)

R1 cos(γ1)
=

gR2
F (λ2,γ2)

R2 cos(γ2)
(10)

This proposition yields the fourth reconstruction formula
(d):

f (~x)=− 1
2π

∫ 2π

0

1

||R2~θλ2−~x||
wR2(λ2,γ~x,λ2)g

R2
F (λ2,γ~x,λ2)dλ2

(11)
where gR2

F (λ2,γ2) = R2 cos(γ2)g
R1
F (λ1,γ1)/(R1 cos(γ1)),

γ~x,λ2 = arctan(−~x · ~ηλ2/(R2 −~x · ~θλ2)) and wR1(λ1,γ1) =
wR2(λ2,γ2) (to preserve the redundancy weight w associated
to each ray).
Proposition 1 enables computation of the values of gR2

F by
rebinning the real truncated projections gR2 into virtual non-
truncated projections gR1 , computing the virtual filtered pro-
jections gR1

F , and then rebinning back these virtual filtered
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projections into the real filtered projections gR2
F . However,

it is also possible to directly compute gR2
F from its truncated

projections:

Proposition 2.

gR2
F (λ2,γ2) =

R2 cos(γ2)√
R2

1−R2
2 sin2(γ2)

∫ γm

−γm

hH(sin(∆R2
R1
(γ2,γ2

′)))

(∂1−∂2)gR2(λ2 + γ2− γ2
′−∆R2

R1
(γ2,γ2

′),γ2
′)dγ2

′

(12)

provided that R1~θλ2+γ2−arcsin((R2/R1)sinγ2) (which corresponds

to R1~θλ1 when G1 is satisfied) is outside the convex hull
of the object and that the tangent to the circle of ra-
dius R1 at this point does not intersect the object, where
R2 ≥ R1, γm = arcsin(R1/R2), |γ2| ≤ γm, ∆R2

R1
(γ2,γ2

′) =

arcsin
(
(R2/R1)sinγ2

)
−arcsin

(
(R2/R1)sinγ2

′) and ∂i is the
derivative according to the i-th variable.
So this yields the fifth reconstruction formula (e), using
the same back-projection as (d) but with gR2

F computed by
proposition 2.

2.5 Simulations

For numerical experiments, we used the geometry defined in
figure 2. All values are in arbitrary units (a.u). The object to

Figure 2: The real source trajectory is a circle of radius R2 = 4.
The detector measures rays from the source S with an equal angular
spacing. The FOV is a disk of radius R1 = 0.8. The virtual source
trajectory (in bold dashed line) is the arc at the FOV border outside
the object.

reconstruct is the classical 2D Shepp-Logan phantom. The
center of the phantom was at (0, 0.15) with (0,0) the center
of rotation. The reconstructed images were computed on a
square grid of dimensions [−1,1]2 with ∆x = 1/200 (i.e. a

square grid of 401 x 401 pixels). The real source trajectory
along [0,2π) was sampled with an angular spacing ∆α2 of 0.5
degree (i.e. with 720 vertices) and each fan-beam truncated
projection was sampled with an angular spacing ∆γ2 =∆x/R2
for γ2 in [−γm,γm] (i.e. with 325 rays). Similarly, the virtual
source trajectory along [0°, 36°)∪[144°, 360°) was sampled
with an angular spacing ∆α1 of 0.5 degree (i.e. with 505
vertices) and each fan-beam projection was sampled with an
angular spacing ∆γ1 = ∆x/R1 (∆γ2 and ∆γ1 were chosen so
that the spacing between two rays at the center of rotation is
equal to ∆x for both real and virtual rays) for γ1 in [−π,π]
(i.e. with 1005 rays). For formulae (a) and (b), the parallel
projections along [0,2π) were sampled with an angular spac-
ing ∆φ of 0.5 degree (i.e. with 720 projections) and each
parallel projection was sampled over [−1,1] with ∆s = ∆x
(so each projection consists of 401 parallel rays).

3 Results

3.1 Simulations with noiseless projections

Figure 3 shows the reconstructed images and the correspond-
ing profiles for the five formulae using the same noiseless
sinogram. All reconstructions were satisfactory with minor
differences. The reconstructed image obtained with formula
(a) showed some artefacts (ripples close to the external white
envelope) which were avoided with formula (b). The back-
projection along the virtual source trajectory (formula (c))
produced more artefacts than the back-projection along the
real source trajectory (formula (d)). The reason is proba-
bly due to the virtual trajectory being closer to the object
than the real trajectory, as the lines contributing to the back-
projection must all go through the vertices along the virtual
trajectory, so these lines are irregularly sampled in case of a
point close to the virtual trajectory (this caused the artefacts
inside the object at the middle bottom and top left and right).
Concerning the arc of circle of white artefacts at the vicinity
of the virtual trajectory, it seems to be caused by the factor
1/||R~θλ −~x|| applied to this irregular sampling. We note that
(b) and (d) seemed to have a similar accuracy. Finally the
reconstruction obtained with formula (e) had a smaller exact
reconstruction area because the filtering step in proposition 2
was only accurate for rays which cross the virtual source tra-
jectory at a point where its tangent did not intersect the object.
Moreover, the discretization of hH(sin(∆R2

R1
(γ2,γ2

′))) required
finer sampling so, for formula (e), we chose ∆γ2

′ = ∆γ2/3
(i.e. with 969 rays) instead of ∆γ2

′ = ∆γ2. The computation
time was similar in all formulae except formula (e) for which
it was much longer (about 10 times longer for the whole
computation or 40 times longer for the part not involving
the back-projection) due to the shift-variant “convolution”
(which is not a true convolution so we cannot use the Fourier
convolution theorem) and the finer sampling of γ2

′.
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Figure 3: Top row: image reconstructed with, from left to right, formulae (a), (b) , (c), (d) and (e) when the data are measured with a
source trajectory of radius R = 4. The plotting scale is [1.015 (black), 1.025 (white)]. The vertical and horizontal white lines correspond
to the profiles plotted respectively in the middle row with scale [1.015, 1.045] and in the bottom row with scale [1.01, 1.04]. The ideal
profiles are plotted in green dashed line and the real ones in red. The vertical black dashed line defines the boundary of the possible
reconstruction area.

3.2 Simulations with noisy projections and variance
study

Figure 4 shows the pixel-wise variance computed for n = 100
realizations in the case of Poisson noise simulated before
taking the logarithm of the projections to obtain line integrals.
Following [13], the Shepp-Logan densities were weighted by
1.879 a.u−1 , i.e., the linear attenuation coefficient of water
at 75 keV with 1 a.u. = 100 mm. The number of photons
received per detector pixel without object in the beam was
constant for all pixels and equal to 107. Striking differences
were observed in the spatial maps of the variance between the
different formulae, with formula (c) the least homogeneous.

4 Conclusion

In this work, we compared five different implementations
for ROI reconstruction from truncated fan-beam projections
measured along a circular source trajectory. The first three
formulae (a), (b) and (c) were already established in [8] and
formulae (d) and (e) are, to our knowledge, new formulae.
All reconstructions gave satisfactory results. Image quality
was slightly better with formulae (b), (d) and (e) but the
computation time was longer for method (e). Method (c)
presented the worst satisfactory variance results, but we have

not yet performed a control study of image resolution in the
reconstructions.
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CB reconstruction for the 3-sin trajectory with transverse truncation
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Abstract In cone-beam tomography Differentiated BackProjection
method (DBP) is a suitable approach for image reconstruction from
truncated projections. However, the reconstruction of a point with
this method is possible only if the point lies on a chord connecting
two source positions of the x-ray source trajectory. Using an approach
initially proposed for the reverse helix with axial truncation, we present
a configuration and its associated (theoretical) reconstruction method
to deal with points which do not lie on any chord of the 3-sin trajectory
(sine on a cylinder of period 2π/3) and with transversely truncated
projections.

1 Introduction

Cone beam (CB) geometry is an important part of the com-
puted tomography. A main result of CB tomography comes
from Tuy [1] and Finch [2]. They prove that for an X-ray
source trajectory which is bounded and connected, an exact
reconstruction is only possible within the convex hull of this
trajectory. Moreover, in this case, the Tuy condition says
exact reconstruction is possible if there is no data truncation.
FOV is defined as follows in our article: the measured rays
for each projection are exactly those that intersect the FOV.
In this article, the FOV will be a eeez-axis cylinder and we
deal with transverse truncation, appearing when the detec-
tor is not large enough (the FOV and the object intersect
at their sides). To manage this kind of reconstruction, the
Differentiated BackProjection method (DBP) [3] is suitable,
for example in [4] for the helix trajectory. Yet this method
requires that each point of the object ΩO to be reconstructed
is intersected by a chord (a line segment linking two source
points of the X-ray source trajectory).
However, many trajectories have points within their convex
hull which are not intersected by a chord. For example, this
is the case for the reverse helix [5] and for the 3-sin trajectory,
which is a sinusoid on a cylinder, defined by:

S def
= {(Rcosλ ,Rsinλ ,H cos(3λ )),λ ∈ [0,2π)} (1)

with R> 0, H > 0, see Fig. 1, left. Nevertheless, [6] shows by
numerical methods that exact reconstruction with transverse
truncation appears to be possible even in some regions which
are not intersected by chords. Moreover, S has a convex hull
bigger than that of the saddle trajectory (a 2-sin trajectory
more extensively studied in the literature [7]), which is why
we find it useful to study. We write ΩS for the convex hull
(Fig. 1, right) and CS(⊂ΩS) for the union of all chords c for
the 3-sin trajectory S, and NS

def
= ΩS \CS.

The article [5], treating the reverse helix case, explains how to
perform reconstructions dealing with some points in the con-
vex hull which are not lying on a chord and axial truncation

(the article [8], published at the same time, works on the same
point and proposes a similar approach, except for the last
step). Inspired by the method of [5], the goal of this article
is to describe and to test one configuration for the trajectory
S, where it is possible to reconstruct Ωin

def
= FOV∩ΩO∩NS

despite transverse truncation. To do this, the next section
analyses and describes the regions CS and NS. Section 3
describes the reconstruction principles and a computer sim-
ulation study is presented in section 4. We end with a short
discussion and conclusion.

2 The 3-sin trajectory

2.1 Union of chords

S

eeex

eeey

eeez

Figure 1: Left: the 3-sin trajectory S, which is a sinusoid on a
cylinder. Right: the 3-sin trajectory with its convex hull ΩS. (The
shades of grey vary according to the height).

To build the union of chords CS of the 3-sin trajectory, it is
useful to consider the intersection between the trajectory and
a horizontal plane Πz̃ with equation z= z̃, where−H ≤ z̃≤H,
illustrated in Fig. 2. The angles in this figure are:

λA =−1
3

arccos(z̃/H) λB =
1
3

arccos(z̃/H)

λC = λA +
2π
3

λD = λB +
2π
3

(2)

λE = λA +
4π
3

λF = λB +
4π
3

We let SA denote SλA . The aim is to show that each point of
the hexagon of Fig. 2 (right) is intersected by a chord, except
points in the central triangle (defined by the intersection of the
line segments [SSSC,SSSF ], [SSSD,SSSA] and [SSSE ,SSSB]). Considering
Fig. 3 and with equations (1) and (2), we see chords c1(z̃)
(linking SSSD to SSSE for z̃ ∈ [0,H]) and c̄1(z̃) (linking SSSF to SSSC

for z̃ ∈ [0,H]) move (and meet when z̃ = H), continuously
approaching with respect to increasing z̃, for z̃ ∈ [0,H]. The
chord c2(z̃), where z̃ ∈ [−H,0], moves continuously with
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SΠz̃

λA

λB

λC

λD

λE

λF

eeey

eeex

Figure 2: Intersection between a horizontal plane Πz̃ and S (with
the intersection points linked). Right: The dashed circle is the
projection of S on Πz̃. The red and black lines are chords of S
contained in this plane Πz̃. This section shows that all points
contained in the black polygon, but outside the red triangle, are
intersected by a chord.

respect to decreasing z̃ until c2(−H) = SSSπ . With the union
of all chords c1(z̃) and c̄1(z̃) for z̃ ∈ [0,H] and all chords
c2(z̃) for z̃ ∈ [−H,0], a surface can be created (see Fig. 4,
right). Let’s note that the 3-sin trajectory is invariant through
a rotation of 2π/3 around the eeez-axis and is invariant through
a rotation of π/3 (around the same axis) then a symmetry
with respect to the plane (eeex,eeey). With these invariances it is
possible to create six similar surfaces as described previously
(see Fig. 4, left). By adapting the proof of [7] (appendix
A.2), it is possible to prove that each point between these two
surfaces lies on a chord, i.e. if it exists two points xxx′=(x,y,z′)
and xxx′′ = (x,y,z′′), z′ < z′′, each intersected by a chord, then
each point xxx = (x,y,z), with z′ < z < z′′, is also intersected
by a chord. To finish the construction of CS we must match xxx′

and xxx′′ points, being at the union of the six surfaces, to ensure
that each point within the volume of this union is intersected
by a chord.

We define the blue surfaces as the surfaces generated by the
chords c1 ([SSSDSSSE ], [SSSCSSSB] and [SSSFSSSA] for z̃ ∈ [0,H], [SSSESSSF ],
[SSSBSSSA] and [SSSCSSSD] for z̃ ∈ [−H,0]) and c̄1 ([SSSCSSSF ], [SSSESSSB]
and [SSSDSSSA]). The red surfaces are defined by the surfaces
generated by the chords c2 ([SSSDSSSE ], [SSSCSSSB] and [SSSFSSSA] for
z̃ ∈ [−H,0], [SSSESSSF ], [SSSBSSSA] and [SSSCSSSD] for z̃ ∈ [0,H])(see
Fig. 4). For this section each projection will be an orthogonal
projection onto the plane (eeex,eeey) (which is the plane Π0). The
intersection of the projections of the blue surfaces covers the
regular hexagon defined by the convex hull of the intersection
between Π0 and S (see Fig. 3 and 5). Then a point “between”
two blue surfaces (one above and one below Π0) and whose
projection is in the hexagon is intersected by a chord. A
point whose projection is in the region between the hexagon
defined above and the circle of radius R is intersected by a
chord if it is “between” a red surface and a blue surface on
the same side of Π0. The set of points intersected by a chord
is CS, illustrated in Fig. 7, left.

SSS 5π
3

SSS 2π
3

SSSπ

z̃ =−H

c2(−H) c2(−H/2)

z̃ =−H/2

c1(0) c̄1(0)

SSS π
2

SSS 5π
6

SSS 7π
6

z̃ = 0

z̃ = H/2

SSS0

SSS 2π
3

SSS 4π
3

c1(H) = c̄1(H)

z̃ = H

Figure 3: Different chords contained in some horizontal planes.
The blue chords, defined for z̃ ≥ 0, are the chords c1(z̃) (linking
SSSE to SSSD for z̃ ≥ 0) and c̄1(z̃) (linking SSSF to SSSC) and are parallel
(and even merged for z̃ = H.). The red chord is c2(z̃) (linking SSSE
to SSSD for z̃≤ 0). The union of these chords, for all z̃ ∈ [−H,H] is
drawn Fig. 4.

Figure 4: Left: One surface created for chords described Fig. 3.
Right: The union of six surfaces from the left figure, using the
invariances of the 3-sin trajectory.

Figure 5: Orthogonal projections on the plane (eeex,eeey) of the
red and blue surfaces. Top: Surfaces defined for z̃ ≥ 0. Bottom:
Surfaces defined for z̃ < 0. The dashed hexagon links the points of
the intersection between S and Π0.
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2.2 Region without chords

We have defined CS, but to be complete now we must be
sure that no chords intersect a point in the central triangle or
equivalently we construct region NS. (see Fig. 2). Consider-
ing a horizontal plane Πz̃, z̃ > 0, we cut S into several pieces
s (short pieces, above Πz̃) and l (long pieces, under Πz̃), see
Fig. 6 (for example s1 is the piece of the trajectory linking
SSSA to SSSB). We study chords linking these pieces. There are
four cases: chords linking s1 to l1 (directly opposite), s1 to l2
or l3 (“l” to “s” but not directly opposite), s1 to s2 or s3 (“s”
to “s”) and l1 to l2 or l3 (“l” to “l”). It is clear that chords
linking s1 to l2 do not intersect the central triangle. Chords
linking s1 to s2 (resp. l1 to l2) are above (resp. below) Πz̃.
The last case (chords linking s1 to l1), is more complicated,
and an analytic approach would be tedious. We show some
numerically calculated intersections between these chords
and Πz̃ in Fig. 6 that suggest that all such intersections occur
outside the triangle.

SSSASSSB

SSSD

SSSE

l1

s1

SSSA

SSSB

SSSD

SSSE

l1 s1

l2

s2 l3

s3

Figure 6: Chords for some values of λ1 ∈ [λA,
λA+λB

2 ] (half of the
s1 piece) and λ2 ∈ [λD,λE ] (l1 piece) and intersections for the plane
Πz̃, z̃ = H/2. Right: Intersections for four values of λ1.

From equations (1) and (2) we are able to draw the central
triangles for each z̃ ∈ [−H,H] and build an illustration of NS,
as shown in Fig. 7, right.

Figure 7: Left: The union of chords of S: CS. Right: The set of
points of ΩS which are not intersected by a chord: NS. (The shades
of grey vary according to the height).

3 Reconstruction

3.1 General method

The regions ΩO and FOV are assumed known, and CS and
NS have been previously calculated. We can summarize the
reconstruction approach in four steps:

1. Reconstruction of ΩDBP⊆ FOV∩ΩO∩CS with the DBP

method, where ΩDBP is the region where DBP is possi-
ble

2. Reprojection of reconstructed points (cone-beam pro-
jections of the new object reconstructed in the region
ΩDBP)

3. Subtraction of reprojections from the original cone-
beam data, to present a new reconstruction problem with
a smaller object, defined on the region ΩO \ΩDBP =

Ωin∪Ωout, with Ωout
def
= ΩO \ (ΩDBP∪Ωin)(the regions

ΩDBP, Ωin and Ωout are mutually disjoint)

4. For reconstruction to be possible, the new configura-
tion must be a problem without truncation satisfying
Tuy condition: reconstruction of Ωin by any of the var-
ious methods for cone-beam reconstruction from non-
truncated projections (e.g. [1], [9], [10]...).

However, in order to apply this method, two points must
be taken into account. Firstly, the DBP method does not
generally allow reconstruction in the whole region FOV∩
ΩO∩CS because although the necessary Hilbert transforms
can be formed along these chords, there are further geometric
conditions required for Hilbert inversion (more precisely,
we consider methods that guarantee the existence, stability
and uniqueness of the inversion, so called 1-sided and 2-
sided inverse Hilbert transforms [11]). Thus the ΩDBP region
must be carefully identified. Secondly, there must be no
contaminated lines, which are defined as measured lines of
Ωin intersecting Ωout. The region Ωout could then be removed
from the reconstruction problem. Note that it would not
be possible to reconstruct the part of the Ωout region being
outside the FOV. If there are contaminated lines this approach
to reconstruction of Ωin fails.

3.2 Configuration proposed

FOV S

ΩO

ΩoutΩin

ΩDBP

FOV S

Ωin
Ωout

Figure 8: Top view of the considered configuration. The dashed
blue triangle (resp. biggest blue triangle) delimits the intersection
of NS with the horizontal plane z = 12mm (resp. z = 20mm). A
zoom on Ωout is done Fig. 9, left. Left: before the subtraction of
the reprojection of ΩDBP (dotted region) from the data. Right: after
the subtraction.

We now propose an example configuration without contam-
inated lines. Other examples are also possible. The FOV
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is a cylinder centered on the eeez-axis of radius 90mm. The
object support ΩO is a cylinder of same direction with an el-
liptical defined by {(acosλe + co,bsinλe),λe ∈ [0,2π),a =
80mm,b = 40mm,co = 20mm}. Its axial extent (in the z-
direction) is the interval [12mm,20mm] and the FOV is ax-
ially extended on a larger interval (no axial truncation). Fi-
nally, concerning S, we have H = 60mm and R = 160mm.
We present this configuration in top view, before and after
subtraction of the reprojections from the data, see Fig. 8. It
can readily be shown that, with the DBP method, we can
reconstruct each point of ΩDBP = FOV∩ΩO ∩CS \A (the
dotted region of Fig. 8, left), with A def

= conv(ΩO \FOV) \
(ΩO \FOV) (the orange region of Fig. 9, left). However it
might be possible to reconstruct some points of the small
region A with the M-line methods [12], but this is not the
central aim of this article, which is to prove that it is possible
to reconstruct Ωin. A 3D illustration is given Fig. 9, right.
We see from Fig. 8, right, that if there is no contaminated
line, the configuration satisfies Tuy condition (there is “no
longer any truncation”). Instead of drawing all measured
lines (here they are the lines from a source point of S and
intersecting the FOV, especially Ωin), we choose to focus on
lines intersecting Ωin and Ωout at the same time. These lines
delimit two cones and a polyhedron (Fig. 10). We see from
Fig. 10 that these cones (and the polyhedron) do not intersect
S, so no contaminated lines exist, and thus reconstruction of
Ωin is possible.

ΩO

FOV

A

S

Figure 9: Left: Zoom on the right-side of ΩO: the dotted region is
ΩDBP, the orange region is A and the non-dotted (white and orange)
region of ΩO is Ωout. Right: The configuration proposed. The FOV
is delimited by both green circles, ΩO by both black ellipses and
NS by the blue triangles (at z = 12mm and z = 20mm). Dark green
and blue dots are used to draw the limit lines of Fig. 10.

4 Simulation

We created a thin cylindrical phantom with an elliptical base
as ΩO, and added some ellipsoid and balls, see Fig. 11. The
configuration for the source trajectory and the FOV was the
same as described in the previous section. The rectangular
detector of 400×430 pixels is at a distance of 290mm from
the source. A total of 360 cone-beam projections were sim-
ulated along the 3-sin source trajectory. The reconstruction

Figure 10: Cones (red) and the polyhedron (orange) demiliting
the lines intersecting both Ωin and Ωout. They do not intersect the
trajectory S so these lines are not contaminated lines.

volume consisted of 162×82×8 voxels (pixels and voxels
have a 1-mm side).

Figure 11: The phantom used for simulations. The orange lines
indicate the location of the profile used in Fig. 13. Left: Top view.
Right: Side view.

The objective was to verify the theory that the triangular
region NS could be accurately reconstructed according to the
theory established above. The goal was to investigate the
results of [6], obtained by an iterative method, so we did not
use the DBP method, with the 4 step approach outlined in
section 3.1. We just used the conjugate gradient to minimize
‖R f − p‖2

2 + γ‖∇ f‖2
2 with R the forward projection operator

and p the measured projections. With γ = 500 we performed
60 iterations at which point we considered that convergence
had been achieved. Some results are shown Figs. 12 and 13
(with another reconstruction performed without truncation,
with a FOV of radius 102mm).

Figure 12: A cross-section at z = 16mm of the reconstruction.
The green circular arc delimits the FOV and the blue triangle is NS
(for this cross-section).

5 Discussion and conclusion

We have adapted the scheme introduced in [5] for the reverse
helix with axial truncation to the 3-sin trajectory with trans-
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Figure 13: A profile of the reconstruction at y = 0mm and
z = 16mm. The black line is the phantom, the purple line is the
reconstruction without truncation and the orange line is the recon-
struction with truncation. The dashed green line is the right limit
of the FOV (for the reconstruction with truncation) and the dashed
blue lines are the limits of NS.

verse truncation. To our knowledge, it is an original way to
manage certain situations of transverse truncation for points
lying in the Tuy-Finch region but not lying on a chord.
We performed a simulation (with an iterative method) which
showed the same quality of reconstruction in the chord zone
as well as the non-chord zone NS. However, our example
only involved very mild transverse truncation. On the other
hand, in [6] we presented results showing good quality recon-
struction for the same trajectory with much more transverse
truncation but without theoretical results to justify it.
The configuration we have presented is rather limited in
practice. For example, the object is quite flat. Nevertheless
this represents a beginning of a lead, and other more general
configurations could be found, for example by considering
sub-trajectories of S after subtraction of the reprojections,
while guaranteeing Tuy’s condition.
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Abstract Interior tomography for Region-of-Interst (ROI) imaging
has various advantages in terms of reducing a number of detectors and
decreasing X-ray radiation exposure dose. However, large patient or
small field-of-view (FOV) detector can cause truncated sinograms, and
then reconstructed images with truncated sinograms suffer from severe
cupping artifacts. We proved that cupping artifacts are identified as
null space images of truncated Radon transform, and the null space
images are concentrated in low-frequency parts based on Bedrosian
identity. To accurately reconstruct the ROI imaging, we propose a null
space image estimator using deep learning with novel dual-domain
framework. We demonstrate that the proposed method can outperform
the conventional deep learning methods.

1 Introduction

X-ray computed tomography (CT) imaging provides high-
quality and high-resolution images, but X-ray CT causes
potential cancer risks due to radiation exposures. Thus, many
researches have studied to reduce the radiation dose, where
three approaches were widely used by reducing (1) photon
counts of X-ray source (low-dose CT), (2) projection views
(sparse-view CT), and (3) ROI (interior tomography). Unlike
the low-dose CT reducing photon counts and the sparse-view
CT undersampling projection views, the interior tomography
retains these factors but uses small FOV detectors, which
are useful for imaging of small target regions such as car-
diac and dental imagings. In addition, portable C-arm CTs
also use interior tomography imaging in order to miniaturize
the hardware system. Therefore, the interior tomography
not only reduce the radiation exposures, but also has a cost
benefit due to a small size of detectors. While the interior
tomography has advantages, truncated projection data has not
been correctly reconstructed using analytic CT reconstruc-
tion algorithms such as filtered backprojection (FBP) and the
reconstructed image suffers from severe cupping artifacts.
Simple method to mitigate the cupping artifacts is projec-
tion extrapolation [1]. Even though the reconstructed image
using extrapolated projection data shows moderated cup-
ping artifacts, hounsfield units (HU) can be biased due to
inaccurate extrapolation. Other researchers have developed
model-based iterative reconstruction (MBIR) methods with
several penalty teams such as total variation (TV) [2] and
generalized L-spline [3, 4]. Specifically, Lee et al [4] showed
that based on Bedrosian identity, signals of null space images
remain at low frequency parts, while high frequency parts
can be reconstructed using analytic functions such as Hilbert
transform.
Recently, deep learning algorithms have been proposed as

high-performance solutions for low-dose CT [5–7], sparse-
view CT [8–10], and interior tomography [11, 12]. The solu-
tions based on deep learning have surpassed the conventional
MBIR methods in terms of image quality and reconstruc-
tion time. Deep learning methods demonstrated powerful
performances for various applications, but limitations, such
as blurring effect caused by L2 loss, still remain. To solve
the blurring effects, many researchers use L1 loss and/or
GAN loss, but L1 loss increases mean square error (MSE)
values and GAN loss might generate realistic structures that
do not exist.
In this paper, we propose a novel dual-domain deep learning
method to solve interior tomography problem as shown in
Fig. 1(b). Specifically, the proposed deep learning method
estimates null space images rather than clean images. An
advantage estimating the null space images is to avoid blur-
ring effects because the null space images are composed of
low frequency signals [4]. Even though previous works [11,
12] directly estimated clean images from truncated FBP im-
ages using image-domain CNN (See Fig 2(a)), but cupping
artifacts are inherently caused by truncated projections, not
image-domain. The novel dual-domain CNN (see Fig 2(c)),
combined with projection-domain CNN (see Fig 2(b)) and
image-domain CNN (See Fig 2(a)), is proposed to simulta-
neously handle the null space components in both domains.
Numerical experiments show that the proposed method out-
performs other CNNs and preserves high frequency parts in
reconstructed images.

2 Theory

2.1 Problem Formulation

Here, we first describe Radon transform R and then extend
to interior tomography problem using truncated Radon trans-
form TµR. Let θ denotes a vector on the unit sphere S ∈ R2.
The set of orthogonal vectors θ⊥ is described as

θ⊥ = {v ∈ R2 : v ·θ = 0}, (1)

where · denotes an inner product. If an image is defined by
f (x) for x ∈ R2, the Radon transform R of an image f is
formulated as

R f (θ ,u) :=
∫

θ⊥
f (uθ +v)dv, (2)

where u ∈ R and θ ∈ S. Fig 1(a) shows a coordinate geome-
try for interior tomography and µ denotes a radius of a ROI
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Figure 1: (a) A coordinate geometry for interior tomography, and (b) Truncated FBP consisting of noise-free image and null space image.
y (projection image) denotes R f (Radon transform R of unknown image f (x) ).

(See green circle in Fig 1(a)). If the Radon transform R f is
restricted by radius µ as {(θ ,u) : |u|< µ}, then a truncated
Radon transform is denoted as TµR f , where Tµ is trunca-
tion mask with radius µ . Therefore, a interior tomography
problem can be explained to find an unknown image f (x) for
|x|< µ from the truncated Radon transform TµR f .

2.2 Null Space Formulation

The truncated Radon transform TµR f described in Sec. 2.1
causes a null space Nµ , and the null space Nµ makes the
interior tomography problem a strong ill-posed problem. A
mathematical analysis of the null space Nµ follows Ward
et al [3]. Specifically, an analytic inversion of the trun-
cated Radon transform TµR f can be equivalently described
a Hilbert transform Hµ f (u) = 1

π
∫

u∈Iµ
du′

(u−u′) f (u′) of a differ-
entiated backprojection (DBP) along an restricted 1D chord
lines Iµ(v) := {u′ ∈ R |

√
(u′)2 + v2 ≤ µ} (See blue line in

Fig. 1(a)). Then, the null space Nµ of the truncated Radon
transform TµR f is represented by

Nµ :=
{

fN | fN(u,v) =−
1
π

∫

u′ /∈Iµ (v)

du′

(u−u′)
ψ(u′,v)

}
, (3)

for any functions ψ(u,v) outside of a ROI. For example, a
null space image fN is illustrated in Fig. 1(b) and a cupping
artifact is a common impact of the null space Nµ .

2.3 Spectral Decomposition with Bedrosian Identity

When high-passed components h(x) restricted for |ω|> ω0
and low-passed components l(x) restricted for |ω|< ω0 exist,
the Bedrosian theorem [4] satisfies as:

H{l(x)h(x)}= l(x)H{h(x)}. (4)

Here, the image f (x) = fH(x)+ fL(x) is restricted by the 1D
chord lines Iµ which are usually bounded at low frequency
ranges. Then, according to the Bedrosian theorem:

Iµ(x) f (x) = Iµ(x)( fH(x)+ fL(x))

= Iµ(x)(H{gH(x)}+H{gL(x)})
= H{Iµ(x)gH(x)}+ Iµ(x)H{gL(x)}. (5)

Therefore, only high frequency components fH(x) can be
analytically reconstructed by

fH(x) =
H{Iµ(x)gH(x)}

Iµ(x)
. (6)

2.4 Null Space Estimator using Deep Learning

In previous works [11, 12], the researchers have solved the
interior tomography problem by using image-CNNs (See Fig.
2(a)) to directly estimate noise-free images f from truncated
FBP images R−1Tµy. However, Since we have verified that
the high frequency components fH(x) can be accurately re-
constructed by analytic methods, keeping the high frequency
components fH(x) unprocessed can improve performance
over dealing with the high frequency parts fH(x). In addition,
there are blurring issues using L2 loss. To overcome the
limitations, we proposed a null space estimator using deep
learnings rather than clean image estimators [11, 12]. In ad-
dition, we developed a novel network architecture called as
dual-domain CNN (See Fig. 2(c)) combined with projection-
domain CNN Qpr j (See Fig 2(b)) and image-domain CNN
Qimg (See Fig 2(a)) to estimate null space images fN in image-
domain and projection-domain, simultaneously. Specifically,
an optimization problem of the image-domain CNN Qimg is
formulated as

Limg(Qimg) = min
Qimg

N

∑
i=1
|| f (i)N −Qimg(FBP(TµR f (i)))||2. (7)

For the projection-domain CNN Qpr j, an optimization prob-
lem is represented as

Lpr j(Qpr j) = min
Qpr j

N

∑
i=1
|| f (i)N −BP(Qpr j(TµR f (i)))||2. (8)

The proposed dual-domain CNN uses a loss Ldual such that

Ldual(Qimg,Qpr j) = Limg(Qimg)+Lpr j(Qpr j). (9)

3 Method

3.1 Datasets

Ten subject datasets from the American Association of Physi-
cists in Medicine (AAPM) Low-Dose CT Grand Challenge
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Figure 2: Several types of null space image estimators. (a) image-domain estimator Qimg, (b) projection-domain estimator Qpr j, and (c)
dual-domains estimator Qimg(Qpr j) learnings. (d) describes modules shown in (a), (b), and (c), and (e) shows definitions of each image. y
(projection image) denotes R f (Radon transform R of unknown image f (x)).

Figure 3: Backbone architecture for a neural network Q.

were used. Among ten subjects, nine subjects were used as
train and validation datasets. Another subject was used to test
dataset. From the datasets, projection data was numerically
generated using a forward projection operator with parallel
beam geometry. A size of images is 512×512 and its pixel
resolution is 1mm2. The number of view is 720 views and a
range of rotation for X-ray source is [0◦, 360◦). The number
of detectors is 720 and detector pitch is 1mm. Truncation
ratios were used as 0%, 50%, and 75%, so datasets were
extended three times.

3.2 Architectures

Fig. 2(a-c) illustrate image-domain estimator, projection-
domain estimator, and dual-domain estimator, respectively.
Specifically, dual-domain estimator are consisted of a front
part of projection-domain estimator and a back part of image-
domain estimator. CNN module used in each estimator is
U-Net as shown in Fig. 3.

3.3 Training

The proposed method was implemented using Pytorch. Also
the proposed architecture was directly trained with end-to-
end learning because FBP and BP modules were imple-
mented in Pytorch’s layer structures. Single graphic pro-
cessing unit (GPU) as NVIDA Tesla V100 is used to train
each estimator. CNN parameters are described as below.
Adam optimizer was used and an initial learning rate was
10−4 and it was multiplied by 0.1 if validation loss did not
decrease over 5 epochs. The number of batch size is 8. For
data augmentation, vertical flipping was applied.

Figure 4: (a) Average NMSE and (b) Average SSIM with respect
to various truncated ratios.
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Figure 5: (a) and (b) are Ground truth and FBP image, respectively. (c-e) show reconstructed images by image-domain CNN in Fig. 2(a),
projection-domain CNN in Fig. 2(b), and dual-domain CNN in Fig. 2(c). (f) illustrates profiles according to white line on the results.
First and Second rows are 50% and 75% ROI situations, respectively. ∗x3 denotes that a window scale is magnified three times. NMSE
values are written at the corner.

4 Results

Fig. 4 shows quantitative metrics such as normalized mean
square error (NMSE) and structural similarity index measure
(SSIM) according to various truncated ratios. Image-domain
CNN in Fig. 2(a) and dual-domain CNN in Fig. 2(c) show
similar quantitative values at small truncations range from
0% to 50%. However, as the truncation ratio increases, the
dual-domain CNN outperforms the image-domain CNN. In-
terestingly, projection-domain CNN in Fig. 2(b) shows bad
performance at the small truncation ranges, but outperforms
than image-domain CNN at large truncation ratios. This is
the reason that the projection-domain CNN is more efficient
for large truncation ratios than the image-domain CNN, while
the image-domain CNN is useful for small truncations. Fig.
5 compares the reconstructed results by image-, projection-,
and dual-domain CNNs. The proposed dual-domain CNN
shows lowest values in NMSE, and the smaller the truncated
ratio, the larger the gap of NMSE between proposed method
and other methods.

5 Conclusion

In this paper, we proposed the deep learning method to esti-
mate the null space image, which is one of major problems in
interior tomography. Because the null space image is caused
by the truncated data in the projection domain, we developed
a novel dual-domain network architecture. Numerical results
showed that the proposed method is robust to the size of FOV,
and outperforms single-domain CNNs.
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Abstract α-particle radiopharmaceutical therapies (α-RPTs) based
on Thorium-227 (227Th) isotope are currently in different stages of
investigation. 227Th decays to 223Ra, another α-particle-emitting
isotope that redistributes inside the body. Reliable dose quantification
with these therapies is clinically important. Since these isotopes also
emit gamma-ray photons, SPECT provides a mechanism to perform
this quantification. However, reliable quantification is challenging due
to orders-of-magnitude lower administered activity and thus very low
count levels compared to conventional SPECT, emission spectra of
these isotopes containing multiple photopeaks, and significant overlap
in the spectra of these isotopes. To address these issues, we propose
a multiple-energy-window projection-domain quantification method
that jointly estimates the regional activity uptake of both 227Th and
223Ra directly using the SPECT projection data from multiple energy
windows. We evaluated the method with realistic simulation studies
conducted with an anthropomorphic digital-phantom population. Our
results demonstrated the convergence of the method, the ability of
the method to yield reliable estimates of the regional uptake for both
isotopes, and the reliability of the method for different lesion sizes.
In conclusion, this study provides a method to perform reliable dose
quantification for 227Th-based α-RPTs.

1 Introduction

Thorium-227 (227Th) base conjugates are an emerging α-
particle emitting isotope for α-particle-based radiopharma-
ceutical therapies (α-RPTs) that are being investigated in
several clinical and preclinical studies [1]. Since these thera-
pies distribute throughout the body, including radio-sensitive
vital organs, there is an important need to quantify the dose
distribution of these therapies. This could then help with
post-therapy management, therapy outcomes prediction, and
adverse events monitoring.
The 227Th isotope also emits gamma-ray photons that can
be detected by a gamma camera. Thus, SPECT imaging
may provide a mechanism to quantify the spatial distribution
of absorbed dose in the patient. However, this quantifica-
tion is challenging for several reasons. First, usually, the
administrated activity in α-RPTs is two-to-three orders lower
compared with those in the conventional SPECT procedures.
The emitted and thus the detected gamma-photon counts are
many times lower than conventional SPECT studies. Further,
the decay chain of 227Th is complicated. 227Th decays to
Radium-223 (223Ra), which can then disassociate with the
antibody and form an independent biodistribution. Conse-
quently, we have two independent isotope distributions, each
of which has an overlapping spectrum and each of which is
emitting a low number of photons. The inverse problem is
to use these measurements to jointly quantify the regional

uptake of both these isotopes in different organs and lesions.

One approach to solve this joint quantification problem is
to jointly reconstruct the activity distribution with the two
isotopes over a voxelized grid, and then quantify the activity
within the VOIs [2, 3]. However, this reconstruction-based
approach has been observed to yield limited accuracy in α-
RPTs, with bias values between 10-35% even with finely
tuned reconstruction protocols [4–6]. We note here that re-
construction is only an intermediate step for quantification.
Reconstructing the 227Th and 223Ra activity images require
jointly estimating these activity distributions over a large
number of voxels, a challenging task with a small number of
detected counts. In contrast, our objective is only to jointly
quantity the uptake in the lesion and few organs. A method
that directly estimates the uptake from the projection data for
only these small number of regions is a less ill-posed prob-
lem and may help achieve the goal of reliable quantification.
Such a method may also help avoid reconstruction-related
information loss.

Methods to directly estimate regional uptake from projection
data have been proposed previously [7–10]. The maximum-
likelihood region of interest (ML-ROI) approach [7] is partic-
ularly compelling due to the optimality of the ML estimator.
We recently extended this method to quantify regional uptake
in α-RPT SPECT, addressing several unique challenges with
imaging these isotopes [11, 12]. The resultant projection-
domain quantification (PDQ) method was evaluated in the
context of measuring regional uptake from SPECT for pa-
tients administered 223Ra-based therapy. We observed that
the PDQ method yielded reliable regional uptake and consis-
tently outperformed reconstruction-based quantification ap-
proaches. This provides the motivation to extend this method
for the joint quantification task. The approach we take for
this purpose is similar to a dual-isotope SPECT reconstruc-
tion approach [13], but we propose our method to directly
perform quantification from the projection data, and skip the
reconstruction step.

To further address the issue of low counts, we recognize that
both 227Th and 223Ra emit gamma-ray photons over multiple
photopeak energies. Thus, using photons from multiple en-
ergy windows corresponding to these different photopeaks
provides a way to improve effective system sensitivity [4].
Recent studies have shown that using measurements from
multiple energy windows can help improve quantification
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performance [14, 15]. We thus frame the inverse problem to
use data from multiple energy windows.
To solve this inverse problem, we propose a multiple-
energy-window projection-domain quantification (MEW-
PDQ) method. The method jointly estimates the regional
activity uptake of 227Th and 223Ra directly from the low-
count SPECT projection data acquired over multiple energy
windows. The proposed method is then evaluated with real-
istic simulation studies. We first describe the theory of the
method.

2 Theory

Consider a SPECT system imaging an activity distribution
that consists of both 227Th and 223Ra. The system acquires
data over multiple energy windows and at multiple projection
angles. Our goal is to estimate the regional uptake of both
these isotopes within K different volumes of interest (VOIs).
Assume that the 227Th and 223Ra isotope distributions can
be represented in terms of the VOI basis functions, with
the underlying assumption that the activities within these
VOIs are constant. Denote the K-dimensional vectors of
regional activity uptake of 227Th and 223Ra by λλλ T h and λλλ Ra,
respectively. Denote the measured projection data by a M-
dimensional vector ggg. Each projection bin corresponds to
data acquired within an energy window over a certain detector
pixel and at a certain projection angle. Denote the M × K
dimensional system matrices that describe the acquisition of
the projection data from 227Th and 223Ra by HHHT h and HHHRa,
respectively. The elements of these matrices, namely HT h

mk
and HRa

mk , denote the response in the mth bin of the SPECT
system to a decay event of 227Th and 223Ra from the kth VOI,
respectively.
At the low count levels when imaging these isotope distribu-
tions, the stray-radiation-related noise is not negligible. We
model this noise as Poisson distributed with the same mean
for all projection bins, denoted by ψ . The imaging system
equation can then be derived to be

ggg = HHHλλλ +ψ +nnn, (1)

where

HHH =
[
HHHT h HHHRa] , λλλ =

[
λλλ T h

λλλ Ra

]
, (2)

and nnn is a M-dimensional vector that denotes the Poisson
distributed noise in the imaging system, with mean of HHHλλλ +
ψ . Then, the probability of the measured projection data is
given by

Pr(g|λλλ ) =
M

∏
m=1

exp[−(HHHλλλ )m−ψ]
[(HHHλλλ )m +ψ]gm

gm!
. (3)

To estimate the regional activity uptake of each isotope, we
take the partial derivative of the logarithm of Eq. 3 with

respect to each element in λλλ . This yields the following
iterative estimates of activity uptake of 227Th and 223Ra in
the kth VOI, denoted by λ T h

k and λ Ra
k , respectively

λ̂ T h
k

(t+1)
= λ̂ T h

k

(t) 1
M
∑

m=1
HT h

mk

M

∑
m=1

gm

[HHHλ̂λλ
(t)
]m +ψ

HT h
mk , (4)

λ̂ Ra
k

(t+1)
= λ̂ Ra

k

(t) 1
M
∑

m=1
HRa

mk

M

∑
m=1

gm

[HHHλ̂λλ
(t)
]m +ψ

HRa
mk , (5)

where λ̂ T h
k

(t)
and λ̂ Ra

k

(t)
denote the estimates of λ T h

k and λ Ra
k

at the tth iteration, respectively. We refer to this iterative
approach as the MEW-PDQ method.
Implementation of the MEW-PDQ method required comput-
ing the elements of the two system matrices. These elements
were computed using a Monte Carlo (MC)-based approach.
More specifically, SIMIND, a well-validated MC-based sim-
ulation software was used to determine the response of the
SPECT system to photon emission from each VOI. Dur-
ing this process, all relevant image-degrading processes in
SPECT were modeled, including the effects of attenuation,
scatter, collimator response, septal penetration and scatter,
and finite energy and spatial resolution of the detector. Then,
the mask of each VOI with unit activity uptake of each iso-
tope, together with the attenuation map of the whole phantom,
were input to SIMIND individually. Simulation of a large
number of photons for each isotope yielded almost noise-
less projection data from all relevant energy windows, which
yielded columns of the system matrices for each isotope.
Next, the MEW-PDQ method required the mean stray-
radiation-related noise in each energy window. This was
estimated by acquiring a planar blank scan on the relevant
SPECT system for a long duration. The mean stray-radiation-
related counts in each energy window of each projection bin
were calculated. These numbers were then normalized to
generate the mean of this noise. The computed system ma-
trices and mean stray-radiation-related noise were applied
in Eq. 4 and 5 to estimate the regional uptake of each iso-
tope simultaneously from the projection data acquired over
different energy windows.

3 Evaluation of the proposed method

A realistic simulation study was conducted to evaluate the
performance of the proposed MEW-PDQ method in clinically
realistic scenarios that modeled patient-population variability.
The pelvic region of 50 Digital 3D male patients with dif-
ferent anatomies was simulated using the Extended Cardiac-
Torso(XCAT) [16]. The size of patients was sampled from a
Gaussian distribution with a mean equal to the 50th percentile
male among US adults and a 10% standard deviation. The
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Table 1: Activity uptake ratios of 227Th and 223Ra in VOIs.

VOIs Background Bone Gut Lesion
223Ra 2 5 25 20
227Th 12 30 100 300

diameter of the lesions was sampled from a Gaussian distri-
bution, with a mean of 33.75 mm and a standard deviation of
12.64 mm, as derived from clinical data. The phantom was
divided into three primary VOIs, the lesion, bone, and gut.
The rest of the isotope distribution within the patient was
categorized as background, resulting in four VOIs in total.
The mean activity uptake ratio of 227Th and 223Ra in each
VOI is shown in Table 1. These ratios simulated the scenario
where the patients were imaged after 120 h of administering
227Th. In this duration, approximately 17% of the 227Th had
decayed to 223Ra. The bio-distribution of two isotopes was
chosen to simulate a difference of uptake in different VOIs.
The activity uptake ratios in each VOI were independently
sampled from a Gaussian distribution with the mean as given
in Table 1 and a 10% standard deviation.
Projection data corresponding to this patient population was
generated using Monte Carlo modeling. A GE Optima 640
SPECT system with high energy general purpose (HEGP)
collimator was simulated in SIMIND. As suggested in [17],
the projection data was collected at four energy windows.
The bounds of energy windows were 75 - 100 keV, 135 -
165 keV, 215 - 260 keV, and 260 - 285 keV. Projections
were acquired from 60 angles spaced uniformly over 360◦.
The count level of these projections simulated the scenario
where the pelvic region of a patient was administrated with
2 Mbq activity of 227Th and was imaged for 30 minutes with
this dual-headed SPECT system. The MEW-PDQ method
was applied to the acquired projection data. We quantified
the accuracy and reliability of the MEW-PDQ method in
estimating the regional uptake across all four VOIs using the
absolute normalized bias and normalized root mean square
error (RMSE).
To evaluate the convergence of the MEW-PDQ method, a
patient with the average size of body and lesion was consid-
ered. One realization of the projection data was generated for
that patient using the process described above. The proposed
method was applied and the normalized error in the estimated
uptake of each VOI after every 32 iterations was computed.
800 iterations were performed.
To evaluate the sensitivity of the MEW-PDQ method to lesion
size, we simulated five patients with average body sizes. Each
patient had a lesion of different diameter ranging from 15 mm
to 35 mm. The activity uptake ratio in the different VOIs for
both the isotopes was as shown in Table 1. Projection data
for these patients was generated as described above. 50 noise
realizations were generated for each patient to compute both
the bias and the precision of the estimated activity uptake for
different lesion sizes.

Figure 1: The normalized error of activity uptake estimates in
bone and lesions regions of both isotopes as a function of iteration
number using the MEW-PDQ method.

(a) (b)

Figure 2: The (a) absolute normalized bias and (b) normalized
RMSE of the estimated regional uptake for a realistic simulation
study.

4 Results

The normalized error of the activity uptake estimates in the
bone and lesion regions of both isotopes as a function of itera-
tion number using the MEW-PDQ method is shown in Fig. 1.
We observe that after 512 iterations, the change in error in
all VOIs is less than 0.1%, showing the convergence of the
method. Thus, we chose 512 as the number of iterations for
the method for all experiments. Due to the low number of
VOIs, 512 iterations took less than 5 minutes with an Intel(R)
Core(TM) i7-6700 CPU with 8 cores and 16.0 GB RAM.
The absolute normalized bias and normalized RMSE of the
activity uptake estimates of the two isotopes in the lesion,
gut, bone, and background regions in the realistic simulation
study are shown in Fig. 2. We observe that for all regions,
the MEW-PDQ method yields a bias close to zero for both
isotopes. Further, the normalized RMSE for both isotopes in
all regions is low, with a mean of 8.7%.
The absolute normalized bias and normalized RMSE of the
estimated activity uptake in the lesion as a function of the
lesion diameter using the MEW-PDQ method are shown in
Fig. 3. We observe that the estimates of the activity uptake of
227Th are almost unbiased for all the considered lesion sizes.
For 223Ra, the bias and RMSE of estimates in the lesion
region are higher for lesions with diameters below 25 mm.
This is due to the very low number of detected counts emitted
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(a) (b)

Figure 3: The (a) absolute normalized bias and (b) normalized
RMSE of the estimated activity uptake in the lesion region as a
function of the lesion diameter.

by 223Ra in that region considering the total count values as
low as 10,000 counts per slice in the projections. However,
beyond a lesion diameter of 25 mm, the bias from the 223Ra
uptake is close to zero.

5 Conclusions

We proposed a multiple-energy-window projection-domain
quantification method to jointly quantify the regional uptake
of 227Th and 223Ra in different volumes of interest. Evalua-
tion with realistic simulation studies provides evidence that
the proposed method yields reliable absolute quantification of
both 227Th and 223Ra regional activity uptake simultaneously
at very low count levels, as is the case when imaging these
isotopes in clinical scenarios. Further, the proposed method
yields reliable absolute quantification of both isotopes across
different lesion sizes. Our results suggest that the proposed
method may provide a mechanism to perform reliable dose
quantification with 227Th based α-RPTs and motivate further
evaluations.
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Abstract  

Kinematic constraints due to the additional medical equipment or patient 

size are common while acquiring C-arm cone beam computed 

tomography (CBCT). Such constraints cause collisions with the imager 

while performing a full circular rotation and therefore eliminate the 

chance for three dimensional (3D) imaging in CBCT-based 
interventions. In a previous paper, we proposed a framework to develop 

patient-specific collision-free trajectories for the scenarios where circular 

CBCT is not possible. However, the proposed method required kinematic 

constraints to be known beforehand. As collisions are mainly 

unpredictable in the operation theater, a framework which enables a real-

time trajectory optimization is of great clinical importance. In this study, 

we introduce a new search strategy which has the potential to optimize 

trajectories on-the-fly. We propose an optimization procedure which 

identifies trajectories with the highest information to reconstruct a 

volume of interest (VOI) by means of maximizing an objective function; 

then a local search is performed around the best selected initial candidates 

and better trajectory solutions are investigated among newly created 

neighbors. The experimental results based on two imaging targets inside 

an Alderson Rando phantom showed that proposed trajectories achieve 

image quality comparable to that of the reference circular CBCT while 

simulating strong kinematic constraints. The overall time required for the 
whole optimization process was around three to four minutes  using one 

GPU. 

1 Introduction 
Recently, cone beam computed tomography (CBCT) has 

become an important imaging modality in interventional 
radiology [1, 2]. One important feature of interventional 

radiology is that a prior knowledge of patient anatomy (e.g. 

high quality CT or pre-operative CBCT) is usually 

available. This gives the opportunity to incorporate such 

prior knowledge into image acquisition process by using a 
customized CBCT. Nowadays, robotic CBCT C-arms 

enable additional degrees of freedom and extend the 

scanning geometry possibilities beyond the standard 

circular source-detector trajectories.  Several studies have 

demonstrated an improvement in image quality and/or 

reduction the radiation dose using noncircular trajectories. 
In these studies, trajectory parameters were computed in the 

way to maximize the imaging performance of particular 

imaging tasks [3-5]. Gang et al. [3] proposed a target-based 

imaging acquisition framework for robotic C-arm CBCT 

systems using a gradient-based optimization of the tube 
current, reconstruction kernel and orbital tilt. Noncircular 

source-detector trajectories have been introduced using 

periodic and B-spline-based functions for simulation 

studies, as well as in neuroradiology applications to increase 

the image quality in a volume of interest (VOI) [4, 5].  
Recently, optimal sinusoidal trajectories were proposed in 

order to avoid the metal parts of the imaged object while 

still assuring a high coverage in Radon space and its vicinity 

[6]. All the aforementioned researches [3-6] were 

effectively applied to C-arm CBCT trajectory optimization. 
However, in all these studies, hard constraints on the 

rotation angle were applied for the trajectory design; thus, 

the employed trajectories did not take patient-specific 

collisions into account. Furthermore, all these studies [3-6] 

calculated the optimal trajectory parameters in a (semi) 

offline manner.  
In another study [7], patient-specific collision avoidance 

trajectories were proposed for linac-mounted CBCT 

devices using a virtual isocenter and variable magnification 

during data acquisition. Although their proposed 

trajectories could integrate case-specific collisions into the 
trajectory design, their method requires a high amount of 

computational time which hampers its usage for real-time 

trajectory optimization and therefore, it is not appropriate to 

react to unforeseen collisions which happen during 
interventions. To the best of our knowledge, the only study 
that introduced a real-time trajectory optimization was [8], 
in which the authors proposed optimizing the C-arm CBCT 

trajectories during the CBCT scan and performed the 

adjustments on-the-fly using a convolutional neural 

network and regressed an image quality measured over all 
possible next projections given the current X-ray image. 

However, the main focus of this research was metal artifact 

reduction and the trajectories introduced did not incorporate 

patient-specific collisions in their trajectory design. The 

research we present in this study is the first demonstration 

that proposes an on-the-fly trajectory optimization 
framework for customized CBCT acquisition that is able to 

react to scene-specific unforeseen collisions. 

Our group has recently published a method to optimize 

imaging quality for CBCT using semi-circular scan 

trajectories which can also be arranged out-of-plane [9, 10]. 
A VOI is selected using a prior CT scan and a variety of 

possible trajectory combinations from short arcs is 

simulated while taking kinematic constraints into account. 

The optimal arc combination is designated based on the 

image quality within the VOI. The time needed for 
designing a patient specific trajectory was in the range of 80 

minutes [9]. This required collisions and kinematic 

constraints to be known previously. As such constraints are 

mostly unpredictable in a clinical scenario, e.g. caused by 

additional medical devices or patient size (Fig.1), a real time 

trajectory optimization protocol is of great clinical 

importance even at the cost of losing a bit of image quality. 
        In the current study, we introduce a search strategy to 

overcome the aforementioned computational constraints.  
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Compared to our previous study [9], the major scientific 
novelty of this study lies on the introduction of the new 

search strategy that enables the on-the-fly feature for the 

trajectory optimization scheme; this finally brings a 

remarkably important clinical benefit for interventions 

where a 3D CBCT is otherwise not possible due to 

unforeseen collisions. 

 
Figure 1. Two examples of common kinematic constraints during interventions. 

Collision due to the patient size (a), and due to other medical devices (b) [11]. 

2 Materials and Methods 

2.A. Adaptation of workflow for the on-the-fly 

customized trajectory optimization 
In this study, we modified our previous work to enable a 

dynamic optimization in the operation room which can 

integrate kinematic constraints emerging during the 

interventions into the trajectory optimization design.  

We used the geometry of the Philips Allura FD20 Xper C-
arm in order to define a set of possible arcs. The C-arm is 

able to perform two different types of rotations: 1) rotation 

by angle θ1 towards the Right Anterior Oblique (RAO)/Left 

Anterior Oblique (LAO) direction while having a tilt ψ at 

various fixed Cranial (CRA)/Caudal (CAU) angles, 2) 
rotation by angle θ2 towards the CRA/CAU direction while 

having a tilt φ at various fixed RAO/LAO angles. Different 

subset of arcs (each arc included around 80 projections) 

were defined similar to that in the previous work [9] (Fig 2. 

a, b). We simulated kinematic constraints as two forbidden 

areas on the geometry of the C-arm (represented as yellow 
rectangles in Fig. 2 c, d). The arcs which had more than 10% 

of their angular range in the two forbidden area were 

removed and those that had less than 10% in these areas 

were cropped (Fig. 2 e, f) [9]. In order to accelerate the 

optimization process in the current work, the previous 
approach was modified by sparsifying the initial subset of 

arcs (Fig. 2 e, f) to include just arcs for every six degrees 

(Fig. 2 g, h); this led to a significant reduction in the 

computation time. However, a reduction of the initial subset 

of arcs may introduce an unfavorable bias in the path 
selection process. To address this issue, we propose to 

perform a heuristic local search around the arcs with the 

largest amount of information. First, we selected the three 

arcs with the best objective function values as the arcs with          

 highest amount of information. Then, we created new 

neighbor arcs for each of the three selected arcs and 

consequently, searched through such nearest neighbor arcs 

until an improvement in the objective function is observed. 

Finally, we selected the arc with the highest objective 
function value (Fig. 3). We repeated this procedure for the 

arc subsets RAO/LAO and CRA/CAU one after the other, 

with the previous best arcs were still being used, until a 

predefined number of arcs was designated as the final 

trajectory. We used the value of Feature SIMilarity Index 

(FSIM) as the objective function, as in our previous study. 
The pseudocode for this procedure is presented in 

Algorithm 1. 

2.B. Image reconstruction 

A modified version of the Tomographic Iterative GPU-
based Reconstruction (TIGRE) toolkit [12] for arbitrary 

trajectories was used [9], but the Adaptive Steepest Descent 

Projection Onto Convex Sets (ASD-POCS) reconstruction 

was limited to five iterations. For simulations, we sampled 

projections every four degrees, and therefore, 20, 40, and 60 
projections were simulated for trajectories that included 

one, two, and three arcs, respectively.  Projection number 

reduction was done only in simulations for a further 

acceleration of the process; however, for the real data, the 

full sampling projections were used for reconstruction. For 

projection simulations, we used a monoenergetic forward 
model with added Poisson noise. Bare-beam fluence was 

also modeled to approximate device exposure. 

 
Figure 2. A) RAO/LAO arcs with CRA/CAU obliques shown in the purple, green, 

and red colors, (b) CRA/CAU arcs with RAO/LAO obliques shown in the blue 
color, (c) and (d) spherical plot of arcs with two forbidden areas, (e) and (f) 

spherical plot of the arcs after removing those that intersected the forbidden area,  
(g) and (h) spherical plot of these remaining arcs after sparsification. Only these 

arcs were in the search space for trajectory optimization. (Kinematic constraints 
are simulated as forbidden areas are shown as yellow rectangles) [11].  

Figure 3. Illustration of the search strategy for optimizing the first best arc, (a) the 
three arcs with the highest objective function value are selected by searching 

through the RAO/LAO arc sparsely sampled initial subset (Fig. 2 g), (b-d) the 
nearby arcs are searched until the objective function decreased. The sign (×) shows 

that the arc included more than 10% of its angular range in the forbidden area, and 

therefore, was rejected from the search space and FSIM was not calculated.  
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Algorithm 1. Trajectory optimization 

Input: Search space, number of desired arcs  

Step 1: Simulate projections for all defined arcs with the digital phantom 

Step 2: FOR 1: number of subsets 

Step 3: FOR 1: number of arcs in subset 

• Reconstruct the image using the set of projections related  

to the corresponding arc 

• Crop the reconstructed image at the VOI 

• Calculate the objective function at the cropped area 

END 

Step 4: Select best three arcs from Step3 

Step 5: WHILE expanded arcs increase objective function 

Step 6: FOR 1:number of arcs to expand 

• Create neighboring arcs at one degree each side 

• Evaluate objective function in newly created neighbors  

END 

END 

Step 7: Select best arc and prepend to search space 

 

2.B.1. Optimization of computational time 
The implementation of ASD-POCS in the TIGRE toolbox 

was modified to remove CPU-GPU transfer functions and 

to run the reconstruction fully on the GPU. Our 

implementation takes approximately 1.4, 2.2, and 3.05 

seconds for each ASD-POCS reconstruction (with five 

iterations), including 20, 40, and 60 projections using a 

computer with an NVIDIA GeForce RTX 2080 and a 32-

core Advanced Micro Devices (AMD) processor. 2563 

voxel volumes with 5122 projections were used for the 

reconstruction. The overall time required for the whole 

optimization process was around three to four minutes. The 

reported numbers in this study are using one GPU. 

3 Results 
In our experiments, two imaging targets in the thoracic 

spine (regions T3/T4 and T10/T11 for Target 1 and Target 

2, respectively) of an Alderson-Rando phantom were 

evaluated. In the simulations, we optimized trajectories 

including three arcs for both imaging targets. 3D 

visualizations of the optimized trajectories compared to 

standard circular trajectory are shown in Fig. 4 a and Fig. 4 

c for Target 1 and Target 2, respectively. The selected 

angular range and projection numbers related to optimized 

trajectories of both targets are shown in Table I. The (-) sign 

denotes rotation to the right/caudal directions and the (+) 

sign denotes rotation to the left/cranial. We implemented 

the optimal trajectories using a step-and-shoot protocol on 

C-arm to acquire real data. The reconstruction results were 

then compared to the C-arm circular trajectory (313 

projections, 210° angular range). Furthermore, they were 

also compared with respect to a reconstruction from a 

partial circular trajectory with an angular range and 

projections equivalent to the optimized trajectory (Fig. 4 b, 

d). Reconstruction results using simulation data as well as 

real data for the optimized trajectories, standard C- arm 

circular, and partial circular trajectories for both targets are 

shown in Fig 5. The reconstruction results were evaluated 

by FSIM and Universal Quality Image (UQI). For both 

indexes, the image quality metric between the prior CT and 

C-arm circular CBCT was considered the reference value. 

The quality index value between the prior CT and 

optimized/partial circular trajectory was also calculated as 

the measured value. The relative deviation between the 

reference and measured values was used for the image 

quality evaluation. According to the results of Table III, the 

optimized trajectories delivered relative deviations up to 

9.47% and 4.06% in both image quality metrics for Target 

1 and Target 2, respectively. A relative deviation up to 

7.87% and 5.39% for Target 1 and Target 2, respectively, 

was also calculated for the reconstructed images related to 

partial circular trajectories. These results show a small 

decreased reconstruction performance (a slightly higher 

relative deviation) for Target 1, while a small increased 

image quality (a slightly lower relative deviation) for Target 

2 for both image quality metrics when using optimized 

trajectories compared to the partial circular trajectory. 

However, the differences observed are not significant and 

reconstructed images from optimized trajectories revealed a 

comparable image quality for both targets with regard to the 

partial circular trajectories. 

 
Figure 4. 3D visualization of the optimized trajectories (arcs shown in color) with 

respect to the C-arm circular trajectory (black dashed plot) and partial circular 

trajectory (black solid plot) for Target 1 (a, b) and Target 2 (c, d).   

 

Table 1. The angular range and projection number of the three selected arcs for 

the optimized trajectories related to Target 1 and Target 2 

Trajectory Arc Angle Projection 

number 

per arc 

Total 

number of 

projections 

 
Target 1 

 

Arc 1 θ1= -39:1:+39, ψ= -26 72  
228 Arc 2 θ2= -34:1:+40, φ= -60 75 

Arc 3 θ1= +44:1:+124,ψ=-6   81 

 
          

Target 2          

 

Arc 1 θ1= -22:1:+50, ψ= 10 73  

227 Arc 2 θ2= -40:1:+38, φ= -50 79 

Arc 3 θ1= +9:1:+83, ψ=+32 75 

 
Table 1. Relative deviations (%) of image quality measures FSIM and UQI for 

Target 1 and Target 2 using both optimized and partial circular trajectories 

Relative 
deviation 

(%) 

Trajectory Image 
quality 

metric 

Target 

9.47 Opt. FSIM    

Target 1 
 

7.87 Partial-circ. 

8.49 Opt. UQI 

4.83 Partial-circ. 

3.90 Opt. FSIM  

Target 2 5.39 Partial-circ. 

4.06 Opt. UQI 

5.38 Partial-circ. 
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Figure 5. Reconstructions related to Target 1 (Left column) and Target 2 (Right 

column), (a) optimized trajectory based on simulation data, (b) optimized 

trajectory based on real data, (c) C-arm circular trajectory based on real data, and 

(d) partial circular trajectory based on real data. The display window has a range 

of 200-3000 HU for (a) and a range of 0-21 in gray values for (b-d), respectively. 

4 Discussion and Conclusion 
We proposed a framework for a patient-specific trajectory 

design for CBCT imaging which is suitable to react to 

unforeseen collisions. In fact, the major difference with the 

previous trajectory optimization approach [9] is that we 

now search for the optimal arcs within the most informative 

areas in 3D space to reconstruct the VOI (rather than 

searching among all plausible arcs as proposed in our 

previous study [9]), and consequently, we propose to 

perform a local search around the initially selected optimal 

arcs to find a better arc solution. Our results showed a slight 

decreased reconstruction performance for Target 1, while a 

small increase in image quality was seen for Target 2 using 

optimized trajectories compared to partial circular 

trajectories.   Considering the fact that our approach is the 

first proposed protocol in literature that can facilitate CBCT 

for interventions in which a 3D circular CBCT would not 

be otherwise possible due to unpredictable collisions, our 

results show acceptable performance even if there is a slight 

reduction in the image quality for some targets compared to 

the partial circular trajectory. In this study, we achieved a 

considerably higher speed in comparison to our previous 

work [9], which required approximately 80 minutes for 

reconstruction. Our proposed trajectory optimization 

framework requires three to four minutes overall time on 

one GPU and a further reduction in time to about one minute 

is anticipated by using multiple GPUs. Our framework has 

the potential to be done on-the-fly; therefore, it can be  

considered suitable for interventions with unexpected and 

arbitrary collisions. 
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Abstract Cone-beam CT (CBCT) is increasingly used in the 

interventional suite, providing three-dimensional imaging for 

intervention planning, guidance during the procedure, or post-procedure 

assessment. However, the moderately long acquisition time of CBCT (~4 

to 20 s) makes it susceptible to artifacts from patient motion during image 

acquisition. Recent work has shown promising reduction of artifacts 

caused by patient motion in CBCT with purely image-based autofocus 

motion compensation approaches. However, conventional autofocus 

metrics (e.g., gradient entropy) are agnostic to the realistic presentation 

of anatomical structures in the image and can yield unrealistic solutions. 

Image structural similarity metrics (e.g., visual information fidelity, VIF) 

combine measures of image quality and structural similarity to a 

reference image, offering a potentially ideal basis for autofocus metrics. 

However, matched motion-free reference images are usually not 

available. In this work, we propose a reference-free, learning-based 

image similarity metric obtained using a deep neural network (denoted 

DL-VIF). A convolutional neural network was trained on simulated 

motion-corrupted CBCT data to extract features associated with the 

structural components contributing to VIF. The DL-VIF showed 

correlation with conventional VIF in motion corrupted abdominal CBCT 

for both rigid (R2 = 0.981 and slope = 0.987) and deformable (R2 = 0.852 

and slope = 0.928) motion. The DL-VIF was incorporated in an autofocus 

motion compensation framework, and its performance was compared 

against a conventional metric (gradient entropy). Motion compensation 

with DL-VIF resulted in more robust motion compensation (pointing to 

a lower susceptibility to local minima), and in improved performance 

(SSIM = 0.943 compared to 0.900 for gradient entropy). The 

development of autofocus metrics that recognize the integrity of 

anatomical structures in the image is an important step toward reliable 

motion compensation in scenarios of complex soft-tissue deformable 

motion in CBCT. 

1 Introduction 

Involuntary patient motion remains one of the main 

challenges to image quality in cone-beam CT (CBCT). 

Motion artifacts arising from rigid motion in, e.g., head 

CBCT [1] or from deformable soft-tissue motion in, e.g., 

interventional CBCT [2], severely impact CBCT diagnosis 

and guidance capabilities. 

Recent work has shown the feasibility of rigid [3] and 

deformable [4, 5] CBCT motion estimation with multi-

region autofocus methods. Such approaches estimate the 

motion trajectory by optimizing an autofocus metric that 

emphasizes properties associated with motion-free images, 

such as image sharpness [3], piecewise constancy [6, 7], or 

sparsity of gradients [5]. However, such metrics do not 

guarantee the preservation of anatomical structures (e.g., 

shape and texture) in the image. For example, image 

entropy [6] can show similar values for in-focus images and 

unrealistic images formed by a nearly constant value [3]. 

Such degeneracies make the optimization susceptible to 

local minima within the non-convex space of the autofocus 

cost-function. 

Contrary to conventional autofocus metrics, metrics 

including measures of structural similarity can capture the 

affinity between two input images beyond pixel intensity or 

gradient values, by estimating the correspondence between 

the (anatomical) structures present in the two images, 

comparable to recognition via the human visual system 

(HVS). For example, the structural similarity index (SSIM) 

[8] combines luminance and contrast with estimations of 

local spatial correlation between image patches. Similarly, 

the visual information fidelity (VIF) [9] estimates the loss 

of image information caused by a distortion process 

between the input image and its ideal counterpart. However, 

such similarity metrics require a reference image and are 

therefore not generally applicable to CBCT motion 

estimation where such a reference is not available. 

In this work we hypothesize that the ability of deep 

convolutional neural networks (CNNs) to extract features 

representative of structural components of image data can 

be applied to the estimation of similarity metrics in images 

corrupted by patient motion without a matching, motion-

free reference. This premise is supported by recent results 

that showed the capability of deep CNNs to estimate 

motion-induced image quality degradation in CBCT, and be 

used as basis for deep autofocus approaches. Recent 

developments in deep autofocus include deep CNNs for 

estimation of approximate motion amplitude in individual 

image patches [10, 11] for compensation of deformable 

motion in abdominal CBCT and approaches that built on 

multi-branch deep CNN architectures to automatically 

extract three-dimensional anatomical landmarks in motion 

corrupted brain/head CBCT images and to quantify motion 

via estimation of the reprojection error with respect to 

equivalent landmarks in the CBCT projection space [12].  

In particular, we explored the potential of deep CNNs to 

reproduce VIF without a reference image in motion-

corrupted CBCT data. A dedicated network architecture 

was designed and trained on pairs of simulated CBCT 

images with and without motion featuring soft-tissue and 

high-contrast structures in the abdomen. In the training 

stage, the VIF value was computed against the reference, 

motion-free, image and used to compute the CNN loss. In 

inference, only the motion-corrupted image was input to the 

network that outputs a learned VIF estimation (denoted DL-

VIF). The validity of the DL-VIF as an autofocus metric 

was investigated within an autofocus framework for rigid 

motion estimation, with future work extending to 

deformable soft-tissue motion. 
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2 Materials and Methods 

2.1 DL-VIF for Motion Quantification 

VIF quantifies the similarity between a reference and a 

“distorted” image by estimating the loss of information 

attributable to the image degradation (distortion) process. 

The process to compute VIF is described in [9]. Briefly, the 

reference image is processed with a convolution channel 

that models the response of the HVS. The mutual 

information between the original and the HVS-processed 

reference quantifies the information preserved by the HVS. 

Application of an analogous processing channel to the test 

image yields the information preserved by the combination 

of both the perturbation (patient motion) and the HVS 

channels. The final VIF is computed as the ratio between the 

preserved information for the reference and distorted 

images. For motion-corrupted CBCT, VIF is computed as 

follows: 

𝐼𝑀𝐶 =  ∑ log10(1 +
𝑔2 + 𝜎𝑀𝐹

2

𝜎𝑣
2 + 𝜎𝑛

2 ) (1) 
 

𝐼𝑀𝐹 =  ∑ log10(1 +
𝜎𝑀𝐹

2

𝜎𝑛
2 ) (2) 

 

𝑉𝐼𝐹 =  
𝐼𝑀𝐶

𝐼𝑀𝐹
 (3) 

 

where 𝜎𝑀𝐹
2 = 𝐻 ∗ (𝑀𝐹2) − (𝐻 ∗ 𝑀𝐹)2 is given by the 

convolution of the reference, motion-free volume (MF) 

with an HVS channel (H) modelled as a set of four Gaussian 

kernels with size 𝑁 = 17, 9, 5, and 3 voxels (in the three 

volume dimensions of the volume) and standard deviation 

of 𝑁/5. The term 𝑔 estimates the loss of signal from patient 

motion and is computed as 𝑔 =  𝜎𝑀𝐹−𝑀𝐶 𝜎𝑀𝐹
2 + 10−10⁄ , 

with 𝜎𝑀𝐹−𝑀𝐶 = 𝐻 ∗ (𝑀𝐹 ∙ 𝑀𝐶) − (𝐻 ∗ 𝑀𝐹) ∙ (𝐻 ∗ 𝑀𝐶), 

where MC is the motion corrupted volume. The term 𝜎𝑣
2 

models the variance induced by patient motion, computed 

as 𝜎𝑣
2 = 𝜎𝑀𝐶

2 − 𝑔 ∙ 𝜎𝑀𝐹−𝑀𝐶, where 𝜎𝑀𝐶
2  is equivalent to 𝜎𝑀𝐹

2  

but computed for the motion-corrupted volume. The term 

𝜎𝑛
2 is a scalar describing the noise level in the HVS and was 

set according to the method in [9]. 

 

Figure 1 illustrates the capability of VIF to capture image 

quality degradation caused by patient motion in CBCT 

images simulated as described below (Section 2.3). VIF 

values computed with the motion-free reference reduce in a 

manner that is strongly correlated with motion amplitude 

and qualitatively consistent with visual image appearance, 

making it a plausible autofocus metric if a reference-free 

estimation can be learned. 

To extract the image features associated with VIF, a CNN 

was designed with topology illustrated in Fig. 2. The DL-

VIF CNN is inspired by a previous CNN design for motion 

amplitude estimation [10] but uses 3D modules acting on 

128×128×128 voxels volumes. An initial 3D convolution 

layer is followed by three residual blocks (ResBlock, 

similar to ResNet models [13]) that contain three 

convolution stages, each followed by an instance 

normalization layer and a rectified linear unit. Every 

ResBlock is followed by an average pooling layer. The final 

convolution layer is input to a dense linear layer that outputs 

the scalar DL-VIF. 

2.2 Autofocus Motion Compensation with DL-VIF 

The DL-VIF metric was integrated into a multi-region 

autofocus motion compensation framework able to 

compensate for rigid and deformable motion [3, 4, 5]. In its 

simplest form, the method considers a single region of 

interest subject to rigid motion. Motion estimation is then 

posed as an optimization problem that estimates a motion 

trajectory T to minimize the following cost function: 

Figure 1: Images with various amount of motion artifacts and their 

corresponding motion amplitudes: 1.2 mm (A), 2.7 mm (B), and 8.5 

mm (C). VIF values referenced to motion-free images show the 

correspondence between low VIF and severe motion artifacts, 

associated with large amplitude of motion. 

 

Figure 2: CNN training strategy and topology graph. Abdominal MDCT data were used as the basis for simulation of motion corrupted CBCT 

data with a high-fidelity forward projector. For each instance, a motion corrupted volume was subsequently obtained through backprojection, 

and a motion-free reference image was generated by applying the ideal solution during backprojection. VIF values were computed for each 

motion corrupted volume, using the corresponding motion-free reference. The CNN was trained to predict DL-VIF from the input motion-

corrupted data with a loss function minimizing the difference between the predicted and reference VIF. 
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 𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑇[𝑆(𝜇(𝑇)) + 𝛽𝑇 ∙ 𝑅𝑇(𝑇)] (4) 

where 𝜇(𝑇) is the reconstructed image for the candidate 

trajectory T, and 𝑆(𝜇(𝑇)) is an autofocus metric that 

(conventionally) maximizes image sharpness and penalizes 

residual motion artifacts while (ideally) preserving the 

fidelity of anatomical structures presented in the image. 

Abrupt temporal transitions in the motion trajectory are 

discouraged by the regularization term 𝑅𝑇(𝑇) that penalizes 

the norm-2 between the position difference for consecutive 

time points (viz. projections) in the acquisition. The 

contribution of the penalty and autofocus terms is balanced 

by the scalar hyperparameter 𝛽𝑇. To reduce the problem 

dimensionality, T was modelled with Nt cubic b-splines. In 

previous work[5], gradient entropy was used as the 

autofocus metric, denoted 𝑆𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙(𝜇(𝑇)): 

𝑆𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙(𝜇)

=  − ∑ ℎ1 (√∇𝑥(𝜇)2 + ∇𝑦(𝜇)2 + ∇𝑧(𝜇)2)
𝐿

𝑙=1

∙ log (ℎ1 (√∇𝑥(𝜇)2 + ∇𝑦(𝜇)2 + ∇𝑧(𝜇)2)) 

 

 

 

 

(5) 

The proposed DL-VIF can be incorporated as the 

autofocus metric in Eq. (4), as 𝑆𝐷𝐿−𝑉𝐼𝐹(𝜇(𝑇)): 

𝑆𝐷𝐿−𝑉𝐼𝐹(𝜇) =  −ln(DL-VIF(𝜇)) (6) 

The negative logarithm in Eq. (6) provided basic 

conditioning to scale the DL-VIF value for optimization.  

2.3 Data Generation and Training Process 

Training and validation datasets were generated from 75 

high quality abdominal MDCT volumes extracted from the 

cancer imaging archive (TCIA) "CT Lymph Nodes” 

collection. CBCT projection datasets were generated by 

forward projection of the MDCT volumes, incorporating 

both rigid and deformable patient motion in the forward 

projection process. 

For each training instance, a volume was randomly selected 

from the dataset, and a 20 mm long sub-volume of interest 

was extracted at a random longitudinal position. CBCT 

projection data were generated by forward projection with a 

high-fidelity CBCT forward model and a scanner geometry 

pertinent to interventional C-arms, with source-to-detector 

distance (SDD) of 1200 mm and source-to-axis distance 

(SAD) of 785 mm. The detector was modelled as a flat-

panel with 864×660 pixels and 0.64 mm isotropic pixel size. 

For rigid motion, translational motion was induced during 

the forward projection with amplitude varying randomly 

between 0 mm and 10 mm, and acting in a random direction. 

Deformable motion was induced with a motion field placed 

at a random location inside the abdomen. Motion amplitude 

of the ranged from 0 mm to 40 mm, set at the central point 

of the motion field, and faded from the center following an 

elliptical spatial pattern, with axes ranging from 61 mm to 

182 mm. Both rigid and deformable motion followed a 

cosine temporal trajectory with random frequency set 

within a range covering 0.75 to 1.25 periods during the 

complete scan. For every dataset, a motion-free reference 

was generated analogously. Motion-corrupted and motion-

free volumes were reconstructed on 128×128×128 voxels 

grids with isotropic 2 mm voxels. Training VIF values were 

calculated using the motion-free volume as a reference and 

were fed to the CNN along with the motion-corrupted 

volume, as illustrated in Fig. 2.  

The network was trained with the Adam optimizer and a 

mean squared error (MSE) loss function between the DL-

VIF and target VIF. Learning rate was 10−3 and training was 

performed with 10,000 rigid training instances and 1,000 

deformable training instances. The network was trained on 

both dataset for 150 epochs. Training results were validated 

on 1,250 abdominal CBCT cases generated with the same 

method described above. 

2.4 Validation of DL-VIF as an autofocus metric 

The performance of DL-VIF for autofocus motion 

estimation was assessed with simulated abdominal CBCT 

data obtained similarly to the training and validation 

datasets. In this work, for simplicity, we experimented only 

on rigid motion patterns. To test the generalizability of the 

DL-VIF metric, the motion trajectory included random 

rotations around LAT, AP, and CC axes of ±5. 

Motion compensation was performed on 20 abdominal 

CBCT images with a conventional metric (gradient 

entropy) and with DL-VIF. Motion compensation results 

were evaluated in terms of SSIM, computed as in [8], using 

the motion-free volume as reference. A region of interest 

encompassing the entire volume was selected. A total of Nt 

= 6 spline knots were used to model the motion trajectory, 

and 𝛽𝑇 was set to 50 for the conventional metric and 5 for 

DL-VIF to similarly scale the regularization term.  

 

 

Figure 3: Agreement between DL-VIF and conventional VIF (computed 

with a reference motion-free image) in motion-corrupted CBCT volumes 

with rigid (A) and deformable (B) motion trajectories. 

 

3 Results 

3.1 Accuracy of DL-VIF 

Figure 3 shows the agreement between the inferred DL-VIF 

and the reference VIF for the rigid and deformable motion 

abdominal test dataset after 150 epochs of training. Inferred 

DL-VIF showed good agreement with the reference, with a 
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linear correlation (R2 = 0.981 and slope = 0.987) and average 

MSE of 2.58×10−4. Figure 4 shows the DL-VIF and 

corresponding VIF on deformable motion test data. 

Correspondence between DL-VIF and the reference VIF 

was similar as the one observed in rigid motion, with an 

approximated linear correlation (R2 = 0.928 and slope = 

0.852) and average MSE of 1.082×10−3. 

 

3.2 Motion Compensation with DL-VIF  

Figure 4 shows example results from motion compensation 

in the abdomen (Fig. 4A, 4B, 4C, and 4D) using the 

conventional metric and DL-VIF. While both methods 

achieved successful motion compensation, DL-VIF resulted 

in reduced residual artifacts and better delineation of 

anatomical structures (e.g., contrast-enhanced vessels in the 

liver, marked by green arrows). Motion compensation with 

DL-VIF yielded larger reduction of motion artifacts and 

better similarity with the motion-free reference image 

resulting in higher average SSIM (0.937 for DL-VIF vs 

0.913 for conventional in the example in Fig. 4) and lower 

SSIM standard deviation (SSIM = 0.187 vs SSIM = 0.296 for 

conventional autofocus). The reduced standard deviation in 

SSIM suggests more consistent performance across 

different regions in the image when using DL-VIF. The 

spatial distribution of SSIM for the motion-corrupted image 

and compensated image with conventional and DL-VIF 

autofocus are shown in Figs. 4E-F-G. Consistent with the 

SSIM values, the motion-compensated images with DL-VIF 

exhibit more uniform (and overall higher) SSIM, with 

particular improvement in bone (e.g., spine) and soft-tissue 

features (e.g., liver vascularity). 

Aggregated SSIM values for the 20 test cases are shown in 

Fig. 5. Both metrics yielded increased SSIM, but DL-VIF 

resulted in larger SSIM improvement (average increase of 

4.25%, compared to 0.56% for the conventional metric). 

The conventional metric allowed unrealistic images for 

certain motion trajectories and degenerate solutions 

evidenced by the red markers falling below the unity line. 

The average SSIM across all cases was 0.943 for DL-VIF 

with standard deviation σSSIM = 0.036 compared to 0.900 

(σSSIM = 0.048) for the conventional metric, and 0.895 (σSSIM 

= 0.050) for the uncompensated volume. The lower σSSIM for 

DL-VIF suggests more consistent performance across cases.  

Fig. 5B illustrates the performance of conventional and DL-

VIF autofocus as a function of motion amplitude. While the 

performance of both approaches slightly degrades with 

increasing amplitude, DL-VIF performed more consistently 

across the range investigated. 

4 Discussion and Conclusions 

The feasibility of learning reference-free structural 

similarity metrics (VIF in this work) without a ground truth 

Figure 5: (A) SSIM for motion compensation with the conventional 

metric and with DL-VIF. SSIM values with DL-VIF are above the 

identity line for all cases, showing consistent SSIM improvement, 

while the conventional metric included degenerate solutions in many 

instances (a net decrease in SSIM). (B) SSIM as a function of motion 

amplitude illustrated stable compensation with DL-VIF over the full 

range of motion amplitude investigated.  

Figure 4: Motion compensation results in the abdomen (A-D) and their corresponding SSIM (E-G). (A) shows the reference motion-free 

reconstruction. (B and E) Motion artifacts are evident before motion compensation and are reflected in the reduced SSIM. (C and F) Motion 

compensation with a conventional autofocus metric resulted in reduced artifacts and increased SSIM. (D and H) Motion compensation with DL-

VIF further improved results by preserving the structural content and penalizing residual artifacts in the liver. 
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reference was demonstrated. The learned DL-VIF was 

generated by a combination of representative low and high-

level features extracted with a deep CNN that contain 

information of both individual characteristics of the image 

(e.g., sharpness of edges) and structural content (the 

appearance of anatomical features) to match anatomical 

content present in the training data. 

When integrated into an autofocus framework for CBCT 

motion compensation, DL-VIF was shown to be a more 

robust metric, penalizing implausible solutions that might 

otherwise be encouraged by conventional metrics. 

Our preliminary results illustrated the capability of DL-VIF 

to provide better autofocus motion compensation for CBCT 

imaging of the abdomen, compared to a state-of-the-art 

autofocus metric. Ongoing work targets extension of the 

concept to rigid motion compensation in head CBCT and to 

deformable motion compensation in interventional CBCT 

of the abdomen. 

Learning of reference-free structural similarity metrics 

poses a key step towards reliable autofocus motion 

compensation in challenging imaging scenarios, such as 

deformable motion compensation in soft-tissue CBCT 

interventional imaging.  
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Abstract
A common deep convolutional neural network architecture for de-
formable image registration is adapted to fit the needs of anatomical
consistency for motion estimation in motion-compensated reconstruc-
tion. We introduce a sliding interface motion constraint to decompose
the motion into perpendicular and tangential components in the vicin-
ity of organ interfaces. Three separation schemes are evaluated. The
results for the proposed approach, referred to as DeepSLM, show com-
prehensive motion adaption at the lung border for unseen test data.
During inference, no additional input is needed to enable sliding lung
motion registration. DeepSLM improves the registration quality and
is able to learn anatomical features of the sliding lung border. The
network is the basis for future investigations in motion-compensated
reconstruction with deep learning techniques.

1 Introduction

Many motion-compensated (MoCo) methods in CT recon-
struction rely on motion vector fields (MVF) estimated by
deformable image registration [1]. Common deformable im-
age registration algorithms utilize cost function optimization,
featuring MVF regularization based on local smoothness [2,
3]. These common regularizers do not require any knowledge
of anatomy, so the resulting fields lack physiological accu-
racy. Affected regions are sliding organ interfaces, where
motion typically occurs in tangential direction to the organ
boundary with different magnitude or even direction on each
side of the border. An example for a sliding interface is the
ventral body cavity. The sliding interface in the thoracic
cavity — a part of the ventral body cavity — is denoted as
sliding lung motion (SLM). Various methods have been pub-
lished capable of SLM [4–10]. Our work is based on methods
described in [4] and [9], however, instead of a conventional
approach to deformable image registration, we employ con-
volutional neural networks (CNN) capable of dealing with
SLM. The CNN in use is a modified version of VoxelMorph
[11, 12], which has been successfully used in deformable
image registration. For a given source and target image it
predicts the MVF, which warps the source into the target.
CNNs in deformable image registration has been recently
explored as they speed up the registration time while achiev-
ing comparable registration accuracy [13]. VoxelMorph is
built upon the U-Net architecture, which has shown to be
capable of learning anatomical structures. We propose in

this work a new method called DeepSLM, which modifies
the VoxelMorph cost function so that it becomes capable of
learning the correct estimate of SLM.

2 Materials and Methods

2.1 Deformable Image Registration

Consider a source image f and a target image g. We search
for a MVF ddd(rrr), which warps f into g:

f (ddd) = g

In conventional deformable image registration as well as
in unsupervised deep learning-based methods, the MVF is
found by optimizing a loss function L with respect to ddd:

argmin
ddd

L ( f ,g,ddd) = L SIM( f ,g,ddd)+λ L REG(ddd) (1)

L SIM measures the image similarity between f (ddd) and g,
while MVF regularization L REG typically enforces ddd to be
smooth. λ balances L SIM and L REG. From a physiological
point of view, smooth MVF are especially interesting in soft
tissue, where the intensity differences are small. However,
enforcing an isotropic smoothness is inadmissible in the case
of sliding interfaces, as it generates an unphysical motion
across the organ boundaries. In this case, ddd can be decom-
posed into components perpendicular and tangential with
respect to the sliding organ interface:

ddd = ddd⊥+ddd‖ (2)

The organ surface is conveniently described with a map of
normal vectors nnn which point towards the organ boundary.
Now we can explicitly decompose ddd into

ddd⊥ =
(nnn ·ddd)nnn

nnn2 , ddd‖ = ddd−ddd⊥. (3)

Assuming vanishing gradient of the normal vector map ∇nnn≈
0, it can be shown that

||∇ddd||22 ≈ ||∇ddd⊥||22 +λ‖||∇ddd‖||22. (4)

With a regularization constructed from this weighted decom-
position, we can reward smooth MVF along the direction
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perpendicular to the organ boundaries while suppressing this
reward along the direction tangential to the organ boundary.
This allows sliding (e.g. to allow expansion of lungs during
breathing) by the spatial variation of λ‖, which is defined by:

λ‖ =





1 if |w|> 2ε
0 if |w|< ε
|w|/ε−1 else.

(5)

The map w describes the distance of each point to its closest
sliding organ boundary, it is derived from the signed Eu-
clidean distance transform of a ventral cavity segmentation
m (Fig. 3). The parameter ε defines the vicinity of the organ
boundary; it is set to a value of 9 mm.

2.2 MVF Regularization Loss Functions

In this paper, we examine four networks based on the follow-
ing MVF regularization loss functions:

L REG =
1

3N ∑
rrr
||∇ddd||22 (6a)

L REG =
1

3N ∑
rrr
(||∇ddd⊥||22 +λ‖||∇ddd‖||22) (6b)

L REG =
1

3N ∑
rrr

{
||∇ddd||22 if λ‖ = 1
||∇ddd⊥||22 +λ‖||∇ddd‖||22 else.

(6c)

L REG =
1

3N ∑
rrr

λ‖||∇ddd||22 (6d)

The weighting factor 3N refers to the number of entries in
ddd, connecting all N voxels of f to g. The first term is the
conventional regularization to enforce smoothness of ddd. The
following three regularization loss functions are introduced in
this study to regularize with respect to SLM. They implement
the SLM constraint globally (ddd is decomposed for all spatial
locations into ddd⊥ and ddd‖), locally (the decomposition occurs
only close to the segmentation boundary) and strictly (the
smoothness of ddd close to the border is not enforced).

2.3 Evaluation Metrics

For evaluation we used the Dice of the ventral cavity seg-
mentation (S), the normalized cross-correlation coefficient
(NCC) (applied window-wise) and the mean-square error
(MSE) (also used during training):

MSE =
1
N ∑

rrr
|| f (ddd)−g||22 (7)

NCC =
1
Q ∑

q

(σ f (ddd),q−µ f (ddd),q)(σg,q−µg,q)

σ f (ddd),qσg,q
(8)

Dice =
2|S f (ddd)∩Sg|
|S f (ddd)|+ |Sg|

(9)

The NCC is calculated over small moving windows q (9×
9× 9) and the values are averaged by the total number of

Figure 1: Scheme of the DeepSLM architecture. The cuboids
indicate a volume with the number of feature channels on its outer
face. The sizes of layers at each stage are shown on the left (z-
y-x order). Source f and target g are concatenated and send in
the U-Net encoder/decoder path. The output is reduced by three
additional convolution layers to the MVF ddd. The vector integration
layer constraints ddd to diffeomorphic solutions [3] before it is used
to warp f towards g. The similarity loss is calculated between
the warped source f (ddd) and the target g. The gradient loss is
calculated on the non-integrated ddd. During inference, the additional
DeepSLM input is not needed.

windows Q, µ indicates the mean of a window and σ its
standard deviation. For each patient, each phase is registered
towards the patient’s first respiration phase and mean relative
changes are reported for training and test data (Tab. 1).

2.4 Data and Training

We trained the network on thoracic 4D CT data, consisting
of 83 patients with 10 respiratory phases each. The data were
acquired on a diagnostic CT system. Manual segmentations
on the ventral body cavity have been performed by special-
ists and were then used to train a segmentation network for
autosegmentation, providing autosegmentations for all respi-
ratory phases. The patient data sets were split into 66 training
and 17 test sets.
Each scan is transformed to a spatial grid of 3×3×3 mm3.
Then the center of mass for the ventral cavity segmentation
is calculated and each scan and segmentation is shifted such
that the center of mass is in the middle of the final volume
size of 224×224×128 voxels. If the scan dimensions do not
match the final size, the volume is either constantly padded or
cropped. A signed Euclidean distance transform is calculated
on each segmentation (see Fig. 2 for details), resulting in
a map w of positive distances inside the segmentation and
negative distances outside. The map of normal vectors nnn is
the gradient of w and indicates for each voxel the direction
towards the closest point on the segmentation border. The
tangential weight map λ‖ is calculated once on the distance
map and forms together with normal vectors the additional
input to the regularization loss of the DeepSLM network
variants.
During training, a random patient is chosen at each iteration.
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Figure 2: From an initial binary segmentation of the ventral body
cavity m(rrr), two Euclidean distance transforms (EDT) are per-
formed to find the distance map on m(rrr) and its inverse. The final
distance map w(rrr) is the difference of the outer and inner distance
maps. The normal vector field nnn(rrr) is the gradient of w(rrr). The
tangential weight map λ‖(w(rrr)) is defined in Eq. 5.

From this patient two different randomly selected phases are
used as input to the neural network. This results in 66×
90 = 5940 combinations for training input. Each network is
trained with stochastic gradient descent for 150000 iterations.
Four networks are trained on an NVIDIA RTX 2080 GPU
with MSE as the L SIM and the L REG defined in Eq. 6(a-d).
The architecture (Fig. 1) is based on the VoxelMorph [12]
PyTorch (v 1.7) implementation [14]. The MVF is finally
applied within a spatial transformer layer on the source f .
Our modifications to the default VoxelMorph configuration:
The MVF are calculated at full resolution (224×224×128).
The weight for the auxiliary term is set to λ = 0.01 (Eq. 1).
The networks are trained with automatic mixed-precision,
which results in a training time of 27 to 33 hours.

3 Results

All flavors of DeepSLM show better registration performance
than the unmodified VoxelMorph in both training and testing.
The mean registration results of one test patient are displayed
in Fig. 3. The image similarity metrics are consistently in-
creased by DeepSLM, the ranking of methods is from best to
worse: local, strict, global DeepSLM, VoxelMorph (Tab. 1).
The Dice for the ventral cavity segmentation before and after
registration is decreased for all methods. The motion vectors
have a lower magnitude outside the lung (Fig. 4) in Deep-
SLM. The strict DeepSLM shows less smooth MVF at the
lung border.

4 Discussion

The increased registration performance of DeepSLM com-
pared to VoxelMorph demonstrates the importance of proper
handling of sliding interfaces in deformable image regis-
tration. From the different flavors of DeepSLM, the local
method performs best in terms of similarity loss and in MVF

Training
data VM

global
DeepSLM

local
DeepSLM

strict
DeepSLM

∆MSE 81.57% 82.10% 82.86% 82.53%
∆NCC 5.09% 5.53% 5.40% 5.24%
∆Dice -0.28% -0.20% -0.27% -0.33%

Test data

∆MSE 86.66% 87.29% 88.35% 88.05%
∆NCC 7.91% 8.45% 8.59% 8.40%
∆Dice -0.19% -0.12% -0.20% -0.23%

Table 1: Mean relative change ∆ for MSE, NCC and Dice evalu-
ated on the training and test data for the networks: VoxelMorph
(Eq. 6a), global DeepSLM (Eq. 6b), local DeepSLM (Eq. 6c) and
strict DeepSLM (Eq. 6d). The relative change is evaluated by reg-
istering all respiratory phases of one patient to the first respiratory
phase of that patient. Then, the values are averaged for all patients
in the test and training data. The change is calculated as the relative
difference to the preregistration measure. Positive/negative values
indicate improvement/declination.

appearance at the lung border on the test data. The strict vari-
ant of DeepSLM has its disadvantage of unregulated MVF
at the segmentation border. The global variant decouples the
normal and tangential motion components at all locations,
i.e., also in the areas where the motion is coupled in all di-
rections (e.g., the central area of ventral cavity). For this
reason, the regularization is not sufficient and the training is
dominated by the similarity term, which yields goods results
in terms of MSE, but does not correspond to the physical
motion of the tissue. The effect of the SLM loss is visible
in the test data, which have not seen the segmentations dur-
ing evaluation. This shows DeepSLM is capable of learning
anatomical features such as the lung border. A downside of
the deep learning approach is the coarse resolution of the
registration volumes, which is limited by the memory of the
used GPU. Unsupervised learning, employed in this paper, is
necessary due to the lack of ground truth MVF. In this paper,
we have shown that proper handling of sliding interfaces,
necessary for modeling of organ motion, can be introduced
into a deep learning-based deformable image registration
suitable for MoCo. There are two main advantages of our
approach: First, the registration time is significantly reduced
by deploying the training of the network before the applica-
tion of the network, and, secondly, SLM methods can work
without additional segmentation in the application. Further
research is needed in order to transfer the registration from
the well-sampled 4D CT to the sparse 4D CBCT data used
in 4D MoCo reconstruction.
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Abstract Typical CBCT acquisition protocols require the user to
acquire two orthogonal fluoroscopic images for the purpose of posi-
tioning the patient ideally for the following acquisition. Since these
fluoroscopic positioning images are fairly low-dose, they are typically
not truncated even for volume-of-interest imaging acquisitions, except
in the case of a too small detector. Yet, they share the positioning
of the CBCT acquisition succeeding them and can therefore provide
additional information to the reconstruction from truncated projections.
We present a prior-aided reconstruction scheme which registers these
fluoroscopic images to potentially available priors of the same patient
in order to enhance CBCT volume-of-interest imaging acquisitions
and ultimately reduce patient dose. We make use of a novel regis-
tration method which moves the computationally expensive steps of
the registration to a timepoint prior to the volume-of-interest acqui-
sition and therefore allows for fast registration of priors for usage in
interventional volume-of-interest imaging settings.

1 Introduction

Imaging techniques like computed tomography (CT) enable
physicians to look at slice images of a patient. These slices
typically show the complete cross-section of a patient. In
many clinical situations though, physicians are only inter-
ested in very limited regions of a patient. In this case volume-
of-interest (VOI) imaging, which irradiates only small parts
of a patient, can lead to considerable dose reduction. In-
evitably though, the projection data will be incomplete since
the projections are cut-off transversally. This problem is
called truncation. The tomographic images reconstructed
from truncated projections can be severely impaired by im-
age artifacts depending on the degree of truncation. There-
fore, the achievable dose reduction is limited by demands
of a certain image quality. Typical strategies to counter the
degradation in image quality stemming from truncation try
to extrapolate the limited data heuristically [1] or try to mini-
mize the impact of the filtering step [2] [3] in the reconstruc-
tion process which is one of the main contributing factors
for truncation artifacts. Another strategy is to utilize avail-
able prior knowledge, e.g. in the form of prior images of
the patient. Practical example scenarios where prior data is
available are interventions such as the placement of a stent or
coil. These are usually planned using an angiogram and per-
formed under guidance of fluoroscopic images acquired with
an angiographic C-arm system. Often prior CT or magnetic
resonance images are available as well. Upon completion
of the intervention, an additional cone-beam CT (CBCT)
acquisition is performed in order to check for correct posi-
tioning and deployment of the stent structure. For this final
acquisition however, generally no prior knowledge is used,

even though the expected changes in the volume are minimal.
We present a prior-aided reconstruction scheme which makes
use of prior data to allow for strongly truncated acquisitions
without suffering from the typical severe truncation artifacts.
We make use of a novel registration method which moves
the computationally expensive steps of the registration to a
timepoint prior to the intervention and therefore allows for
fast registration of priors for usage in the prior-aided image
reconstruction method.

2 Method

All simulations have been performed with the Computed
Tomography Library (CTL) tool [4] available at https://
gitlab.com/tpfeiffe/ctl/.

2.1 Registration

A rigid registration of prior 3D volume data to 2D fluo-
roscopic images is performed using a recently published
registration method [5] making use of Grangeat’s relation.
This method works by minimizing the registration error on
Grangeat’s intermediate function of both the 2D projection
and the 3D volume. The advantage of this approach is that
the computationally expensive steps, such as the computation
of the 3D radon transform of the volume and the intermediate
function of the projection data can be performed ahead of
time and are then available in a pre-computed form during
the actual registration process which then reduces to inexpen-
sive re-sampling of the intermediate space. The computation
speed, which is normally a limiting factor for the usage of
registration methods, is therefore greatly increased compared
to conventional projection-based registration methods. For
further details on the Grangeat registration method we re-
fer to the corresponding publication with the modification
[eq. (11) [5]], in order to be more robust against the unavoid-
able axial truncation of the projection images.

2.2 Reconstruction

The prior-aided reconstruction is initialized with the prior
volume xxx0 registered to match the truncated projection data
gggtrunc. An OS-SART reconstruction algorithm then updates
the initialized volume using the truncated projection images
and corresponding projection matrices that have been cor-
rected by the precedent registration. The update using the

76



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

system matrix A j of the jth subset reads

xxxi+1 = xxxi−ωAT
j (A jxxxi−gggtrunc) ,

where ω ∈ (0,1) denotes a relaxation parameter, which is
determined using the Power method [6]. Note that no further
regularization was used in this study.

2.3 Simulation & Evaluation

An interventional setting was simulated to evaluate the pro-
posed method on (reprojected) clinical head and abdomen
volumes from the low-dose CT grand challenge [7] [8]
datasets. Figure 1 illustrates the simulation setup. First,
the clinical volume data is used to create different volumes
simulating the different states of the patient during the ac-
quisitions of the prior, the interventional fluoroscopy and the
final CBCT for outcome control upon completion of the inter-
vention. Depending on the dataset, three volumes are created
in a different fashion to simulate region-specific challenges
for the registration procedure.

Abdomen The breathing deformation method published
in [9] was applied to generate different breathing states for
all three volumes. Furthermore, to account for additional
changes in the VOI due to interventional instruments etc., the
voxel volume of a stent is subsequently placed in volumes
2 and 3. This stent might not coincide with real anatomic
structures and is only inserted to demonstrate the robustness
of the proposed method to smaller changes within the VOI
between the prior and interventional acquisitions.

Head The patient and patient table were manually
segmented from the initial volume. A rigid displacement
(translation and rotation) was then applied only to the patient
while keeping the patient table stationary resulting in a
combined dual-rigid i.e. non-rigid displacement of the total
volume. Furthermore, the same stent voxel volume used
already in the abdomen dataset was subsequently placed in
volumes 2 and 3.

The resulting three different volumes are then forward-
projected using different CBCT acquisition setups. A non-
truncated shortscan acquisition (496 views) of volume 1 is
performed and reconstructed (FDK or ART) to form the prior
volume data. Of volume 2 fluoroscopic projections are ac-
quired to simulate the fluoroscopic positioning images prior
to a shortscan acquisition. The shortscan acquisition (496
views) is then performed on volume 3. The projection data
of volume 3 is truncated by cropping the projection data in
transversal and axial direction and modifying the projection
matrices accordingly. Note that all scanned volumes differ
either in their breathing states (abdomen volume) or some
non-rigid displacement (head volume). Furthermore, there is
a rigid displacement introduced between volume 1 and vol-
umes 2 and 3 to account for the fact that the position of a prior

is generally not available at the time of a later intervention.
The displacement used in this study mimics the displacement
derived from a real patient’s interventional dataset. Volumes
2 and 3 share the same positioning since the fluoroscopic
acquisitions (of volume 2) precede the following shortscan
(of volume 3) in clinical routine with the same positioning.

The proposed reconstruction scheme now uses the non-
truncated fluoroscopic images and registers them to the prior
volume. As mentioned before, it can be assumed that the fluo-
roscopic images and the truncated shortscan acquisition share
the same rigid translation parameters, i.e. positioning, and
therefore the prior, when successfully registered to the fluoro-
scopic images, is also registered to the truncated acquisition.
The reconstruction is then performed using a prior-initialized
iterative reconstruction method, which reconstructs the vol-
ume of interest from the truncated projections. To estimate
the performance of the prior-aided reconstruction, addition-
ally, reconstructions from just the truncated projection data
and from simple mirror-extrapolated projection data are per-
formed and compared to the prior-aided reconstruction. A
reconstruction from the untruncated projection data provides
the groundtruth to compare to. Note that the initialization
with the prior does not affect the reconstructed volume of in-
terest in a negative way since the VOI is reconstructed from
the truncated data. The initialization only aids the recon-
struction with correctly distributing the excessive absorption
values outside of the VOI correctly instead of forming the
ring artifact and image offset typical for truncated reconstruc-
tions.

volume 1 volume 2 volume 3

shortscan
(496 views)

fluoroscopy
(2 views)

shortscan
(496 views)

prior truncated
shortscan

reconstruction

Patient

forward
project

forward
project

forward
project

reconstruct

register

truncate

initialize update

Figure 1: Reconstruction scheme evaluation setup.
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3 Results

First, the accuracy of the Grangeat registration method com-
pared to a conventional digitally reconstructed radiograph
(DRR) method is demonstrated in Fig. 2. For this, instead of
taking just two projections, a complete shortscan acquisition
with 496 views was performed on volume 2 in order to have
a larger sample base for assessing the registration quality.
Shown are the registration parameters (translations x, y, z
and rotations α , β , γ) obtained from each individual view for
both methods applied on the head dataset. The corresponding
dashed lines mark the true values for each parameter. The
overall good fit of the Grangeat registration parameters in
Fig. 2a reflects also in the calculated mean target registra-
tion errors (mTRE) shown in Table 1. This table shows the
mTREs averaged over the whole 496 views.

Table 1: Mean Target Registration Errors

Grangeat DRR

average mTRE 0.8662 mm 2.6844 mm
min mTRE 0.0470 mm 0.1194 mm
max mTRE 1.9659 mm 5.6186 mm

One thing to mention here is the susceptibility of the Grangeat
registration method to truncation. Because the 3D Radon
space is computed, consisting of plane integrals, strong trun-
cation can pose problems to this registration method as the
integrals become incomplete. In the case of the abdomen
dataset this was more severe than for the head dataset as
truncation in that case occurs in both axial directions of the
patient instead of just one. Thus, the registration of the ab-
domen was found to be more demanding on the Grangeat
registration than the registration of the head.
Figures 3 and 4 show the reconstruction results and corre-
sponding profile plots as indicated in the reconstruction im-
ages. Shown is the central slice of the abdomen volume. The
groundtruth reconstruction in Fig. 3a is the OS-SART recon-
struction of volume 3 from untruncated projection data. The
region of interest (ROI) in this slice is indicated by the green
circle in Fig. 3a. The proposed prior-aided reconstruction
method is shown in Fig. 3b. For comparison the OS-SART
reconstruction from truncated projection data (Fig. 3c) and
mirror-extrapolated FDK reconstruction (Fig. 3d) are shown.
Figs. 3e to 3h show the magnified ROIs with the rest of the
volumes masked out. From Fig.3 it is obvious that the pro-
posed prior-aided reconstruction method achieves the best
image quality. The anatomic details of the patient within
the ROI are reconstructed correctly and the stent is clearly
visible. Both the cupping artifact and the general offset of
the reconstructions are reduced considerably. This shows
also in the profile plots in Fig. 4 and the structural similarity
index measures (SSIMs) indicated in Figs. 3f to 3h. Fur-
thermore, the anatomic structures outside of the ROI visible
in the prior-aided reconstruction in Fig. 3b might allow for

better orientation for the operating surgeon. However, the va-
lidity of these structures cannot be guaranteed as they might
originate from the prior volume and information from outside
of the ROI should therefore be used with caution.
Figs. 5 and 6 show the reconstruction result for the head
dataset. Shown are also the volumes of the prior before and
after successful registration. The window (C, W) = (−23,
38) HU in Fig. 5 was chosen to demonstrate that even some
soft tissue regions can be discerned in the prior-aided re-
construction in Fig. 5b. Both the OS-SART reconstruction
from truncated projection data and FDK reconstruction from
mirror-extrapolated projection data fail to provide usable
reconstructions at this windowing and are therefore not dis-
played as images. However, the profile of the former is
plotted in Fig. 6 in purple. Furthermore, from Figs. 5 and
6 it is apparent that the prior-aided reconstructions show a
good agreement with the groundtruth within the ROI and
slightly outside of it. The further away from the ROI, the
more influences from the prior remain and do not agree with
the groundtruth anymore. This is especially apparent looking
at the alignment of the patient table.

4 Conclusion & Outlook

We have shown that by registering a prior to fluoroscopic
images taken during an intervention, the reconstruction of the
following CBCT acquisition can be enhanced by making use
of the prior to initialize the iterative reconstruction algorithm
and thereby suppressing the formation of the typical trunca-
tion ring artifact and erroneous offset. The registration per-
forms well compared to established DRR-based registration
methods while providing a clear advantage in computation
speed. The resulting reconstructions show overall improved
image quality. This also holds for far off-center slices and
thereby would allow for further dose reductions by enabling
stronger axial truncation while maintaining a comparable im-
age quality. Future work will focus on applying the proposed
method on real clinical interventional data and also for prior
data from different modalities, e.g. conventional CT or even
MRI. Furthermore, approaches to impose further constraints
on the reconstruction method taking the prior data into ac-
count might prove beneficial and are worth investigating.
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Figure 2: Registration parameters as derived from Grangeat registration (Fig. 2a) and DRR registration (Fig. 2b).

(a) Groundtruth (b) Prior-aided (c) Truncated (OS-SART) (d) Extrapolated (FDK)

(e) Groundtruth (f) Prior-aided (SSIM: 0.7361) (g) Truncated (SSIM: 0.6792) (h) Extrapolated (SSIM: 0.6263)

Figure 3: Reconstructions of the central slice of the abdomen dataset. (a): Groundtruth reconstruction from untruncated data with ROI
marked in green, (b): the proposed prior-aided reconstruction, (c): OS-SART reconstruction from truncated data, (d): FDK reconstruction
from mirror extrapolated data, (e)-(h): corresponding enlarged ROIs. Constant mutual window of (C, W) = (-330, 1445) HU.
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Figure 4: Profile plots of Figs. 3e (blue), 3f (red), 3g (yellow) and 3h (purple) as indicated.
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(a) Groundtruth (b) Prior-aided (c) Registered prior (d) Unregistered prior

Figure 5: Reconstructions of the same slice of the head dataset. (a): Groundtruth reconstruction from untruncated data with ROI marked
in green, (b): the proposed prior-aided reconstruction, (c): the prior volume after registration, (d): the prior volume before the registration.
Constant mutual window of (C, W) = (23, 38) HU.
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Figure 6: Profile plots of Figs. 5a (blue), 5b (red) and 5c (yellow) as indicated. Additionally, the profile plot of an OS-SART
reconstruction from truncated data (purple, no image shown) for comparison. The dotted lines mark the borders of the ROI.
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Abstract The need for quantitative accuracy of single photon emis-
sion computed tomography (SPECT) image analysis is increasing
with the emergence of targeted radionuclide therapies such as liver
radioembolization. Breathing motion is a major issue for quantitation
as it leads to misestimation of the tumor activity in the SPECT im-
ages. In this paper, we developed a data-driven motion compensated
SPECT reconstruction algorithm to account for respiratory motion.
A respiratory signal was retrospectively extracted from SPECT list-
mode data with the Laplacian Eigenmaps algorithm and used to sort
the projections into temporal bins of fixed phase width. A 2D affine
motion was then estimated between projections at different phases.
The transformation parameters were used to re-bin the list-mode data
into one set of compensated projections that was then used to recon-
struct a 3D motion-compensated SPECT image using all available
events of the list-mode data. The method was evaluated on both simu-
lated and real SPECT acquisitions of liver patients, and compared to
respiratory-gated reconstruction. The motion-compensated reconstruc-
tion retrieved larger activity in the tumors compared to conventional
3D SPECT reconstruction with a better contrast-to-noise ratio than
gated reconstruction.

1 Introduction

Single photon emission computed tomography (SPECT) is
a key tool for imaging cancer, both for diagnosis and thera-
peutic purposes. The recent emergence of targeted radionu-
clide therapies, such as liver radioembolization or neuroen-
docrine tumors treated with 177Lu, increased the need for
quantitative SPECT analysis, both for pre-treatment planning
or per-treatment activity distribution monitoring. One key
step in liver radioembolization is the pre-treatment 99mTc
SPECT/CT acquisition used to assess lung shunt and extra-
hepatic uptake. This acquisition can also be used to evaluate
the planned dose delivered by therapeutic 90Y microspheres
injected in the liver. The accuracy of this patient-specific
treatment planning directly depends on the accuracy of the
pre-treatment SPECT images.
Respiratory motion has a major impact on the image quality
by blurring the SPECT image. For example, Bastiaannet et
al [1] showed on simulated data that it may underestimate the
SPECT activity in liver tumors. A widely used method to cor-
rect for breathing motion in tomography is respiration-gated
reconstruction. It consists in using a respiratory signal to sort
the measured projections in small temporal respiratory gated
frames with minimal motion. Then, the sorted projections
are reconstructed phase per phase yielding a series of motion-
free volumetric images [2]. This method has proven effective
to reduce the blur around moving tumours and improves

the quantification of the tracer concentration. However, the
lower photon count in the projection data of each individual
time frame compared to conventional reconstruction leads to
SPECT images with a poorer signal-to-noise ratio.
Other methods like motion-compensated reconstruction po-
tentially allow to reconstruct images without motion artifacts
while using all the available data. This type of method re-
quires the knowledge of the motion of the patient during the
whole acquisition. Then, the motion information can be used
to combine all individual gated frames into a single motion
corrected image either before [3], during [4] or after [5] the
reconstruction.
A common method to retrieve the motion vector field is to
use a previous 4D image of the same patient, e.g., a 4D
CT [4]. However, a 4D image is rarely available in clinical
practice and the respiratory motion changes from day to day.
Another approach is to estimate the breathing motion field
with image registration between the frames of the respiratory-
gated PET or SPECT images [3, 6]. In that case, a prior gated
reconstruction, which might be time consuming, is needed.
Also, additional hardware is often used to get the respiratory
signal needed for the gated reconstruction.
One way to avoid the previous reconstruction step is to
estimate the movement in projection space. For example,
Bruyant et al [7] tracked the center of mass of the gated
projections to get the motion information. However, this
method only assumes rigid motion and might not be suitable
for complex tumor deformation.
In this paper, we correct for breathing motion in a conven-
tional SPECT acquisition, without extra hardware or extra
image. Affine deformation is estimated between gated pro-
jections and accounted for by re-binning list-mode data. The
respiratory signal used for gating the projections is extracted
from the list-mode data. The method was validated on sim-
ulated data and real patient acquisitions and compared to
uncorrected and respiratory-gated reconstruction.

2 Materials and Methods

We assume a list-mode dataset of a conventional 3D SPECT
acquisition, i.e., a list of events describing the spatial position,
the energy and the time of each photon impinging on the
detector for a set of detector positions around the patient.
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2.1 Breathing signal extraction

A respiratory signal was first estimated using the algorithm
described in [8]. The algorithm bins the list-mode data into
low-count 256 × 256 pixel projections at a high framerate
(200 ms) and uses Laplacian Eigenmaps to reduce the dimen-
sionality to a 1D breathing signal sampled at 200 ms. The
breathing phase was computed by assuming linearity from
0% to 100% between two consecutive end-inhale positions.

2.2 Motion estimation

The projections were then gated using the breathing phase.
Projections were sorted into temporal bins sampling the
breathing cycle regularly, eight for patient acquisitions and
twenty for simulated data. The projections were acquired
with a dual-head SPECT system (section 2.5), thus acquiring
two opposite projections per gantry angle. For motion esti-
mation, one of the two projections was laterally flipped and
added to the other to improve the signal to noise ratio during
the registration.
A reference bin was chosen and the other projection bins
were registered to it using the Elastix image registration pack-
age [9]. Registration computed a 2D affine transformation (6
degrees of freedom) using the correlation coefficient as simi-
larity measure and adaptive stochastic gradient descent for
the optimisation. The resulting transformations were then ap-
plied to the list-mode data to bin a set of motion-compensated
projections, keeping the two opposite projections separated.
This step compensates the apparent 2D projective motion in
the projections.
For each acquisition, we generated one set of compensated
projections corresponding to the end-inhale position. This bin
was chosen because it minimizes the attenuation correction
error made by the use of a 3D attenuation map for liver
tumors located close to the lungs.

2.3 SPECT reconstruction

All volumes were reconstructed using the Reconstruction
Toolkit (RTK) [10]. The projections were reconstructed with
20 iterations and 4 subsets into a 1283 voxel matrix (voxel
size 4.42 mm), using the OSEM algorithm with a quadratic
penalization. All the reconstructions included scatter and
attenuation correction. For the attenuation correction, the 3D
CT image acquired by the SPECT/CT system (section 2.5)
was used.
For each dataset, we reconstructed one conventional 3D im-
age with no motion compensation, one respiratory-gated
4D image and one motion-compensated 3D image with the
proposed method. In addition, for the simulation dataset, ref-
erence 3D images were reconstructed with the patient static
at end-inhale.

2.4 SPECT simulation

The SPECT acquisition of a breathing patient was simulated
with the Monte Carlo software Gate [11]. The simulated
SPECT scanner was the same as the one of the patient acqui-
sitions (section 2.5). Patient motion over a breathing cycle
was estimated on the 4D CT image of a thoracic patient. The
end-exhale phase was used as reference and registered to
each of the nine other phases using 3D deformable image
registration. The liver was delineated on the CT image of
the reference phase and a spheroid activity source of 20 mm
radius was positioned in the liver with of 1:9 ratio between
the activity in the tumor and the liver activity in the back-
ground. Deformation vector fields were interpolated between
consecutive frames to obtain 20 frames which were applied
to the reference frame of the 4D CT and the activity sources
(tumor and background). The resulting 20 positions in the
respiratory motion were simulated individually. At the end
of the simulation, the twenty list-mode files were gathered
into a single list-mode file according to the input respiratory
signal to mimic the acquisition of a breathing patient with a
continuous rotation.

2.5 Patient acquisitions

The patient datasets were acquired with the dual-head Gen-
eral Electric Discovery NM/CT 670 of the Léon Bérard can-
cer center equipped with the Low Energy High Resolution
(LEHR) collimator. Sixty projections were acquired over
360◦, each with 128× 128 pixels, 4.42 mm isotropic spacing
and an acquisition time of 25 s. Patient acquisitions used
for this study came from the pre-treatment imaging of liver
radioembolization procedure. This step consists in injecting
around 350 MBq of 99mTc macro aggregated albumin (MAA)
inside the liver to assess lung shunt and extrahepatic uptake.
Twelve distinct patients were included in this study. One
patient was scanned three times but the results were analyzed
separately, yielding fourteen patient samples.

2.6 Image analysis

On each reconstructed volume, a volume of interested (VOI)
was delineated. For the simulations, the VOI of the refer-
ence 3D SPECT image (with no motion), of the motion-
compensated reconstructions and of each frame of the recon-
structed 4D image was the known tumor delineation at the
respective position in the breathing cycle. The VOI of the
blurred 3D image was the union of the 20 tumor positions.
For the patient acquisitions, a fixed threshold at 42% of the
maximum value was used to define the VOI [12].
The activity was evaluated by computing the mean activity A
in the VOI. The activity recovery was defined as follows:

∆A =
Aevaluated−Aref

Aref
×100 (1)
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Figure 1: Sagittal slices of the images reconstructed from the
SPECT simulation. The gated, motion-compensated and static
images are images of the end-inhale position.
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Figure 2: Contrast-to-noise ratio for the different reconstructions
of the SPECT simulation.

where Aevaluated was the mean activity in the VOI of either
the gated, motion-compensated or blurred reconstruction and
Aref the one in the reference image. The reference was the
reconstruction with no motion for the simulation and the
blurred reconstruction for the patient acquisition.
The contrast-to-noise ratio (CNR) was computed for each
reconstruction as follows:

CNR =
µ1−µ2

σ2
(2)

where µ1 is the mean activity in the VOI, µ2 the one in the
background and σ2 the corresponding standard deviation.
The amplitude of the tumor motion was also measured in each
acquisition by tracking the center of mass in the respiratory-
gated reconstruction.

3 Results

3.1 Simulations

Sagittal slices of the images reconstructed from simulated
data are shown in Figure 1. Motion-compensated reconstruc-
tion visually improved image quality compared to the gated
or the blurred reconstructions.
This visual observation was quantitatively confirmed by the
CNR value (Figure 2), which was higher for the motion-
compensated reconstruction than the reconstruction without
motion correction and the gated reconstruction and closer to
the reference.
The mean activity in the tumor of the blurred 3D reconstruc-
tion was 24% lower than the reference. The gated and the
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Figure 3: Contrast-to-noise ratio for the 29 tumors segmented on
the patient reconstructions.
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Figure 4: Activity recovery ∆A for the gated and motion-
compensated images of the patient acquisitions at end-inhale. The
blurred image was used as reference.

motion-compensated reconstructions were closer to the refer-
ence: 1% below and 2% above, respectively.

3.1.1 Patients

Patient evaluation included 29 tumors in 20 SPECT acqui-
sitions of different patients. The average motion amplitude
was 8.1 mm with a 3.4–16.4 mm range. The CNR value
is given in Figure 3. On average, the CNR in the motion-
compensated SPECT image was 31.1% and 8.2% higher
than the one obtained with the gated and the blurred SPECT
images, respectively. The maximum gains were 90.1% and
234% compared to the uncorrected and the gated reconstruc-
tions.
The activity recovery ∆A was 3.4% on average with a -10%–
19% range for the gated reconstruction. The average value
was 2.3% for the motion-compensated reconstruction and the
value range between -8% and 19% (Figure 4).
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4 Discussion

The proposed motion-compensated reconstruction was ap-
plied to simulated and real liver radioembolization pre-
treatment 99mTc SPECT acquisitions. The method is fully
data-driven and does not require any extra-hardware or other
image than the conventional 3D SPECT list-mode data.
The motion-compensated reconstruction recovered larger ac-
tivity value in the tumor compared to the reconstruction with-
out compensation. On the simulation, the activity recovery
∆A was closer to the reference 3D reconstruction obtained
from a static simulation.
For the patient acquisition, the average increase was 2.3%
compared to the uncorrected reconstruction. For five tu-
mors, this value was above 10%. The activity recovery was
slightly correlated to the tumor motion amplitude (fig. 4).
Therefore, for tumors with substantial motion, the motion-
compensated reconstruction should help to improve the pre-
dictive dosimetry for 90Y radioembolization, leading to more
accurate patient-specific treatment planning. However, fur-
ther studies are needed to assess the real impact on the pre-
dictive dosimetry, e.g. studying the impact of the method on
the quantification of the tumor-to-normal liver ratio or the
lung shunt fraction.
The use of a 3D attenuation map to perform the attenuation
correction of the motion-compensated reconstruction might
lead to mismatch between the attenuation map and the emis-
sion map. This can result in under- or over-estimation of the
activity recovery depending on the tumor location. The most
critical position is near the border between the liver and the
lung, which have very different attenuation coefficients. In
that case, part of the tumor can match the lung position in the
attenuation map when reconstructed at end-exhale, whereas
at end-inhale, most of the tumor is in the liver. In this study,
we chose to reconstruct the motion-compensated images at
end-inhale to mitigate this effect.
The activity recovery obtained with motion-compensated re-
construction was in the same range as the one obtained with
respiratory-gated reconstruction. However, motion compen-
sation improved the CNR with respect to gated reconstruction.
Higher CNR could improve the detection of small tumors or
regions with low uptake ratios, thus improving the diagnostic.
In this study, we only considered tumors in the liver but the
method can be easily adapted to other organs. However, it
might be limited by the estimation of motion in the projec-
tions since two tumors might overlap but move differently in
these images [3].

5 Conclusion

We have developed a fully data-driven motion-compensated
SPECT reconstruction and evaluated it in the context of
liver radioembolization. The method was compared to a
respiratory-gated reconstruction in terms of activity recov-
ery and CNR. The motion compensation recovered larger

activity in the tumor compared to conventional 3D SPECT
reconstruction with higher CNR than respiratory-gated re-
construction, which should eventually improve the treatment
planning of liver radioembolization.
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Abstract We show that a reciprocal space squared intensity map of a
material can be recovered, for each characteristic length scale, from
diffraction tomography data by a simple slice-by-slice reconstruction
method. Moreover if the reciprocal space map can be represented by
a finite sum of spherical harmonic components for each length scale
then the coefficients of that expansion can be recovered from inverting
the transverse ray transform (TRT), where the data are polynomial
coefficients of the azimuthal diffraction pattern for each length scale.

1 Introduction

X-ray diffraction experiments give information about the
structure of a material on the length scale of the wavelength
X-rays used. In X-ray crystallography a periodic crystal struc-
ture gives rise to a periodic diffraction pattern with distinct
peaks. For less regular materials a less distinct diffraction
pattern can never-the-less detect preferred orientations and
nearly periodic structures.
If a narrow gauge volume is illuminated with a mono-
chromatic X-ray beam the diffraction pattern is a sum of
diffraction patterns in that volume [korsunsky2011strain].
Increasingly, not just for X-rays but also neutrons and elec-
trons, we have the capability to raster scan a narrow beam
measuring a diffraction pattern and perform a combination
of tomography and diffraction, hoping to reconstruct a 3D
diffraction pattern that that summarizes the properties of the
material in each voxel. Small angle X-ray scattering (SAXS),
see Figs 1 and 2, tomography is a particularly promising
variant of this idea. However so far there is no theory for
the reconstruction in this field, and although it has been as-
sumed so, it is not yet proven that an isotropic average can
be meaningful reconstructed from this data. In this paper we
lay the theoretical foundation for diffraction tomography. We
will demonstrate a theoretical reconstruction method using
data from all directions. We will also show how a slice-by-
slice approach can be used to reconstruct a diffraction pattern
given by a finite sum of spherical harmonics. In this case the
problem reduces to the transverse ray transform of symmetric
tensor fields.

2 Physical model

We assume that at each point x in the object and for each
three dimensional reciprocal space vector q there is a scatter-
ing intensity-squared map f (x,q). For a given ray direction
ξ ∈ S2 (the unit sphere) a diffraction pattern for the material
near x would produce a 2D scattering pattern on a planar de-
tector normal to ξ with squared intensity f (x,q) for q ∈ ξ⊥

(the space of vectors perpendicular to ξ ). Clearly there is
an underlying assumption that the problem can be formu-
lated on two length scales, and we will not make this explicit
mathematically, but roughly we are assuming that on the
scale of the wave length of the X-rays (or particles) the 3D
distribution of scatterers has f (x,q) as the square magnitude
of its Fourier transform and this can be treated as a constant
on a small length scale, but on a larger length scale, commen-
surate with the width of the beam and the spatial scanning
increments, the Fourier transform is variable.
We treat intensity squared as the variable as we assume that
the diffraction pattern observed from one ray is an incoherent
average and so the result of the sum of squared intensities
along the gauge volume. Note that as f is magnitude squared
Fourier transform of a real function it is even with respect to
q: f (x,q) = f (x,−q).
Our data then is the generalized transverse ray transform
(GTRT)

g(x,ξ ,q) =
∞∫

−∞

f (x+ sξ ,q)ds, (1)

for x∈R3,ξ ∈ S2,q∈ ξ⊥. In the case where f (x,q) = F ·qm

where F is a rank m symmetric tensor field (the dot de-
notes contraction over m indices) this coincides, after a
small change in notation, with the transverse ray trans-
form of symmetric tensor fields defined by Sharafutdinov
[sharafutdinov2012integral].

3 Uniqueness and reconstruction for complete data

Suppose that we have diffraction data for all rays passing
through the object (the support of f ). For simplicity consider
a single value of |q| = Q, corresponding physically to one
reciprocal length scale, and a circle on the detector plane of ra-
dius Q centred on its intersection with the ray. We now follow
the same argument used by [sharafutdinov2012integral]
for the transverse ray transform of symmetric tensor fields.
Choose a direction η ∈ S2, which conceptually we think of as
a rotation axis for the sample in an experiment. Now consider
measurements of g for all rays in directions ξ ∈ η⊥.
For a given plane through x0 + η⊥, through x0 normal
to η , g(x,ξ ,Qη) for x ∈ x0 + η⊥,ξ ∈ η⊥ ∩ S2 is the 2D
X-ray transform of the scalar function f (x,Qη) on that
plane. Hence it can be reconstructed using the inverse
Radon transform. We see now that f can be reconstructed
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Figure 1: Small Angle X-ray Scattering tomography [liebi2018small](from which figure is taken) is a diffraction tomography method
currently popular: its feasibility and application has been demonstrated and synchrotron radiation facilities are investing heavily in the
necessary apparatus. The sample is placed on a tilt stage and for each direction ξ on the sphere (relative to the sample) a narrow beam is
raster scanned in a plane normal to ξ . For each such position a diffraction pattern is recorded on a planar detector to give the 6D data set.
For each (range of) |q| and each voxel a reciprocal space map on a sphere is reconstructed. This gives information about the orientation of
structures at that length scale.

Figure 2: Figure from Liebi et al [liebi2018small] demonstrates
how some reciprocal length scales have different orientation struc-
ture

from complete data g for all rays. In practice only recip-
rocal length scales 0 < Q0 < Q < Q1 in some fixed range
would make physical sense. We note that this idea is al-
ready present in the SAXS tomography literature, for a
single axis [schroer2006mapping], and for multiple axes
[schaff2015six, feldkamp2009recent] without formally de-
scribing the generalized transverse ray transform. In the
mathematical literature the extension of ray transforms to the
sphere bundle (space with a sphere at each point) appear as
the geodesic ray transform on a Riemannian manifold.

4 Consistency conditions

In inverse problems in general and especially in tomography
it is important to characterize data that is consistent with
the assumed model: in mathematical terms, to describe the
range of the operator. For some cases the singular value de-
composition (SVD) gives an explicit orthogonal basis for the
range and for its orthogonal complement. For the scalar x-
ray transform in two dimensions see [louis1984orthogonal]
and three dimensions see [maass1987x]. Consistency
conditions are systems of equations that characterize the
range. For the 2D Radon (X-ray) transform Helgason’s
range conditions characterize the range in terms of mo-
ments of the data [natterer2001mathematics]. For the 3D
X-ray transform the range is characterized by satisfying
John’s ultrahyperbolic partial differential equation (PDE)
[john1938ultrahyperbolic].
For the isotropic case f independent of q, the GTRT (1)
reduces to the X-ray transform in 3D space. This is formally
overdetermined as the space of lines in 3D space is four
dimensional. The data is one function of four variables and
we seek a function of three variables. So it is no surprise that
the data satisfies one PDE. By contrast in the 2D isotropic
problem (Radon transform) we seek one function of two
variables and our data is one function of two variables —
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Figure 3: Scanning electron micrographs of human teeth from nano-to macro-scale showing of the hierarchy of the structure of artificially
demineralised human enamel with secondary electron and backscattered electron images, and the last image on the right, the view of a
slice of a human carious tooth showing enamel (light grey), dentine (dark grey), and the pulp chamber. These cross-sectional images
do not provide direct evidence of the structural arrangement in 3D that can only be deduced for large volume, using high-resolution
tomographic imaging. [besnard20213d]

formally correctly determined. In the case of the GTRT we
seek one function of five variables (for fixed Q). Our data is
a function on a circle for each line, and is also a function of
five variables, so formally correctly determined.
In Sec 3 we saw how one can reconstruct f (x,q) on each
plane normal to q as a scalar Radon transform on each plane.
Notice for a fixed q the only data involving f (x,q) is exactly
the lines in the plane through x normal to q. So Helgason’s
range conditions are the only consistency conditions that
apply, beyond that g is even in q. Data g satisfying these
consistency conditions is associated with a (unique) f .

5 The Transverse ray transform of tensor fields

The transverse ray transform of a symmetric tensor field is
the integral along rays of the projection of the ray normal to
that direction. Let ei be the unit Cartesian vectors in 3-space.
We will denote the tensor product of tensors a and b by a⊗b.
A general rank two tensor has the form

a = ∑
i, j=1,..,3

ai jei⊗ e j

We denote symmetric tensor product a� b = (a⊗ b+ b⊗
a)/2 and the symmetric k-th tensor power by ak. Let ξ ∈ S2

be any unit vector, then the matrix

Πξ = I−ξ ξ T

projects a vector on to the subspace ξ⊥ or (Πξ )i j = δi j−ξiξ j

as a tensor. For a rank k symmetric tensor a the projection
Pξ (a) is the k fold contraction of a with Πξ . In components

Pξ (a)i1···ik = ∑
j1··· jk

(Πξ )i1 j1 · · ·(Πξ )ik jk a j1··· jk

for example as a matrix the components of the projection of
a rank two symmetric tensor Pe3a are




a11 a12 0
a12 a22 0
0 0




For a rank k symmetric tensor field a the Transverse ray
Transform (TRT) is defined as

Ja(x,ξ ) =
∫ ∞

−∞
Pξ (a)(x+ sξ )ds,

note that the data for each ray defined by x,ξ is a symmetric
rank k tensor in three variables. However it is restricted to
ξ⊥ so it would be natural to express it in a two dimensional
coordinate system for actual measurements (such as detector
screen coordinates).
We can now review the known theory for sufficiency of
data, characterization of consistent data and inversion for
the TRT. Sharafutdinov [sharafutdinov2012integral] (and
earlier Russian edition ) gives an inversion method for the
TRT of a symmetric rank k tensor field that is equivalent to
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the argument we gave in Sec 2 applied to the special case

f (x,q) = a(x) ·q · · ·q

where the dots denote contraction and the result of the k fold
contraction is a scalar.
As before we consider a rotation axis η and rays in directions
ξ ∈ η⊥, in each plane η⊥+ zη the component a(x) ·η · · ·η
(k-fold contraction) transforms as a scalar in the plane. We
perform the reconstruction by application of the scalar inverse
Radon transform to Ja(x,ξ ) ·η · · ·η . One then has to repeat
for at least K =

(k+2
2

)
(the dimension of the space of sym-

metric rank k tensors, sometimes called the ‘stars and bars’
problem) choices η1, ..,ηk, such that the set of symmetric k
fold products (η i)k is linearly independent. For example for
k = 2 the six diagonals of the icosahedron is a suitable choice
(in fact optimal as it maximizes the condition number of an
associated linear system). See [lionheart2015diffraction]
for a geometric criterion for k = 2.
For modest k this still seems rather wasteful in that data is
discarded and therefore more rotation axes are need than is
strictly necessary. In [lionheart2015diffraction] we gave a
filtered back projection formula for the reconstruction of a
rank-2 tensor from complete TRT data, that is rotation about
every axis. This is even more wasteful for small k however it
does use all the data that can be collected, averaging over the
redundancy.
In an attempt to reduce the number of rotation axes needed,
in [desai2016explicit] we showed that there is an explicit
reconstruction algorithm for the TRT for a rank-2 tensor
using only three rotation axes. However this has a certain
type of instability compared to using six axes.

6 Spherical harmonic expansion

It has been suggested (see eg
[liebi2015nanostructure],[guizar2020validation]) that
the intensity squared reciprocal space map be expanded in
spherical harmonics. Suppose we have

f (x,q) = ∑
l≤K,leven,|m|≤l

a(x, |q|)lmY m
l (q/|q|). (2)

Where we use the abbreviated notation for Laplace’s
spherical harmonics Y m

l (q̂) for Y m
l (θ ,φ) where

q̂ = (sinθ cosφ ,sinθ sinφ ,cosθ) is a unit vector. In
[liebi2015nanostructure] the complex reciprocal space
map (not the square magnitude) is represented as a sum of
spherical harmonics up to some order K. As the product of
spherical harmonics can be expressed in spherical harmonics
up to K we lose no generality.
The question arises if we can deduce the coefficients
a(x,Q)lm from less than the full data g(·, ·,q) with |q|= Q.
In particular can the isotropic term a00 be deduced from
averages over the circles of radius Q of the diffraction pat-
terns? More generally can the components of each order be

reconstructed separately by some form of preprocessing of
diffraction pattern data? To answer these questions we need
to consider the relationship between spherical harmonics and
polynomials.
A homogeneous degree k polynomial on R3 is a polynomial p
satisfying p(cq) = ck p(q), In the discussion of polynomials
we will use q = (q1,q2,q3) as our general vector is in recip-
rocal space. For example p(q) = q3

1−2q2
2q3 is a 3-rd degree

homogeneous polynomial. Homogeneous polynomials of
degree k are in one to one correspondence with symmetric
k-th rank tensors, we just replace the qi by unit basis vectors
ei and treat the product as the symmetric tensor product. For
example q2

1 + q2
2 + q2

3 corresponds to the Kroneker tensor
with components δi j.
A harmonic polynomial is p(q) is simply a polynomial satis-
fying Laplace’s equation

∆q p(q) = 0, ∆q =
∂ 2

∂q2
1
+

∂ 2

∂q2
2
+

∂ 2

∂q2
3
,

for example q2
1−q2

3 is harmonic.
The dimension of the space of spherical harmonics of degree
l in 3 variables is 2l+1 [axler2013harmonic]. The Laplace
spherical harmonics Y m

l (q) span the space of harmonics poly-
nomials of degree l.
Our aim is to convert (2) to a tensor expression so that we can
apply the known theory of tensor tomography. The problem is
that while we can regard spherical harmonics as polynomials
and polynomials as symmetric tensors we appear to have a
sum of tensors of different ranks. To get around this first we
impose the condition |q|= Q, a reciprocal length scale.
In many applications the orientation structure depends very
much on the reciprocal length scale Q and it would be sen-
sible to investigate this over specific ranges of interest, see
Figs 2,3,4. The expression

fQ(x,q) = ∑
l≤K,leven,|m|≤l

a(x,Q)lm|q|K−lY m
l (q) (3)

is the a homogeneous polynomial of degree K in q at each x.
This polynomial has an associated rank K symmetric tensor
field we will call FQ(x), and fQ(x,q) = FQ ·qK .
Our task now is to show how the TRT data for FQ can be
recovered from g restricted to |q|= Q. It is well known that
a bilinear function B(v,w) in two vector variables can be
recovered from the quadratic form P(v) = B(v,v) using the
polarization identity

B(v,w) =
1
4
(P(v+w)−P(v−w)) . (4)

It is perhaps not surprising, but less well known, that a
similar identity applies to symmetric multi-linear functions
[defant2017non]. The relevance to us is that for each ray and
a given Q we know g(x,ξ ,q) for |q|= Q, q∈ ξ⊥, the diffrac-
tion pattern around a circle of radius Q. This is the integral
of FQ ·qm along a ray and we can find the TRT JFQ(x,ξ ) by
applying the multi-linear polarization identity to g(x,ξ ,q).
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As long as it is known (2) is valid for some K one can attempt
a reconstruction using the known reconstruction methods for
the TRT detailed in Sec 5, or using regularized iterative
methods widely used for large scale linear inverse problems:
CGLS on an augmented matix for generalized Tikhonov
and FISTA when a TV regularized term is included. These
are implemented, for example, in our Core Imaging Library
[CIL1] for scalar problems. If K is not known a priori one
can use a higher value than necessary, at the expense of
higher computational cost, and then decide if the coefficients
alm are significant if including them results in a significantly
better fit to the data. Of course for some values of Q one
may need a higher value of K than others as is illustrated
in the diffractions patterns in Fig 4, and is inherent in the
micrographs in Fig 3.
One tempting approach that may well fail is to take an av-
erage in the detector plane over a circle of constant Q and
then attempt a slice by slice reconstruction assuming a scalar
(that is isotropic) model with K = 0. The underlying prob-
lem is that the restriction of a harmonic polynomial in three
variables to a plane is not necessarily harmonic. For example
q2

1−q3 is harmonic in three dimensional space but its restric-
tion to q3 = 0 is q1

1 which is not harmonic. The projection
on to spherical harmonic components of each order is not
preserved by projection on to a plane.
In HAADF-STEM (High-Angle Annular Dark-Field Scan-
ning Transmission Electron Microscope) tomography (see for
example[kubel2005recent] [leary2012quantitative]) an az-
imuthal average of a diffraction pattern is used to reconstruct
a scalar image from a single tilt-series. Our analysis sug-
gests this is flawed where the electron diffraction pattern is
anisotropic.
To some extent the danger of assuming isotropy, or indeed
too small a K in general, is reduced provided enough data is
collected. For example if slice-by-slice data is collected for
one rotation axis and a scalar reconstructed that best fits that
data, one can then test if the same scalar reconstruction is
consistent with reconstruction from rotation about a different
axis.
On each plane normal to a vector η the contractions of Ja
with η appear as the TRT of lower rank tensor fields on η⊥.
The range of the 2D TRT is given completely by the SVD
described by [kazantsev2004singularA].

7 Conclusions and further work

We have laid the theoretical framework for diffraction tomog-
raphy including an explicit inversion procedure, for each re-
ciprocal length scale, for full data, that is a sufficiently dense
sampling of the four dimensional space of lines. We have also
shown that assuming the reciprocal space map for each recip-
rocal length scale can be expanded in even spherical harmon-
ics up to some fixed degree is equivalent to reconstructing
a symmetric tensor field using the transverse ray transform

data. The next steps practically are to do a full regularized
algebraic reconstruction on real data, for both complete data,
and with limited data assuming a finite spherical harmonic
expansion. While an explicit reconstruction formula for lim-
ited TRT data is available for rank two tensors, none have
been derived for higher rank tensors. Recent results on the
TRT for higher rank tensors and limited data focus on the
divergent beam case [krishnan2020microlocal] and this ap-
plication may provide the impetus needed for further work on
the parallel beam case relevant to synchrotron X-ray (SAXS
and WAXS), electron (HAADF-STEM) and neutron (SANS)
diffraction tomography[treimer2008neutron].
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Figure 4: SAX, top, and WAX (wide angle X-ray scattering),bottom, diffraction patterns of dental enamel showing anisotropic structure
on different length scales [sui2018situ]
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Abstract MeV dual-energy CT can be used in customs as the next 

generation inspection tool to replace X-ray radiography for 

cargo/container imaging. Compared to X-ray radiography, MeV dual 

energy CT can give cross-section image, which is free of the overlapping 

problem. Besides, the recorded dual energy projection data can be used 

for material decomposition. Material decomposition can give more 

specific information on the scanned materials, such as the electron 

density and equivalent atomic number. Compared to keV dual-energy CT, 

MeV dual-energy CT material decomposition is much more difficult 

since the mass attenuation coefficients of different materials are very 

close in MeV energy range, making the decomposition problem more ill-

conditioned. Besides, the heavy metals in the container will cause strong 

beam hardening artefacts, further degrading the image quality. In this 

paper, we used a projection domain-based method for material 

decomposition to reduce the effect of beam hardening. We also used a 

self-supervised Noise2Noise neural network for equivalent atomic 

number image denoising. The simulation results showed the 

effectiveness of our method for MeV dual-energy CT material 

decomposition. 

1 Introduction 

There are hundreds of millions of cargo transactions per 

year in customs, airports, stations and harbors all over the 

world. The giant size and complicated contents of cargo 

give the chance for concealing illicit materials, such as 

explosives, drugs, nuclear materials, smuggled goods and 

even stowaways. For homeland security, routine security 

screenings of these cargos are required. At present, high 

energy X-ray radiography with energy up to 9 MeV is the 

dominant technique for the inspection. However, the 

material discrimination capability of X-ray radiography 

technology is highly constrained by the overlapping 

problem. To overcome this problem, computed tomography 

technique can be introduced into cargo imaging as the next 

generation inspection tool. We have reported the design and 

the performance of the first commercial MeV dual energy 

CT system in our previous work [1-3].  

For MeV dual-energy CT system targeted at cargo or 

container imaging, the material decomposition is a big 

challenge. The behind reasons are multifaceted. On one 

hand, the spectrum generated by the X-ray tube or 

accelerator is polychromatic, making the dual energy 

attenuation equations nonlinear and much more 

complicated than the case of monochromatic X-ray imaging. 

On the other hand, the heavy metals often exist in the cargo 

or container, causing severe beam hardening artefacts. 

Besides, at MeV energy range, the mass attenuation 

coefficients of different materials are very close, making the 

decomposition problem more ill-conditioned and very 

sensitive to noise. The existed material decomposition 

methods can be generally classified into three types: the 

projection domain-based, image domain-based and one-

step inversion methods. The projection domain-based 

decomposition methods can utilize the spectra information 

and maximumly reduce the beam hardening effect but with 

the cost of heavy computation on solving the nonlinear 

attenuation equations. The image-domain methods are easy 

to implement but with the beam hardening effect hard to 

eliminate. With the material decomposition finished, the 

electron density image and equivalent atomic number 

image can be calculated from the decomposed material 

coefficient images. Because of the ill-condition of the 

material decomposition process, the generated equivalent 

atomic number image can be very noisy. A specific 

denoising step can be taken to alleviate the noise in the 

equivalent atomic number image.  

In this paper, we proposed a framework that includes a 

projection domain-based material decomposition process 

and a self-supervised deep learning-based method for 

equivalent atomic number image denoising. An 

optimization algorithm called Levenberg-Marquardt 

method [4] was used for solving the nonlinear attenuation 

equations. A self-supervised Noise2Noise network [5], 

which was trained by mapping one noise realization to 

another, was utilized for the equivalent atomic number 

image denoising. The simulation study showed the 

effectiveness of our proposed method. 

2 Materials and Methods 

2.1 The Data Simulation 

The Monte Carlo simulated 6 and 9 MeV spectra we used 

for simulation are displayed in Figure 1. The spectra has 

been normalized, which means the photon counts have been 

divided by the total photon counts.  
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Figure 1. Monte Carlo simulated 6 and 9 MeV spectra used 

for simulation.  

Figure 2 shows a water phantom with different pure 

material insertions. The atomic numbers of these materials 

are indicated in the small circles.  

 

 
Figure 2. The water phantom with ten different material 

insertions used for simulation. The right part of the figure 

shows the water phantom with a colurful map that changing 

from blue to red along with increasing atomic numbers from 

0 to 50. 

 

A 2D fan-beam CT geometry was utilized in the 

simulation. The distance from the source to the center of 

rotation was 81.92cm and the distance from the detector to 

the center of rotation was 30.72cm. The number of views 

was 540, covering a full circle. The number of detector 

pixels was 736 and the fan angle was 42.17°. A total of 

1 × 106 photons were used for simulation. The simulated 

low and high energy projection data and FBP reconstructed 

image are shown in Figure 3.  

 

 
Figure 3. The left part is low energy sinogram and 

corresponding reconstruction. The right part is high energy 

sinogram and corresponding reconstruction. The display 

window for sinogram and reconstructed image are 

respectively [0, 6] and [0, 0.49]. 

2.2 The Projection Domain Decomposition 

The projection domain-based decomposition tries to firstly 

estimate the line integral of  material coefficients 𝐵1 and 𝐵2 

from the nonlinear attenuation equations: 

 

{
  
 

  
 
𝑝𝐿(𝑟𝑎𝑦𝑖) = −𝑙𝑛∫ 𝐷𝐿(𝐸) exp[−𝐵1𝜇1(𝐸) − 𝐵2𝜇2(𝐸)] 𝑑𝐸

𝐸𝐿

0

𝑝𝐻(𝑟𝑎𝑦𝑖) = −𝑙𝑛∫ 𝐷𝐻(𝐸) exp[−𝐵1𝜇1(𝐸) − 𝐵2𝜇2(𝐸)] 𝑑𝐸,

𝐸𝐻

0

(1) 

 

where 𝑝𝐿 and  𝑝𝐻 are respectively the low and high energy 

projection data. 𝐷𝐿 and 𝐷𝐻 are respectively the normalized 

low and high energy spectra. 𝜇1(𝐸)  and 𝜇2(𝐸)  are the 

attenuation coefficients of two basis materials at energy 𝐸.  

In this paper, We used Levenberg-Marquardt method for 

solving this two nonlinear equations. After the line integral 

of material coefficients 𝐵1  and 𝐵2  are estimated, the 

coefficient images can be reconstructed by using FBP 

method: 

 

{
𝑏1 = 𝑅

−1(𝐵1)

𝑏2 = 𝑅
−1(𝐵2)

(2) 

 

where 𝑅−1 represents inverse radon transform. After we get 

the decomposition coefficients, the electron density 𝜌𝑒 and 

equivalent atomic number 𝑍 can be calculated by using the 

following formulas: 

 

𝜌𝑒 = 2(𝑏1𝜌1
𝑍1
𝐴1
+ 𝑏2𝜌2

𝑍2
𝐴2
) , (3) 

 

𝑍 = [𝑏1𝜌1
(𝑍1)

2

𝐴1
+ 𝑏2𝜌2

(𝑍2)
2

𝐴2
] , (4) 

 

where 𝜌𝑖 represents the mass density of the basis material 𝑖, 
𝑍𝑖  and 𝐴𝑖  respectively represent the atomic number and 

mass number of material 𝑖 . More detailed derivation of 

formula (3) and (4) can be found in publication [6]. 

2.3 The Denoising of Atomic Number Image  

The atomic number image can be very noisy due to the noise 

magnification characteristic of material decomposition 

process. It is necessary to conduct a further denoising step 

on the atomic number image. Deep learning has shown its 

great success in several image based tasks [7]. Traditional 

supervised deep learning method based on Noise2Clean 

mapping targets at minimizing such a loss: 

 

Θ∗ = argmin
Θ

1

𝑁
∑‖𝑓(𝒛𝑖 + 𝒏𝑖; Θ) − 𝒛𝑖‖2

2

𝑖

(5) 
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where 𝒛𝑖 is the ground truth of the  𝑖𝑡ℎ image and 𝒏𝑖 is the 

corresponding noise. 𝑁 represents the number of training 

samples. The function 𝑓(𝒛; Θ):ℝ → ℝ represents the neural 

network mapping and Θ is its trainable parameters. 

Different from Noise2Clean, Noise2Noise framework 

uses another independent noise realization as the training 

label, which can be illustrated as: 

 

Θ∗ = argmin
Θ

1

𝑁
∑‖𝑓(𝒛𝑖 + 𝒏𝑖1; Θ) − (𝒛𝑖 + 𝒏𝑖2)‖2

2

𝑖

, (6) 

 

where  𝒏𝑖1 and 𝒏𝑖2 are two independent noise realizations. 

And the denoised result of the network can be given by: 

 

𝑦𝑖 =
𝑓(𝒛𝑖 + 𝒏𝑖1; Θ

∗) + 𝑓(𝒛𝑖 + 𝒏𝑖2; Θ
∗)

2
, (7) 

 

It has been demonstrated that under certain mild conditions 

that Noise2Noise training is equivalent to Noise2Clean 

training [8]. The process of obtaining two independent 

noisy equivalent atomic image implementations is like this. 

Firstly, we performed an angular separation to the 

projection data to get odd and even projections. We 

respectively performed material deconposition to these two 

separated datasets and calculated the equivalent atomic 

number images. The noise in the two calculated atomic 

number images can be approximately regarded as 

independent and zero-mean. In our case, the number of 

training samples N is 1. However, since the filters in 

convolutional neural network are shift-invariant, different 

parts of the training image actually serve as multiple 

training samples. Therefore the network can be well trained 

even with only one training image.  

Figure 4 shows the architecture of the encoder-decoder 

network we used for Noise2Noise mapping. It had similar 

structures with U-net [9] but without resampling and 

doubled channels when moving to different stages.  

 

 
Figure 4. The architecture of the neural network for 

Noise2Noise mapping.  

3 Results 

The two basis materials we used for decomposition are 

carbon (Z=6) and tin (Z=50). Figure 5 shows the estimated 

line integral of basis material coefficients after solving the 

equations in (1). By performing FBP reconstruction to the 

decomposed projection, we obtained the material 

coefficient images, which are shown in Figure 6.  

 

 
Figure 5. The decomposed projection. The left part is the 

decomposed carbon (C) projection and the right part is the 

deconposition tin (Sn) projection. The display window for 

carbon is [0, 4] and the display window for tin is [0, 0.15].   

 

 
Figure 6. The reconstruction of material coefficients. The 

left part of the figure is the reconstructed carbon coefficient 

image with display window [-0.6, 2.8]. The right part of the 

figure is the reconstructed tin coefficient image with display 

window [-0.2, 1.8]. 

 

With the reconstructed material coefficients, we can 

calculate the electron density image and equivalent atomic 

number image according to formula (3) and (4). The two 

images are shown in Figure 7.  
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Figure 7. The electron density image (left) with display 

window [0, 11] and the equivalent atomic number image 

(right) with display window [0, 50]. 

 

To look at the performance of Noise2Noise network on 

atomic number image denoising. We put ground truth 

image, original calculated image and network denoised 

image together for comparison in Figure 8. A profile plot 

was shown in Figure 9. 

 
(a) (b) (c)

 
Figure 8. The equivalent atomic image. (a) the ground truth. 

(b) projection domain-based docomposition without 

denoising. (c) projection domain-based decomposition with 

Noise2Noise denoising. The display window is [0, 50]. 

 

 
Figure 9. A profile plot (marked as yellow line in Figure 8) 

of equivalent atomic number images. 

 

We can figure out that the noise is significantly suppressed 

after applying Noise2Noise network. Besides, the bias is 

also within a reasonable range. 

4 Discussion and Future Work 

The computation time of Levenberg-Marquardt algorithm 

for solving the two nonlinear attenuation equations in 

formula (1) is high. We plan to develop CUDA version of 

the algorithm running on GPU for solving this problem. 

Compared to image domain-based decomposition methods, 

the proposed projection domain-based method can reduce 

the effect of beam hardening for knowing the spectra 

information. Since now it is a simulation study, the access 

to the dual-energy spectra can be easily achieved. While in 

practical case, a spectrum estimation step is needed, which 

can be done by measuring the attenuation of incident spectra 

on some known calibration materials. The accuracy of 

spectra estimation is also very important to the final 

decomposition result. Regarding to the equivalent atomic 

number image denoising part, we also want to explore the 

architecture and property of the Noise2Noise network itself, 

especially on what benefits will be brought to denoising if 

we had a constrain on the sparsity or orthogonality of 

network parameters. Besides, this is an initial study 

currently. We will perform more quantitative evaluation on 

our method.  

5 Conclusion 

In this paper, we presented a simulation study of material 

decomposition of MeV dual-energy CT targeting for cargo 

or container imaging. A projection domain-based material 

decomposition method was applied for reducing the effect 

of beam hardening. A self-supervised neural network called 

Noise2Noise was used for equivalent atomic number image 

denoising. The simulation results showed the effectiveness 

of our method on beam hardening reduction and noise 

suppression of equivalent atomic number image. 
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Abstract It is well known that measurement of the time-of-flight
increases the information provided by coincident events in positron
emission tomography. This information increase propagates through
the reconstruction and decreases the variance in the reconstructed
image for the same spatial resolution. T. Tomitani has analytically
computed the gain in variance provided by a particular time-of-flight
resolution, for the center of a uniform disk. This calculation is compli-
cated, because it involves computing how the noise propagates through
reconstruction with filtered backprojection. Here, we obtain the same
result with a simpler image-based analysis of a single coincidence
event. The proposed method assigns a relative signal-to-noise ratio to
non-TOF and TOF events, as a function of the width and shape of the
TOF kernel. This approach is also applicable to non-Gaussian TOF
kernels. Such kernels are obtained for detectors in which different
photon detection mechanisms are combined, such as detectors using
both Cherenkov and scintillation photons and hybrid detectors. The
proposed approach is verified mathematically by extending Tomitani’s
approach to the sum of shifted Gaussians, and it is verified with simple
ray tracing simulation experiments.

1 Introduction

Tomitani provided a mathematical analysis of the variance
in TOF and non-TOF images reconstructed with filtered
backprojection (FBP) and post-filtered to the same image
resolution [1]. This analysis only holds for the center of
a uniform radioactive disk. In [2] we computed the TOF
variance improvement for maximum-likelihood expectation
maximization (MLEM) reconstruction numerically (using
a Fisher information based analysis), and found excellent
agreement with Tomitani’s formula. Here we obtain that very
same formula by directly analyzing the information in the
data, thus avoiding the relatively complex mathematical treat-
ment of the noise propagation through FBP or MLEM. This
formula assigns a relative signal-to-noise (SNR) ratio to each
event. It can account for some non-uniformity in the activity
and for the contribution of randoms. More importantly, it can
also deal with non-Gaussian TOF-kernels. This is of inter-
est for detectors that make use of different photon detection
mechanisms, e.g. detectors capturing both Cherenkov pho-
tons and scintillation photons [3–5], and detectors consisting
of two (or more) scintillators with different characteristics [6,
7]. In some cases, each event can be assigned to a particular
TOF-kernel, in other cases, this is not possible and the differ-
ent TOF-kernels have to be combined into a single, averaged
TOF-kernel. With the proposed approach, the value of a TOF

event is quantified for both cases.

2 Methods

Following Tomitani, we consider the center of a disk shaped
object with diameter D, filled with a uniform activity. We
assume there is no attenuation. Due to symmetry, all the PET
events along lines of response (LOR) intersecting the center
have the same expectation and variance. The activity along
the LOR equals B per unit length.

Figure 1: a) Disk phantom with diameter D and a hot spot in
the center. (b) The TOF profile as measured along a central LOR,
which is a blurred version of the true profile. (Copied from [8]).

We propose to quantify the information provided by such an
event as the SNR of an optimal (numerical) observer, who has
to detect the presence or absence of a small spot of increased
activity at the center, in a “signal known exactly, background
known exactly” task [9]. The hypothesis is that this SNR is
proportional to the information which the event contributes to
the reconstruction of the central pixel value. If this is correct,
then improvements to this SNR, e.g. due to changes to the
TOF kernel, would imply identical improvements to the SNR
in the reconstructed image.
Assuming that the Poisson noise on the data can be well
approximated as Gaussian noise, the optimal observer uses
the prewhitening matched filter [9] to compute a test statistic,
which is compared to a threshold to decide if the hot spot is
present or absent. In the cases considered here, the noise is
already white and the observer reduces to a non-prewhitening
matched filter. Further, we assume that the activity S located
at the “hot” spot is very small, such that it has a negligible
effect on the variance of the measurements. The signal t
produced by the observer is the difference of the test statistic
expectations when the spot is present and absent. The perfor-
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mance of the observer is degraded by the noise on the test
statistic. As explained below, it is convenient to compute the
squared SNR instead of the SNR.

2.1 SNR of a non-TOF event

For the non-TOF case, only a single value is measured for
each LOR and the matched filter reduces to multiplication
with an arbitrary constant, which can be set equal to 1. The
observer signal t is the difference between the expectations of
the spot present and spot absent: tnonTOF =BD+S−BD= S.
The variance on the test statistic equals BD, because the data
are subject to Poisson noise and S << BD. Consequently,
the squared SNR equals

SNR2
nonTOF =

S2

BD
(1)

2.2 SNR of a Gaussian TOF event

Assume the same setup as above, except that now the ac-
quisition is done with a TOF-PET system with spatial TOF
uncertainty σ (fig. 1). We assume that σ << D such that we
can ignore edge effects. Near the center, the expectation of
the measurement with signal present y(x) can be written as

〈y(x)〉= B+
S√
2πσ

e−
x2

2σ2 , F(x) =
√

2 e−
x2

2σ2 , (2)

where x is the 1D coordinate along the LOR (TOF-index
converted to position). The corresponding matched filter F(x)
equals the difference between the expectations of the spot
present and spot absent profiles, up to a constant. Using F(x)
as in (2), one obtains for the expectation of the difference of
test statistics

tTOF =
∫ ∞

−∞
(〈y(x)〉−B)F(x)dx = S, (3)

and for the variance

varTOF =
∫ ∞

−∞
B F2(x)dx = 2

√
πσB. (4)

Combining the above, the squared SNR associated with a
TOF event equals

SNR2
TOF =

S2

2
√

πσB
. (5)

Consequently, the variance gain (or SNR2 ratio) obtained
with TOF equals

SNR2
TOF

SNR2
nonTOF

=
D

2
√

πσ
=

√
2ln2 D√
π W

= 0.66
2D

c CTR
, (6)

where c is the speed of light and CTR is the coincidence
time resolution, i.e. the full width at half maximum of the
Gaussian TOF kernel in units of time. W = c CTR/2 is the
CTR converted to the corresponding distance. This result is
identical to that obtained by Tomitani for FBP [1].

2.3 Accounting for non-uniform activity

Consider the same situation as above, except that now the
activity of the disk is increased with C per unit length over
a distance E near the edge of the disk (fig. 2). For a suffi-
ciently narrow TOF kernel, nothing changes. In contrast, for
the non-TOF measurement, the variance is increased due to
the additional activity 2EC. As a result, the TOF induced
variance gain now becomes

SNR2
TOF

SNR2
nonTOF

= 0.66 ·2D+2EC/B
c CTR

. (7)

This confirms that the gain due to TOF is higher for regions
that are surrounded by more activity. For a decreased activity
near the edge (negative C), the TOF gain would be reduced
compared to the uniform activity case.

Figure 2: (a) Disk phantom with a hot spot in the center and an
increased ring of activity (with width E) near the boundary. (b)
The TOF profile as measured along an LOR through the hot spot.
Near the center, the TOF profile is the same as in figure 1. (Figure
copied from [8]).

2.4 Accounting for randoms

The randoms contribution is independent of the TOF index.
Consequently, if the TOF acquisition would see R randoms
per unit length, the non-TOF acquisition would be contam-
inated by RDFOV randoms, where DFOV is the diameter of
the field of view. Inserting this in eq. (6) results in

SNR2
TOF

SNR2
nonTOF

= 0.66
2D

c CTR
B+R/β

B+R
, (8)

where β = D/DFOV. Since β < 1, this result predicts that
TOF reduces the variance more when the randoms fraction is
higher, as has been observed e.g. in [10].

2.5 Non-Gaussian TOF kernels

Assume that the non-Gaussian TOF-kernel can be well ap-
proximated as a sum of (possibly shifted) Gaussians (see e.g.
[7]):

kTnG(x) =
1√

2π ∑n
i=1 Aiσi

n

∑
i=1

Aie
− (x−xi)

2

2σ2
i , (9)

where the subscript TnG denotes a TOF kernel consisting of
n Gaussians, σi is the standard deviation of Gaussian i and
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xi is its shift. Then, proceeding as above, we find for the
variance gain over non-TOF PET:

0.66
2D
c

1

(∑n
i=1 Ai CTRi)

2

(
n

∑
i=1

A2
i CTRi

+2
√

2
n−1

∑
i=1

n

∑
j=i+1

AiA j
CTRi CTR j√
CTR2

i +CTR2
j

e
− (xi−x j)

2

2(σ2
i +σ2

j )


 . (10)

where CTRi represents the CTR of the Gaussian component i.

2.6 Combining events with different SNR2

A non-Gaussian TOF kernel is observed when all events
have a non-Gaussian probability distribution, or when mixed
events are detected and each event is drawn from a Gaussian
probability distribution. In the latter case, we have events
with different SNR2, and it would be convenient to estimate
the expectation of the SNR2 for such system. This raises the
question how events with different SNR have to be combined.
Assume that we have two measurements of the same quantity,
producing the values mi, i = 1,2, corrupted by independent
noise with standard deviations si, i = 1,2. We can combine
these measurements in a weighted sum, using weight w, with
the following expectation and variance:

m =
m1 +w m2

1+w
s2 =

s2
1 +w2s2

2
(1+w)2 . (11)

The optimal weight w = m2s2
1/(m1s2

2) minimizes the vari-
ance, and the resulting SNR2 of m equals

SNR2 =
m2

s2 =
m2

1

s2
1
+

m2
2

s2
2
= SNR2

1 +SNR2
2. (12)

Thus, assuming that the reconstruction algorithm makes opti-
mal use of the data, the SNR2 of a set of independent events
is the sum of the SNR2 of each event. Accordingly, the mean
SNR2 of a single event is the sum of the SNR2 of each type
of event, weighted by their relative abundance. This shows
also that if event type a has an SNR2 that is N times higher
than that of event type b, a single type a event is equivalent
to N type b events.
With the equations above, one can estimate the

• the variance improvement (or equivalently, the gain in
SNR2) obtained by going from non-TOF to TOF PET,

• the gain in SNR2 obtained by improving the TOF reso-
lution,

• the gain in SNR2 obtained by associating each event
with its proper TOF kernel, as compared to using the
averaged TOF-kernel for all events,

• the equivalent Gaussian TOF resolution for a non-
Gaussian TOF kernel.

Consequently, these equations should be useful for predicting
and comparing the performance of detectors that make use
of events with different characteristics.
Note that above we have considered the center of a radioac-
tive disk in a 2D PET system, but the same symmetries and
reasoning apply for a radioactive sphere positioned in a fully
3D PET system.

2.7 Comparison to Tomitani’s approach

To verify if the agreement between Tomitani’s result and (6)
is fundamental, and not a particular feature of the Gaussian
function, we apply Tomitani’s approach to the sum of two
shifted Gaussians. Eq (11) of [1] gives the variance V in the
center of the image, reconstructed with FBP from a noisy
TOF-PET measurement of a uniform cylinder:

V = 2πa
∫ ∞

0

P2(R)
R[K2](R)

RdR (13)

where a is the emission count in cm−2, P is the Fourier
transform of the image PSF p (imposed by post-smoothing
with a Gaussian), K is the Fourier transform of the TOF
kernel k and R is the rotational mean operator as defined in
(1) of [1]:

R[K2](R) =
1
π

∫ π

0
[K2](Rcosθ)dθ . (14)

When calculating (14) for a TOF kernel consisting of Gaus-
sians, one has to solve integrals of the form

Q(R) =
∫ π

0
e−c1R2 cos2 θ f (Rcosθ)dθ . (15)

For a single Gaussian TOF kernel, f (Rcosθ) = 1 and the
integral produces a modified Bessel function of the first kind.
To obtain a closed form solution, in [1], this Bessel function
is replaced with its asymptotic form, which is a good approx-
imation for large R. However, for a sum of shifted Gaussians,
in some of the terms, the integral f is more complicated, and
that same approach cannot be applied. This problem can be
avoided by using an alternative approximation. The integrand
in (15) is the product of a Gaussian and the function f . For
large R, the Gaussian is a narrow peak around the point where
θ is close to π/2. Consequently, for large R, the integral can
be approximated as

Q(R)'
∫ ∞

−∞
e−c1R2( π

2−θ)2
f
(

R
(π

2
−θ
))

dθ . (16)

No further approximations are then needed to obtain a closed
form solution. For a single Gaussian, the result is identical to
that with Tomitani’s derivation, i.e. (6); for a sum of shifted
Gaussians, the result is identical to (10).
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2.8 Equivalence to detection using the recon-
structed image

As shown in section 2.7, by generalizing Tomitani’s approach,
the (relative) SNR2 calculated from the variance of the recon-
structed images coincides with the SNR2 obtained directly
from the data for a SKE/BKE task. It is known that data
processing does not change the ideal observer’s performance
provided the operation is invertible (see [11], p. 855). Im-
age reconstruction is not in general invertible, but the same
result holds for the minimum norm weighted least-squares
reconstruction of a discrete linear problem.
When using the data for detection, the task is to decide be-
tween 〈y〉 = Ab+As (signal present) and 〈y〉 = Ab (signal
absent), from a noisy measurement y with covariance V ,
where A is the projection matrix and the covariance V is
assumed independent of the presence of the signal. The
prewhitening matched filtering (PWMF) test statistic equals
t = (As)TV−1y, where s is the signal in the image and the su-
perscript T denotes the transpose. For the signal and variance
of the test statistic one finds:

∆〈t〉 = 〈t〉spresent−〈t〉sabsent (17)

= sT ATV−1As = sT Fs (18)

var(t) = (As)TV−1VV−1As = sT Fs, (19)

where F = ATV−1A is the Fisher information matrix. There-
fore, the SNR2 for this task equals

SNR2
data =

(∆〈t〉)2

var(t)
= sT Fs (20)

The minimum norm least-squares reconstruction equals x† =
F†ATV−1y, where F† is the pseudoinverse of F . When de-
tecting on the image, the task is to decide between x = b+ s
(signal present) and x = b (signal absent) from a noisy image
x with covariance

W = F†ATV−1VV−1AF† = F†FF† = F†. (21)

Denote with η the filter used to compute the test statistic, i.e.
t = ηT x†. The squared SNR equals

SNR2
image =

(ηT F†ATV−1As)2

ηTWη
=

(ηT F†Fs)2

ηT F†η
. (22)

Maximizing the expression in the RHS yields the PWMF
η = Fs. Consequently,

SNR2
image = sT Fs, (23)

where we used FF†F = F . This shows that the SNR for the
SKE-BKE detection task is the same when the detection is
done using the data or using the reconstructed image.

3 Experiments

To verify the results obtained above, five PET systems with
the same geometry but different event types were simulated.
The systems had either

1. non-TOF events

2. Gaussian TOF kernel events of 70 ps FWHM

3. Gaussian TOF kernel events of 400 ps FWHM

4. an equal probability for the two TOF events above, and
for each event, the associated TOF kernel was known

5. the same two TOF events as above, but individual events
could not be assigned to a particular TOF kernel.

Simple 2D simulations were performed for these systems. An
image of 100 × 100 pixels, with pixel size of 2.5 mm × 2.5
mm, containing a uniform disk with diameter of 200 mm was
generated. A finite system resolution was modeled with an
image-based, shift invariant Gaussian point spread function
of 3.75 mm FWHM. The field of view of the simulated PET
system was circular with a diameter 450 mm.
Five noise-free measurements were created. Three were
produced by forward projecting this image with a non-TOF
projector, a projector with 70 ps and one with 400 ps TOF-
resolution. Two additional measurements were produced, one
by combining equal fractions of unlabeled events with 70 and
400 ps TOF resolution, and a second one where each event
was labeled with its TOF uncertainty. All sinograms had 5 ×
106 events. For each sinogram, 100 (Poisson) noise realiza-
tions were produced. The sinograms were reconstructed with
MLEM in combination with a non-TOF projector, a Gaussian
TOF projector, non-Gaussian TOF projector (eq. (9)) or a
combination of two Gaussian TOF projectors, as required for
optimal reconstruction of the respective sinograms.
From these simulations, SNR2 gains were computed with
(6) for the Gaussian kernels and with (10) for the unlabeled
mixed events. For the labeled events, the two SNR2 computed
with (6) were averaged.
SNR2 gains will translate into variance gains, if the recon-
structed images have identical spatial resolution. To achieve
that with good approximation, a high number of iterations
was applied, and the resulting images were post-smoothed to
suppress the effect of residual resolution differences caused
by small differences in convergence. For the non-TOF recon-
struction, 400 iterations were applied. Considering that the
TOF-reconstructions converge much faster, they were done
with 200 iterations. All reconstructions were post-smoothed
with a Gaussian kernel of 3 pixels (7.5 mm) FWHM. An im-
age of pixel variances was computed for each case from the
100 noise realizations. The mean variance value in a central
region of interest with diameter of 60 mm was computed for
each case (this region contains 462 pixels). The results of the
100 noise realizations were then used to estimate the mean
variance value and the error on that estimate.
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A similar simulation was done to evaluate the predicted TOF-
gain in the presence of randoms. Non-TOF and 200 ps
FWHM TOF events were simulated. The simulation parame-
ters were as above, but the number of non-TOF iterations was
increased to 800 because the presence of the randoms slows
down convergence, in particular for non-TOF. In addition,
the noise amplitude was decreased to reduce non-negativity
effects, by increasing the total counts to 2.5× 108.

4 Results

The results of the simulation experiment with different TOF
kernels are shown in table 1. Table 2 lists the results from
the randoms simulation experiment.

SNR2 ratio gain error predicted
TOF1 / nonTOF 12.5 0.27 12.5
TOF2 / nonTOF 2.18 0.049 2.21

TOFmix / nonTOF 5.24 0.12 5.21
TOFlab / nonTOF 7.39 0.15 7.34

TOF1 / TOF2 5.75 0.13 5.63
TOF1 / TOFmix 2.40 0.054 2.39
TOF1 / TOFlab 1.70 0.035 1.70

Table 1: Results of the TOF kernel simulation experiment. TOF1:
70 ps, TOF2: 400 ps, TOFmix: unlabeled mixed events, TOFlab:
mixed events, each labeled with its TOF resolution. The second
column gives the inverse of the variance ratio (i.e. the SNR2 ratio)
of the events obtained from the simulation, the third column the
error estimate, and the fourth column the corresponding value
predicted by the proposed method.

randoms/trues gain error predicted
0.0 4.35 0.085 4.37
1.0 5.16 0.11 5.12
2.5 5.47 0.11 5.69
5.0 6.06 0.14 6.14

Table 2: Results of the randoms simulation experiment. From left
to right: ratio of randoms to trues, the gain due to 200 ps TOF seen
in the simulations, the error on the gain and the predicted gain.

5 Discussion

The proposed method determines the “value” of a single PET
event, assuming that this event contributes to the reconstruc-
tion of the center of a uniform disk. This value is computed
as the SNR of the optimal linear observer for detecting a
small signal in an SKE-BKE setting. As shown above, the
SNR for detection using the data is the same as the SNR
for detection using the image. Because the latter is strongly
related to lesion detection tasks in clinical PET, we believe
that the proposed method is clinically relevant. In addition,
following Tomitani [1], we show that this SNR is a good
approximation of the SNR of the central pixel in the post-

smoothed reconstruction, which is relevant for PET image
quantification.
Good agreement is obtained between the observed and pre-
dicted variance ratios (tables 1 and 2). The results show that
for a 20 cm disk, a 70 ps FWHM TOF event is worth about
12.5 non-TOF events, and that the effective sensitivity is in-
versely proportional to the TOF-resolution. The results also
confirm that when events with different timing resolution
occur, the effective sensitivity is higher if each event can be
labeled with its own TOF kernel. From these results, one can
deduce that when the mixed 70 and 400 ps are not labeled,
the system is equivalent to a system with Gaussian TOF ker-
nel of 168 ps. If each event can be associated with its own
TOF kernel, then the system is equivalent to a regular TOF
system with 119 ps FWHM. The randoms simulation exper-
iment confirms that the gain obtained with TOF increases
with increasing randoms fractions, because the non-TOF re-
construction is corrupted by the randoms that end up outside
the object, whereas the TOF reconstruction is not.
Tomitani’s analysis was done for reconstruction with FBP,
whereas in these experiments MLEM was used. FBP is ap-
proximately an unweighted least squares estimator. MLEM
is well approximated with a weighted least squares estimator,
and because of symmetry, all weights are identical here.
When comparing non-TOF to TOF events, the analysis holds
for the center of a uniform cylinder. However, when com-
paring different TOF events, the analysis also holds for the
center of a uniform region within an arbitrary object, pro-
vided that the diameter of that region is large compared to
the widest TOF kernel involved.
The proposed method only considers individual events, as-
suming that the two systems are identical except for a change
to the event type. In real situations, changes to the detectors
would not only change the type of events, but probably also
the system sensitivity, the energy resolution etc, which should
also be considered when predicting the effective sensitivity.

6 Conclusion

The proposed method assigns a relative SNR2 to TOF events
of different types. Its predicted pixel variance ratios in the
reconstructed images agreed well with those observed in the
simulation.
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Abstract Recently, a wide interest on organ-dedicated PET systems
has been shown. Some of those systems present geometries that pro-
duce an incomplete sampling of the tomographic data due to limited
angular coverage and/or truncation, which lead to artifacts on the
reconstructed image. Moreover, they are often designed as stand-
alone systems, which implies the absence of anatomical information
to estimate the attenuation factors. In this work, we propose a joint
reconstruction algorithm for estimating the activity and the attenuation
factors on a limited angle PET system with time-of-flight capabili-
ties. This algorithm is based on MLACF and uses literature linear
attenuation coefficients in a known tissue-class region to obtain an
absolute quantification. We evaluate the algorithm through simple 2D
simulations for different TOF resolutions and angular coverage. The
results show that with good TOF resolution quantitative PET imaging
can be achieved even with aggressive angular limitation.

1 Introduction

In recent years, organ-dedicated PET (positron emission to-
mography) systems have been proposed as an alternative to
the whole-body scanner. These systems are focused on being
less expensive, requiring less space and/or providing easier
patient access, having higher resolution and/or better sensitiv-
ity [1]. They are typically stand-alone systems, which means
the absence of supplementary CT or MR systems that could
be used to provide the attenuation image. Many such systems
use a geometry that can lead to limited angular coverage and,
therefore, the acquisition of incomplete tomographic data.
Because the reconstruction from these data does not have a
unique solution, the reconstructed images usually suffer from
artifacts. It has been shown that in PET, the availability of
TOF (time-of-flight) information reduces these limited angle
artefacts [2, 3].
When data are provided with TOF information, joint recon-
struction algorithms can be used to estimate the attenuation
sinogram from the emission data up to a global constant
[4] for all the LORs where activity is present, so long as
the spread of the tracer is wider than the TOF resolution.
This constant can be determined if prior knowledge about
attenuation (or activity) values is available [5–8].
In this work we consider the problem of jointly reconstruct-
ing the activity image and the attenuation sinogram from
TOF-PET data suffering from limited angular coverage or
truncation. We propose an approach based on the MLACF
algorithm of [9]. For limited angle data, it is not guaranteed
that all sinogram pixels are affected by the same constant,
but below we show that in many cases this will be the case.

To determine the value of the constant, the attenuation im-
age is reconstructed from the estimated attenuation coeffi-
cients. The problem is only studied in 2D. As shown below,
the results indicate that for PET with high TOF resolution,
quantitative image reconstruction can be achieved even for
systems providing very limited angular coverage and severe
truncation.
The work presented here has also been submitted to IEEE
TRPMS [10]

2 Materials and Methods

2.1 System design

In order to examine the effect of limited angular coverage
in TOF-PET image reconstruction, we use a 2D simulation
of a partial arc of a circular PET. We consider limited angle
effects similar to those seen by a pair of flat panels of size
W , separated by distance D, by setting to zero the sensitivity
value of all the LORs that are not seen by both flat panels
(LOR 1 and 3 in figure 1).

2.2 Joint reconstruction

In order to exploit the TOF information in the joint estimation
of activity and attenuation process, Maximum Likelihood
estimation of the activity and the Attenuation Correction
Factors (MLACF) [9] is applied.
In TOF PET, the expected count yit for a certain line of
response (LOR) i and TOF-bin t can be written as:

yit = ai pit + rit with pit = ∑
j

ci jtλ j (1)

where pit is the unattenuated TOF projection of the activity
image λi for LOR i in TOF-bin t, ai is the total linear attenu-
ation coefficient along the LOR i, ci jt is the sensitivity of the
measurement bin (i, t) for activity in voxel j in the absence
of the attenuation and rit is an additive contribution made by
randoms and/or scatter.
Then the MLACF algorithm [9] is given by:

λ (n+1)
j =

λ (n)
j

∑i ci ja
(m+1)
i

∑
it

ci jta
(m+1)
i

yit

∑k cikta
(m+1)
i λ (n)

k + rit

,

(2)
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a(m+1)
i = a(m)

i ∑
t

p(n)it

p(n)i

yit

a(m)
i p(n)it + rit

. (3)

where n and m denote the iteration numbers for the activity
and the attenuation correction factors (ACFs), respectively,
and p(n)i = ∑t p(n)it . Also for other TOF-dependent variables,
we will drop the TOF-index to denote summation over the
TOF-bins.
TOF data determine the attenuation sinogram up to a constant,
which correspond to a multiplicative factor in the activity
image. To obtain it, we propose to reconstruct an image from
the attenuation sinogram and use prior information in image
space (e.g. known tissue attenuation in a certain region) to
obtain the constant. To reconstruct the attenuation sinogram
we use the MLTR algorithm [11]:

µ(n+1)
j = µ(n)

j +
∑i li j

yi−ri
yi

(yi− yi)

∑i li j ∑k lik(yi− ri)(1− yiri
y2

i
)

(4)

where µ j is the reconstructed attenuation value in voxel j,
yi = bi exp(−∑i li jµ j)+ ri, li j is the intersection length of
LOR i and pixel j. Equation 4 uses the measured activity
yi = ∑t yit as transmission scan and the unattenuated forward
projection of the reconstructed activity bi = ∑ jt ci jtλ j as the
blank scan.
In order to determine the constant, agreement of some re-
constructed attenuation values with the known attenuation
coefficient of soft tissues at 511 keV was imposed [7, 12]. A
region composed mostly of soft tissue was identified in the
image and the mean attenuation coefficient in that region was
computed. The region was determined by thresholding the
central region of the image, keeping the values greater than
the median over the region. Given the ratio of the correct
tissue attenuation value to the extracted mean attenuation
value (β ), the following expression was used to estimate γ ,
the factor by which the activity image (and therefore the
blank scan) had to be scaled.

∑
i

ci jγλ je−µβL '∑
i

ci jλ je−µL −→ γ ' (eµL)β−1 (5)

The blank scan was then rescaled with the factor γ , the
attenuation image with β and a new MLTR-iteration was
computed. This sequence of MLTR reconstruction and re-
scaling was repeated until 0.99 < γ < 1.01, which typically
happens after a few iterations. Note that the relation between
the attenuation image and the transmission sinogram is non-
linear, which is why MLTR iterations are required to correctly
propagate the effect of rescaling the activity with γ into the
attenuation image.

3 Simulation experiments

In this section, the performance of a circular PET system
for scanning a heart phantom is studied for different system

parameters, including: full or limited angular coverage, sino-
gram truncation to a width W of 50 cm, a TOF resolution
of 250 ps or 60 ps FWHM and presence or absence of a
scatter contribution. The noise was modelled using 200 noise
realizations with a moderate noise level of 8.5 ·105 counts in
the activity sinogram. The 2D simulated randoms are scaled
to obtain randoms to primary ratio of 50%.
The images were reconstructed with 20 iterations of the re-
scaled MLACF algorithm outlined above, and post-smoothed
with a 2D Gaussian with FWHM of 4 mm.
We analyze two types of systems. We will consider a limited
angle system that we call "open configuration" (described in
figure 1 left) and a "closed configuration" that is obtained by
accepting all LORs seen by the panels if they were rotating
continuously.
In order to challenge the reconstruction, four (three horizontal
and one vertical) small Defrise phantoms were added to the
heart phantom (see figure 1). These phantoms have been
added with, from top to bottom, distances of 16, 10, 10 and
30 mm between the rods.
In the right part of figure 1 we compare the activity recon-
structions for both re-scaled MLACF and MLEM with per-
fect attenuation map for the 250 ps in the case of limited
angle for open and closed configuration
Figure 1 show that the performance of the re-scaled MLACF
algorithm is close to the MLEM with perfect attenuation map
as the difference between their values is low compared to the
background activity.
For a scatter simulation study (figure ??), a scatter sinogram
was generated. It was produced by convolving the trues
sinogram with a 3D Gaussian with a FWHM of 120 mm
in radial direction, 0.43 radians in angular direction and 94
mm in TOF direction. After smoothing, the scatter sinogram
was multiplied with a scatter to trues ratio of 70%. In the
final sinogram, the ratio of scatters to prompts was 0.38. No
scatter correction was applied to the reconstructed images.
The two narrowest horizontal Defrise phantoms are poorly
reconstructed in the open configuration, but this is solved
if the TOF resolution is improved to 60 ps (9 mm). As ex-
pected, the vertical Defrise phantoms are in any case well
reconstructed. The absolute differences between the recon-
structions and ground truth images (also post-smoothed with
a 4 mm gaussian) are small.

4 Discussion

In this work, joint reconstructions of the activity and atten-
uation were done using a re-scaled MLACF approach. The
scale factor can be determined by imposing a-priori known
attenuation values to regions in the attenuation image [12].
When the scale factor is obtained, the activity image can
be re-scaled accordingly, no new activity reconstruction is
required. For these 2D simulations, a good value of the scale
factor could be obtained, despite the presence of limited angle
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Figure 1: Left up and down: Description of the system and estimated attenuation sinograms for the closed and open configuration. Up
right: Activity reconstructed images from perfect attenuation MLEM, re-scaled MLACF, and the difference image for closed and open
configuration and 250 ps, respectively.Bottom right: Activity profiles along the line shown in the picture above. Even for the closed
systems, the arms are outside the FOV and therefore not seen in all parallel projections.
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Figure 2: Results from 200 noise realisations for W = 50 cm without scatter contribution, (from top to bottom): closed configuration
with 250 ps, open configuration with 250 ps, closed configuration with 60 ps and open configuration with 60 ps. In (a) and (from left
to right): mean of the 200 noise realizations for the activity reconstruction, difference of this mean image with the ground truth, mean
attenuation reconstruction, difference of this mean image with the ground truth, first noise realization of the activity, standard deviation
for the 200 noise realizations of the activity, first noise realization of the attenuation and standard deviation of the attenuation. In (b) the
line profiles of the activity image along a row through the apex of the heart (shown in (a) in purple) of the ground truth (black), the mean
of 200 noise realizations (green) and the noiseless reconstructed image (red) for (from left to right) 250 ps closed configuration, 250 ps
open configuration, 60 ps closed configuration and 60 ps open configuration.
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artefacts.
In general, the images are worse for the open system, be-
cause of the increased amounts of missing data. For the
closed system, the truncation is very limited, only part of
the arms extend beyond the field of view and nearly artefact-
free reconstructions are obtained. For the open system, the
images are reconstructed from limited angle data. The hor-
izontal Defrise phantoms, and in particular the two narrow
ones, are poorly reconstructed when the TOF resolution is
250 ps, because the system has no projection data that "have
seen" that there is a cold region between the hot rods. The
vertical Defrise phantom is reconstructed accurately, because
the two rods appear well separated in the acquired vertical
projections. When the TOF resolution is improved to 60
ps, it provides a spatial resolution of 9 mm along the LORs.
This enables the system to detect the cold region between
the rods and to obtain accurate reconstruction of the Defrise
phantoms.
Strong limited angle artifacts appeared in the attenuation and
activity images near the edges of the phantom. MLACF is
less performant if the activity is distributed along the LOR
over a distance which is small compared to the TOF reso-
lution. This is the case near the edges of the object. They
produce an overestimation of the attenuation and activity
estimates, which will adversely affect scatter estimates com-
puted from the images, which, in turn, will propagate into
the scatter corrected image. These effects will degrade image
quality mostly near the edges of the object, but it can affect
the central part to some extent. In addition, for the open
system, the central part of the attenuation map is vertically
blurred as a result of the missing data. Therefore, to ensure
artefact-free and quantitative reconstruction of the activity
near the center of the field of view, additional constraining of
the attenuation image may be necessary, e.g. by imposing a
maximum value to attenuation coefficients.
The analysis of the scatter estimation and correction problem
is left for future research, but as a first exploration, the effect
of a scatter estimation error on the performance of the re-
scaled MLACF algorithm was investigated. For that purpose,
re-scaled MLACF reconstructions without scatter correction
were computed from scatter-contaminated sinograms. The
reconstructed images are not exact, but they have a reason-
ably good visual quality. Based on these results, an iterative
procedure alternating the estimation of the joint activity to-
gether with attenuation estimation and scatter estimation may
work, even when initialized with a zero scatter estimate. We
will evaluate this for fully 3D TOF-PET.

5 Conclusion

In this work, we investigated with simple 2D noise-free and
noisy simulations the feasibility of obtaining attenuation cor-
rected images from stand-alone limited angle TOF-PET sys-
tems. For the joint estimation of the activity and attenuation

images, we proposed a re-scaled MLACF algorithm. We con-
sider the results promising, warranting further investigation
with more sophisticated fully 3D simulations and real PET
measurements.
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Abstract We describe the initial results of our HYPR4D kernelized 

reconstruction method (i.e. PSF-HYPR4D-K-TOFOSEM) on dynamic 

4D TOF PET data. The proposed HYPR4D kernel method was 

implemented for the GE SIGNA PET/MR system capable of high TOF 

resolution PET acquisition and compared to all the available TOF 

reconstructions with PSF resolution modeling on the system, namely 

PSF-TOFOSEM with and without standard post filter and PSF-

TOFBSREM with various beta values. Results from experimental 

contrast phantom and human subjects injected with various PET tracers 

showed that more robust and accurate image features can be obtained 

from the proposed method compared to other regularization methods. For 

example, the preservation of contrast for the PSF-HYPR4D-K-

TOFOSEM was observed to be better and less dependent on the contrast 

and size of the target structures as compared to PSF-TOFBSREM and 

PSF-TOFOSEM with filter. At the same contrast level, PSF-HYPR4D-

K-TOFOSEM achieved better 4D noise suppression than other methods. 

1 Introduction 

 

Inspired by kernel methods in machine learning, kernelized 

reconstruction has shown promising results in PET in terms 

of noise suppression while preserving contrast [1][2]. In 

conventional kernel methods, high signal-to-noise ratio 

feature vectors which guide the de-noising process are 

typically pre-defined from either anatomical MRI or 

temporal sum of PET data. As a result, feature vectors 

contain very little or no temporal information of PET tracers 

and thus are not able to provide sufficient temporal noise 

reduction nor properly ‘track’ and preserve the temporal 

pattern of PET tracers. Moreover, the pre-defined feature 

vectors can introduce bias to PET images whenever there 

are mismatches in features between feature vectors and 

target PET images [2].  

 

Recently, a spatiotemporal kernel method has been 

proposed to achieve high temporal resolution (HTR) by 

incorporating a single temporal kernel extracted from PET 

sinogram data [3]. More recently, we have proposed an 

intrinsic data-driven/prior-free 4D kernel method based on 

the 4D modified HighlY constrained backPRojection 

(HYPR4D), utilizing a truly 4D feature vector which 

applies voxel-specific temporal kernel generated directly 

within the reconstruction and demonstrated better 

preservation of spatiotemporal patterns while achieving 4D 

noise reduction as compared to the HTR kernel method as 

well as other standard noise reduction methods on 

conventional non-TOF PET data [4]. 

 

In this work, we implemented our HYPR4D kernel method 

(i.e. PSF-HYPR4D-K-TOFOSEM) using the PET toolbox 

for the GE SIGNA PET/MR system capable of high TOF 

resolution PET acquisition and compared its performance 

in terms of contrast recovery and noise suppression as well 

as time-activity curves in relatively small structures to that 

obtained from all the available TOF reconstructions with 

point-spread-function (PSF) resolution modeling on the 

system, namely PSF-TOFOSEM with and witout standard 

(3.5mm FWHM transaxial and 1-4-1 axial) post filter and 

PSF-TOFBSREM (Q.Clear) with various beta values using 

data acquired from contrast phantom and human subjects. 

2 Materials and Methods 

 

PSF-HYPR4D-K-TOFOSEM 

The HYPR4D kernel matrix consists of spatiotemporally 

variant convolutional basis functions, and the feature vector 

is computed as the sum of de-noised subset estimates which 

can be generated directly within the reconstruction at every 

time point. As a result, a truly 4D and purely data-driven 

feature vector can be obtained. The proposed PSF-

HYPR4D-K-TOFOSEM is given by: 

(1) 

                          (2) 

            (3) 

               (4) 

where α4D
m,s is the 4D kernel coefficient at sth subset of mth 

iteration, KH4D
m is the HYPR4D kernel matrix which is 

decomposed into the self-normalized spatiotemporal 

weights extracted from the 4D feature vector (C4D
m) for the 

preservation of 4D high frequency features (hm) and the 

spatiotemporally invariant 4D Gaussian convolution (F4D). 

The sparsity of the kernel matrix only depends on the width 

of the 4D Gaussian since the matrix which contains hm is 

diagonal. Ps;t is the system matrix for the tth TOF bin within 

the sth subset; the projection based resolution modeling with 

spatially variant PSF and time spread function used for TOF 

reconstruction are embeded here along with normalization 

and attenuation corrections. y4D
s;t is the measured dynamic 

4D TOF sinogram data, b4D
s;t is the estimate of background 

contamination such as randoms and scattered coincidences 

at tth TOF bin within the sth subset, and λ4D
m,s is the 4D (de-

noised) PET image estimate at sth subset of mth iteration. 
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One iteration of PSF-TOFOSEM was used to initialize the 

4D feature vector (i.e. sum of subset updates within the first 

iteration of PSF-TOFOSEM) in the kernel matrix. The one 

PSF-TOFOSEM iteration images are also used as the input 

initial 4D estimate for Eq. (1). After the 1st HYPR4D 

iteration, the feature vector is updated using the de-noised 

subset images from the previous iteration as shown in Eq. 

(4) and thus provides a highly constrained noise increment 

per update and allows the 4D high frequency features to be 

updated in a cleaner fashion as compared to conventional 

methods. 

 

In short, the proposed method makes use of inconsistent 

noise patterns across subset data as well as the low noise 

property of the early updates of reconstruction to achieve 

noise constraint/reduction. The progressive update of the 

4D feature vector ensures the extracted 4D high frequency 

features are adaptive to the measured PET data. As a result, 

better preservation of spatiotemporal patterns can be 

attained by the proposed method as compared to other 

methods while achieving 4D noise reduction. Additional 

benefits of the proposed method include reduction of zero 

trapping and limit cycle behaviour typically observed from 

OSEM reconstructions. 

 

Experimental Setups and Reconstructions 

A 16 cm diameter cylindrical contrast phantom with a 10 

mm diameter sphere was filled with a 4:1 sphere-to-

background ratio and injected with a total activity of 1.5 

mCi of [18F]FDG. The phantom was scanned on the GE 

SIGNA PET/MR within the HNU coil for 15 minutes. The 

list-mode data were unlisted/framed according to the 

temporal count distribution (ranging from 5 million to 140 

million counts) formed by our dynamic framing protocol for 
11C human subject scans (i.e. 60s x 4, 120s x 3, 300s x 8, 

600s x 1).  

 

After unlisting, the dynamic 4D TOF sinogram data were 

reconstructed using PSF-TOFOSEM with and without the 

standard 3.5 mm FWHM transaxial and 1-4-1 axial filter, 

PSF-TOFBSREM with 8 different beta values ranging from 

50 to 400 with an increment of 50, and PSF-HYPR4D-K-

TOFOSEM with a 4D kernel size of 13 x 13 x 7 x 13 doxels 

which corresponds to 5.6 mm FWHM in the spatial domain 

and 4 frames FWHM in the temporal domain. The 4D 

kernel size used in PSF-HYPR4D-K-TOFOSEM was 

selected to achieve sufficient 4D noise reduction without 

making the kernel matrix too excessively non-sparse; i.e. 

the computation speed for the 4D kernel operations with this 

kernel size is 4 times faster than that of TOF projection 

operations and is thus making the HYPR4D kernel method 

practical in realistic scanning situations. 

 

All reconstruction methods were run up to 10 iterations with 

28 subsets except PSF-TOFBSREM. For each beta value 

used in PSF-TOFBSREM, 2 iterations of OSEM, 3 

iterations of BSREM, and 8 iterations of PSF-TOFBSREM 

were used according to the GE protocol for PSF-

TOFBSREM. All corrections such as normalization, 

scatter, randoms, and CT based attenuation correction of the 

phantom were applied for all reconstruction methods. The 

reconstructed image matrix size is 256 x 256 x 89 with 

voxel size of 1.39 x 1.39 x 2.78 mm3 for all methods. The 

average Contrast Recovery Coefficient (CRC) +/- STD 

across all dynamic frames for the 10 mm sphere was 

computed and plotted as a function of average voxel noise 

from the uniform background regions for each 

reconstruction method. 

 

Human [11C]RAC and [11C]DTBZ scans with 10 mCi bolus 

injection were acquired for 60 minutes on GE SIGNA 

PET/MR. List-mode data were unlisted using the same 

dynamic framing protocol for the phantom mentioned 

above. The dynamic 4D TOF sinogram data were 

reconstructed using 4 iterations of PSF-TOFOSEM with 

and without the standard 3.5 mm FWHM transaxial and 1-

4-1 axial post filter, PSF-TOFBSREM with various beta 

values, and 10 iterations of PSF-HYPR4D-K-TOFOSEM 

with the same 4D kernel size as mentioned above.  

 

The number of iterations selected for each method was 

based on the CRC vs noise trade-off (see Figure 1) except 

for PSF-TOFBSREM which was run according to the GE 

protocol as mentioned above. All corrections were applied, 

and ZTE based MRAC was used for the attenuation 

correction of human subjects. In addition, a 5 mCi human 

[18F]FDG scan was also reconstructed using the same 

framing protocol for the evaluation of a more clinically 

relevant task. Time-Activity-Curve (TAC), image profile, 

and visual image quality comparisons were performed for 

the human scans. 

3 Results and Discussion 

 

The CRC vs voxel noise comparison for the 10 mm 

diameter sphere is shown in Figure 1. PSF-TOFOSEM had 

the highest noise increment per iteration compared to all 

other methods while the filtered PSF-TOFOSEM achieved 

noise reduction at the cost of lower CRC as expected. PSF-

TOFBSREM achieved better CRC vs noise trajectory than 

PSF-TOFOSEM with and without filter. PSF-HYPR4D-K-

TOFOSEM had the lowest noise increment per iteration and  

achieved even better CRC vs noise trade-off than PSF-

TOFBSREM. 

 

It can be observed that PSF-TOFBSREM with different 

beta values introduced different level of additional partial 

volume effect (PVE) and thus created different CRC values. 

PSF-TOFBSREM with high beta value (e.g. beta=400) was 

observed to have similar contrast vs noise trade-off but with 
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higher variation in CRC (i.e. bigger error bar) as compared 

to the early iteration estimate of PSF-HYPR4D-K-

TOFOSEM. Additionally, 10 iterations of PSF-HYPR4D-

K-TOFOSEM had similar noise level as compared to 1 

iteration of PSF-TOFOSEM (which was used as the input 

image estimate for PSF-HYPR4D-K-TOFOSEM) but with 

CRC similar to that of the later iterations of PSF-

TOFOSEM. 

 

 
Figure 1. Contrast recovery coefficient vs voxel noise for the 10 mm 

sphere obtained from various reconstruction methods. Each point 

represents an OSEM iteration except for PSF-TOFBSREM where 

each point represents a beta value ranging from 50 to 400. The beta 

value increases from right to left with an increment of 50 (see labels 

for guidance) while the number of OSEM iteration increases from 

left to right. 

 

 
Figure 2. (a) Regional-level TAC and (b) voxel-level TAC 

comparisons in the caudate of the human [11C]RAC scan 

reconstructed using various methods. 

 

 
Figure 3. (Top) A transaxial slice which contains very high contrast 

(much greater than 4:1 contrast ratio) in the carotid arteries with a 

size of 5-7 mm in diameter (see red arrows) and (Bottom) line profile 

across the carotid arteries in a low count frame of human [11C]DTBZ 

scan reconstructed using various methods. The location of the line 

profile can be seen from the PSF-TOFOSEM panel. Note that a 

substantially higher peak signal likely induced by noise can be 

observed from the right carotid artery than that from the left carotid 

in the PSF-TOFOSEM image though the ground truth is not known 

here. 

The TAC comparison for a relatively small region in the 

caudate and for a single voxel within the region from the 

human [11C]RAC scan is depicted in Figure 2. At both 

regional and voxel levels, PSF-HYPR4D-K-TOFOSEM 
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showed the lowest temporal noise as compared to other 

methods. A fairly consistent difference in regional activity 

concentration or magnitude across time can be observed in 

Figure 2a between PSF-TOFOSEM and filtered PSF-

TOFOSEM due to the consistent PVE introduced by the 

post filter given that the contrast in this region does not 

vanish over time for this tracer during the scan.  

 

However, this difference was not observed at the voxel level 

as shown in Figure 2b due to the relatively high voxel noise 

in the PSF-TOFOSEM images. On the other hand, both 

regional and voxel TACs obtained from PSF-HYPR4D-K-

TOFOSEM showed similar difference in magnitude as 

compared to filtered PSF-TOFOSEM. TACs obtained from 

PSF-TOFBSREM with beta=150 was observed to have a 

slightly higher magnitude than those from filtered PSF-

TOFOSEM but with similar noise-induced temporal 

patterns. Higher beta values resulted in lower magnitudes in 

TACs as expected (not shown). 

 

A low count frame which contains very high contrast signal 

in the carotid arteries (5-7 mm in diameter) from the human 

[11C]DTBZ scan and a high count frame which contains 

moderate contrast in the colliculi (~4 mm in diameter) from 

the human [18F]FDG scan are shown in Figures 3 and 4, 

respectively. As expected, post filter drastically reduced the 

contrast in small structures especially when structures 

contain very high contrast as shown in the line profile 

comparison in Figure 3 (Bottom); i.e. surrounding voxels 

contain much lower activity concentration values. The 

additional PVE introduced by the post filter became 

stronger with increasing contrast and/or decreasing size in 

the target structures and vice versa.  

 

Interestingly, the reverse trend was observed for PSF-

TOFBSREM. For a given beta value (see beta=150 for 

example) PSF-TOFBSREM was observed to preserve the 

contrast in small structure with very high contrast 

substantially better than PSF-TOFOSEM with post filter as 

shown in Figure 3 (Bottom) though the noise reduction was 

not sufficient for low count data with beta=150. However, 

for moderate contrast level as depicted in Figures 2 and 4, 

the preservation of contrast for PSF-TOFBSREM with 

beta=150 became similar to that of PSF-TOFOSEM with 

post filter. On the other hand, the preservation of contrast 

for PSF-HYPR4D-K-TOFOSEM showed less dependency 

on the contrast level and size of the target structures as 

compared to other regularization/noise reduction methods 

(i.e. more robust).   

4 Conclusion 

The preservation of contrast for the PSF-HYPR4D-K-

TOFOSEM was observed to be better and less dependent on 

the contrast and size of the target structure as compared to 

other regularization methods such as PSF-TOFBSREM and 

PSF-TOFOSEM with filter. At the same contrast level, 

PSF-HYPR4D-K-TOFOSEM also achieved better 4D noise 

suppression than other methods. These promising initial 

results on TOF PET data demonstrated that the proposed 

HYPR4D kernel method is likely suitable for all imaging 

tasks without requiring any prior information. Future work 

includes comparisons of other PET derived parameters as 

well as validations with more subjects.  

 
Figure 4. A coronal slice which contains colliculi with a size of ~4 mm 

in diameter (see red arrows) in a high count frame of human 

[18F]FDG (50 minutes post injection with 10 minutes frame duration) 

reconstructed using various methods. PSF-TOFBSREM with higher 

beta values were omitted since higher beta values only reduce 

contrast further without providing any benefit for high count data. 
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Abstract
Time-of-flight (TOF) PET scanners offer the potential of previously
unachievable image quality in clinical PET imaging. The large sizes
of TOF PET data are challenge for fully 3D image reconstructions. In
our previous research, we proposed using multi-view TOF histoim-
ages to efficiently store and process TOF PET data. In this work, we
propose DeepDIRECT, a deep neural network (DNN) for TOF PET
image reconstruction using convolutional long short-term memory
(ConvLSTM). DeepDIRECT uniquely processes multi-view TOF hiso-
timages in image space, which allows computationally efficient DNN
reconstruction directly from 5D TOF histoimages to 3D reconstructed
images. We train a ConvLSTM network using simulated datasets gen-
erated from a generic TOF PET with 250 ps timing resolution. We
show improved image quality (in terms of PSNR and NRMSE) in
DeepDIRECT reconstructed image with multi-view histoimage com-
pared to single-view histoimage. We further show that DeepDIRECT
reconstruction has substantially reduced noise performance at a similar
contrast compared to TOF FBP and TOF OSEM reconstructions.

1 Introduction

Time-of-flight (TOF) PET scanners offer the potential of pre-
viously unachievable image quality in clinical PET imaging.
TOF PET data are often stored in binned data known as TOF
sinograms (with reduced number of TOF bins) or in list-mode
data. There is no localized relation between TOF sinograms
and images, let alone list-mode data. On the other hand, TOF
histomage proposed in our previous work exhibit localized
properties leading to very efficient implementation of clas-
sical and deep learning reconstruction approaches involving
convolutional operations.
Over the past few years, deep learning based image recon-
struction using neural network has emerged as a fundamen-
tally new approach with the advantages that it can dramati-
cally reduce reconstruction time and incorporate more com-
plicated priors given sufficient training datasets. Methods
for deep image reconstruction generally fall into four cate-
gories: 1) image domain methods, e.g., post-processing re-
constructions, using a convolutional neural network (CNN);
2) data-domain methods, e.g., pre-processing sinograms; 3)
hybrid learning methods to incorporate priors; and 4) direct,
end-to-end deep reconstruction methods, which produce re-
constructed image directly from measured data. Among these
methods, direct reconstruction methods, such as AUTOMAP
[1] and deepPET [2], offer great potential for high-quality re-
constructed images; however, they are very computationally
expensive and difficult to train, and thus only been applied to
small 2D slices. Deep learning image reconstruction using

fully connected feed forward neural network can be infea-
sible or impractical for clinical PET data. CNN and RNN
utilizing localized properties and relations between adjacent
views of TOF histoimages are promising building blocks for
the practically efficient deep image reconstruction for fully
3D PET data.
Thanks to our previously proposed TOF histoimage format,
the TOF histoimage has the same coordinates at the recon-
structed image, and the histoimage is essentially related with
reconstructed image with a convolution operation with a
localized TOF kernel with size depending on the timing reso-
lution [3–5]. TOF histoimage can be deposited/partitioned
from TOF sinograms or list-mode data with no information
loss, or with little information loss using additional view
grouping to significantly reduce data size. TOF histoimage
is naturally suitable and ideal for deep image reconstruction
for TOF PET. Recently, TOF backprojected images as the
starting point for deep learning using a U-net demonstrated
promising results [6], where the backprojected images is
just a single-view histoimage. In this work, we propose the
convolutional Long short-term memory (LSTM) based deep
neural network (DNN) reconstruction using multi-view TOF
hisotimages, which allows for computationally efficient di-
rect DNN reconstruction directly from TOF histoimages to
reconstructed image.

2 Materials and Methods

2.1 TOF Histimage Formation

For time-of-flight PET, each coincidence line-of-response
(LOR) can be determined by two detectors located at~a1 and
~a2. The TOF data generally can be formulated as

p(~a1,~a2, t) =
∫ +∞

−∞
dl h(t− l) f

(
~a1 +~a2

2
+ ln̂

)
, (1)

where f ∈ C0
(
R3
)

is a 3-D tracer distribution, h is a TOF
profile, n̂ = ~a2−~a1

‖~a2−~a1‖ is the direction, t is the TOF parameter
in a unit of length. The TOF profile is usually modeled as a
Gaussian distribution with standard deviation σ ,

h(t) =
1√

2πσ
exp
(
− t2

2σ2

)
. (2)

TOF data are often stored in binned format known as TOF
sinograms or in list-mode format. For TOF histoimages, we
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Figure 1: Comparison of TOF data binned into histo-projections
(a) and TOF histoimages (b). Histo-projections can be described as
an extension of non-TOF projections (radial bins) along the TOF
direction (time bins); the sampling intervals relate to the projection
geometry and timing resolution, while histoimage sampling is
given by the voxel size and geometry of the reconstructed image.
(This figure is adapted from Fig. 1 in reference [4].)

first deposit the TOF list-mode data (or sinogram) into image
space using the most likely annihilation (MLA) position

~xMLA =
~a1 +~a2

2
+ t

~a2−~a1

‖~a2−~a1‖
. (3)

The confidence weighted (CW) histogramming method can
also be used with slightly increased computation. A TOF
histo-image has the same coordinate as the reconstructed
image with the geometry determined by the desired voxel
size, as illustrated in figure 1 (right). The expectation of
deposited TOF histo-image can be modeled as a convolution
[5]

q(~x, n̂) =
∫ ∞

−∞
dl h(l) f (~x− ln̂). (4)

We can rewrite (4) as a 3D convolution in vector form

q(~x, n̂) = f (~x)∗∗∗κ(~x, n̂), (5)

where the 3D TOF kernel is given by

κ(~x, n̂) = h(~x · n̂)δ (~x · û)δ (~x · v̂). (6)

The timing resolution is in the range of 200 ps to 400 ps for
modern PET scanners using (digital) silicon photomultiplier.
Thanks to the good timing resolution, the angular sampling
requirements can be substantially reduced for TOF histoim-
ages [4, 7]. We can dramatically reduce TOF histoimage
storage using view grouping by grouping events into a set of
transverse views and axial tilts, satisfying the TOF angular
sampling requirements.

2.2 Neural Network Architecture

We propose the convolutional long short-term memory (Conv-
LSTM) for computationally efficient direct deep leaning im-
age reconstruction, as conceptualy illustrated in figure 2.
TOF multi-view histoimage has 5 dimensions, 3 spatial di-
mension (nx,ny,nz) and 2 angular dimensions

(
nφ ,nθ

)
[5].

Rather than just using convolutional neural network (CNN),
we propose to use CNN in spatial (image) domain, and recur-
rent neural network (RNN) to process the sequence along the
angular dimensions.
A recurrent neural network (RNN) has a memory/state
that stores the information pertaining to what it has ob-
served/processed, and it processes sequential data through
a number of iterations. RNN is a generalization of Markov
chain and has much stronger processing capacities. The RNN,
however, suffers from the problem of vanishing gradients.
The long short-term memory (LSTM) is one of the most
popular RNNs developed by Hochreiter and Schmidhuber
[8] that adds a way to carry information across sequences,
which prevents older signals from vanishing gradually. Fig-
ure 3 shows detailed implementation using basic LSTM cells,
where t denotes the view index (with a slight abuse of nota-
tion). In the figure, it is the input gate, ft is the forget gate,
ct−1 is the previous cell output, ot is the output gate, and ht

is the final state. LSTM processing updates for view t given
input xt , and the previous state ht−1, and previous cell output
ct−1.
Our approach of combining LSTM and CNN is based on the
idea of ConvLSTM proposed by Shi et al. [9]. Since then,
ConvLSTM has been applied to other different applications,
e.g., processing stacked back projections for sparse-view CT
reconstruction [10]. The ConvLSTM structure differs from
a simple CNN plus LSTM structures, where the convolu-
tion structure (CNN) is applied as the first few layers and
sequentially LSTM layer is applied in the later layers. In the
proposed ConvLSTM, the convolution structures are applied
to the spatial domain, and the convolutional operations are
nested into an LSTM structure to learn across multi-view
hitoimages along the angular domain, as shown in figure 4.
We also stack a few ConvLSTM blocks/layers to form a deep
structure across spatial domain to fully learn the information.
Currently, we used 4 ConvLSTM layers, and each layer has 4
filters (n f = 4) with kernel size of 3×3. The ‘same’ padding
option is used in convolution since the array size in spatial
domain of histoimage is kept the same during learning. Batch
normalization layers were included between ConvLSTM lay-
ers. The 4 channels of output from the last ConvLSTM can
be further processed using a simple 1×1 convolutional layer
or a simple U-net for refined reconstruction.

2.3 Simulated Datasets and Network Training

As preliminary work, we perform numerical simulations with
a generic 2D TOF PET system to generate training datasets.
Based on the positive results, our studies will be expanded to
involve fully 3D TOF dataset from clinically PET scanners.
The generic system has timing resolution 250 ps and crystal
size of 4 mm. We used random phantoms with warm back-
ground of 35 cm disk discretized in 144×144 with 4 mm
pixel size. Each image contains 24 mixed ellipses (2/3 in
probability) and rectangles (1/3 in probability) with random
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Figure 2: Diagram for deep image reconstruction from multi-
view TOF histoimages using ConvLSTM. The PET list-mode data
stream is deposited into multi-view TOF histoimages as input to
the ConvLSTM followed by a U-net for refined processing.
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Figure 3: Detailed implementation of the ConvLSTM using basic
LSTM cells with convolutional operations. σ is sigmoid function,
and tanh is hyperbolic tangent.
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Figure 4: Deep ConvLSTM architecture.

locations and orientations, with semi-axes 10, 13, 17, 22,
28, 37 and 50 mm with both hot and cold concentrations.
As shown in figure 5, we generated simulated histo-images
from the random phantoms in an array size of 144×144×48
with 4 mm pixel and 48 views, which was group from TOF
data with 288 azimuthal angles uniformly spaced over 180°.
There were 384 datasets: 320 for training, 32 for validation,
32 for testing. Both noise-free and noisy TOF histoimages
were used for training.
The ConvLSTM neural network was implemented using
TensorFlow and Keras, and was trained using a Nvidia Ti-
tan RTX GPU. The mean squared error (MSE) loss function
was used.1 The Adam optimizer, a gradient-based optimiza-
tion based on adaptive estimates of lower-order moments,

1We plan to investigate Kullback–Leibler divergence loss function for
reconstruction with nonnegative values to incorporate Poisson statistics.
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(a) Phantoms and single-view histoimage
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(b) Multi-view hisotimage

Figure 5: A sample training dataset contains a random phantom
and the corresponding histoimages. A random phantom generated
from ellipses and rectangles and the corresponding single-view
histoimage (summing of all views) are shown in (a). Four views
from a multi-view TOF histoimage along 4 directions along angles
at 0°, 45°, 90° and 135° are shown in (b).

was used for training. We ran up to 200 epochs with mini
batch size of 8 to ensure the convergence of training with
very small training and validation error (below 1×10−3).

3 Results

We separately trained the ConvLSTM network with TOF
histoimages with different number of views. The 48-view
TOF histoimages in the training dataset were rebinned into
TOF histoimages with 1, 6, 12 and 24 views by averaging
adjacent views. Figure 6 shows sample difference images
between ConvLSTM reconstructed images and true images.
We also computed peak signal-to-noise ratio (PSNR) and
root-mean-square error (RMSE) from the 32 reserved test
datasets, and show the results in table 1.
We also trained the ConvLSTM using 384 noisy datasets. A
TOF histimage with 12 views with 1M counts was used for
each dataset. We then tested the trained ConvLSTM network
using a NEMA phantom, never seen by the network. We
generated 60 noise realizations of TOF histoimages from the
NEMA phantom with the same 1M counts in each realiza-
tion. The DeepDIRECT reconstructed images were com-
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Figure 6: Difference images between DeepDIRECT reconstructed
images and true images for different number of views.

View PSNR RMSE

1 29.77 0.0326
6 32.20 0.0250
12 35.31 0.0172
24 32.25 0.0245

Table 1: The evaluation of PSNR and RMSE of ConvLSTM re-
constructed images with different number of views of histoimages.

pared with TOF FBP and TOF OSEM reconstructed images.
There were 10 iterations and 12 subsets in TOF OSEM recon-
structions. Figure 7 shows a comparison of the sample, mean
and variance of TOF FBP, TOF OSEM and DeepDIRECT
reconstructions. The horizontal profiles of the sample and
variance images through the centers of the 22 mm hot rod and
the 37 mm cold rod are shown in figure 8 for a quantitative
comparison.

4 Discussion and Conclusion

Generally, a TOF histoimage with more views has more infor-
mation than one with fewer views. The angular information
can become plateaued, or the angular information gain be-
comes diminished as the number of views increases. The
view sampling requirements were investigated elsewhere for
DIRECT reconstruction approaches [4]. The view smapling
requirements can be different for different reconstruction
methods and can be much less stringent for TOF data with
improved timing resolution. We showed worse performance
for histimages with 24 views compared to that with 12 views
in table 1, which may due to the network capacity for his-
toimages with a large number of views. And we expect to
improve the performance for histoimages with 24 views by
tuning hyperparameters and training with more datasets.

 Sample
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Figure 7: Comparison of TOF FBP, OSEM and DeepDIRECT
reconstructed images of the NEMA phantom. The mean and vari-
ance reconstructions were calculated from 60 noise realizations.
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Figure 8: Comparison of the horizontal sample and variance
profiles for the DeepDIRECT and OSEM reconstructed images of
the NEMA phantom.

In summary, we developed DeepDIRECT deep image recon-
struction using multi-view TOF hisotimages, which allows
for computationally efficient direct DNN reconstruction di-
rectly from TOF histoimages to reconstructed images. The
ConvLSTM network will be expanded with 3D convolutional
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operations to directly reconstruct 3D images from fully 3D
multi-view TOF histoimages for clinical PET studies.
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Abstract PET-enabled dual-energy CT combines a low-energy x-ray
CT image with a high-energy γ-ray CT (GCT) image reconstructed
from time-of-flight PET emission data to enable dual-energy CT multi-
material decomposition on a time-of-flight PET/CT scanner. The
maximum-likelihood attenuation and activity (MLAA) algorithm has
been used for GCT reconstruction but suffers from noise. Kernel
MLAA exploits x-ray CT image prior and the kernel framework to
guide GCT reconstruction and has demonstrated substantial improve-
ments on noise suppression. However, similar to other kernel meth-
ods for image reconstruction, the existing kernel MLAA uses image
intensity-based feature vector for constructing the kernel representa-
tion, which is not always robust and may lead to suboptimal recon-
struction with artifacts. In this paper, we propose a modified kernel
method by using autoencoder convolutional neural network (CNN) to
extract intrinsic feature set from the x-ray CT image prior for kernel
construction. Computer simulation results show that the autoencoder
kernel MLAA method can achieve a significant image quality improve-
ment for GCT and multi-material decomposition as compared to the
existing algorithms.

1 Introduction

Combined use of PET and dual-energy (DE) CT provides a
multi-parametric characterization of disease states in cancer
and other diseases [1]. Nonetheless, the integration of DECT
with existing PET/CT would not be trivial, either requiring
costly CT hardware upgrade or significantly increasing CT ra-
diation dose. We have proposed a new dual-energy CT imag-
ing method that is enabled using a standard time-of-flight
(TOF) PET/CT scan without change of scanner hardware or
adding additional radiation dose or scan time [2]. Instead of
using two different x-ray energies as commonly used by con-
ventional DECT, the PET-enabled dual-energy CT method
combines a radiotracer annihilation-generated high-energy
“γ-ray CT (GCT)" at 511 keV with the already-available low-
energy x-ray CT (usually ≤ 140 keV) to produce a pair of
dual-energy CT images on PET/CT for multi-material de-
composition.
The reconstruction of GCT image from the PET emission
scan can be achieved using the maximum likelihood attenu-
ation and activity (MLAA) method [3]. However, standard
MLAA reconstruction is commonly noisy because the count-
ing statistics of PET emission data is limited. To suppress
noise, a kernel MLAA approach [2] has been developed by
use of x-ray CT as image prior and has demonstrated sub-
stantial improvements over standard MLAA.
In the kernel methods for image reconstruction (e.g. [4, 5, 6]),
a set of features need to be defined for constructing the kernel
representation of the image to be estimated. Existing kernel
methods have mainly used image pixel intensities of a small
patch (e.g., for MR-guided PET reconstruction [5, 6]) or

temporal sequence (e.g., for dynamic PET reconstruction
[4]). However, the intensity-based features do not always
provide satisfactory results. As shown later in this paper,
the reconstructed GCT image by such a method suffers from
artifacts.
In this paper, we propose to use a convolutional neural net-
work (CNN) feature set that is adaptively learned on the prior
image to build the kernel representation for MLAA recon-
struction. Deep learning with CNN has a strong ability to
derive a latent feature representation in different tasks [7].
While it is often impractical to collect a large amount of
training data for supervised deep learning, here we utilize the
concept of autoencoder [8], an unsupervised representation
learning technique, for intrinsic feature extraction from the
x-ray CT image prior for the kernel construction. We expect
the autoencoder-derived feature set to provide a more robust
kernel representation for the GCT image reconstruction than
the conventional intensity-based features. 1

2 PET-enabled Dual-Energy CT

2.1 PET-enabled GCT by MLAA

The measurement yyy in TOF PET can be well modeled as in-
dependent Poisson random variables using the log-likelihood
function,

L(yyy|λλλ ,µµµ) =
Nd

∑
i=1

Nt

∑
m=1

yi,m logyi,m(λλλ ,µµµ)− yi,m(λλλ ,µµµ), (1)

where i denotes the index of PET detector pair and m denotes
the mth TOF bin. The expectation of the PET projection data,
yyym, is related to the radiotracer activity image λλλ and GCT
attenuation image µµµ at 511 keV via

yyym(λλλ ,µµµ) = diag{nnnm(µµµ)}GGGmλλλ + rrrm, (2)

where GGGm is the PET detection probability matrix and rrrm

accounts for the expectation of random and scattered events.
nnnm(µµµ) is the normalization factor with the ith element being
ni,m(µµµ) = ci,m · exp(−[AAAµµµ]i), where ci,m represents the mul-
tiplicative factor excluding the attenuation correction factor
and AAA is the system matrix for transmission imaging.
The MLAA method [3] jointly estimates the attenuation im-
age µµµ and the activity image λλλ from the projection data yyy by

1An extended version of this work is available on arXiv (2010.07484)
and has been submitted to the Philosophical Transactions of the Royal
Society A for a theme issue on synergistic reconstruction.
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maximizing the Poisson log-likelihood,

λ̂λλ , µ̂µµ = argmax
λλλ≥0,µµµ≥0

L(yyy|λλλ ,µµµ). (3)

Previous use of MLAA was mainly for PET attenuation cor-
rection [3, 9]. In our PET-enabled dual-energy CT method
[2], the estimated high-energy GCT image µµµ is combined
with the low-energy x-ray CT image xxx to form dual-energy
imaging for multi-material decomposition.

2.2 Kernel MLAA

The GCT image estimate by standard MLAA is commonly
noisy due to the limited counting statistics of PET emission
data. To suppress noise, the kernel MLAA approach [2]
incorporates the x-ray CT image as a priori information to
guide the GCT reconstruction in the MLAA. It describes the
intensity of the GCT µ j in pixel j as a linear representation
in a transformed feature space [2]. Thus, we can obtain he
equivalent matrix-vector form for the GCT image µµµ = KKKααα ,
where KKK is the kernel matrix built upon the x-ray CT image
prior and ααα denotes the corresponding kernel coefficient
image. Substituting µµµ = KKKααα into the MLAA formulation
in Eq. (3) gives the following kernel MLAA optimization
formulation,

λ̂λλ , α̂αα = argmax
λλλ≥0,ααα≥0

L
(
yyy|λλλ ,KKKααα)

)
. (4)

Once α̂αα is obtained, the final estimate of the GCT image is
obtained by µ̂µµ = KKKα̂αα.

2.3 Material Decomposition for PET-enabled DECT

For each image pixel j, the GCT attenuation value µ j and
x-ray CT attenuation value x j jointly form a pair of dual-
energy measurements uuu j , [x j,µ j]

T , which can be modeled
by a set of material bases, such as air (A), soft tissue (S) or
equivalently water, and bone (B):

uuu j =UUUρρρ j, UUU ,
(

xA xS xB

µA µS µB

)
,ρρρ j ,




ρ j,A

ρ j,S

ρ j,B


 ,

(5)
subject to ∑k ρ j,k = 1. The coefficients ρ j,k with k = A,S,B
are the fraction of each basis material in pixel j. The material
basis matrix UUU consists of the linear attenuation coefficients
of each basis material measured at the low and high energies.
Finally, ρρρ j is estimated using the least-square optimization.

3 Modified Kernel Method Using Autoencoder

3.1 Building Kernels Using CNN Features

In the kernel MLAA and other kernel methods for image re-
construction (e.g., [4, 5, 6]), the formation of the pixel-wise
feature vector is a key factor to build the kernel matrix KKK and

Figure 1: U-Net model used for CNN feature extraction.

directly impacts the reconstruction result. Conventionally,
the feature vector fff j at pixel j is commonly defined by the
intensity values of a pixel or its surrounding small patch in
the prior image. However, such an approach may lead to
suboptimal feature representation because of the simplifica-
tion of feature attributes and the small size of receptive field.
Artifacts were observed in the reconstructed GCT images of
the kernel MLAA [2].
To alleviate the issues, we propose to exploit deep learning
with CNN [7] to extract intrinsic feature set. A radial Gaus-
sian kernel between pixel j and l, i.e. the ( j, l)th element of
KKK, will then have the form,

κ( fff CNN
j , fff CNN

l ) = exp
(
−
∥∥ fff CNN

j − fff CNN
l

∥∥2
/2σ2

)
, (6)

where σ is a hyper-parameter which can be set to 1 if the
feature set is normalized [4]. fff CNN

j denotes the the feature
set of pixel j obtained by

fff CNN
j = [F `(θθθ ; III)] j , (7)

where F ` denotes the output of the `th layer of a CNN model
φ(θθθ ; III) with θθθ the model parameters and III the input.
We specifically consider a Unet model shown in Fig. 1, which
is widely used for image segmentation and reconstruction
(e.g. [10]). For general consideration, ` can be set to the
penultimate layer which generally provides pixel-wise multi-
channel feature sets. Similar to the previous kernel method
[4], KKK is built to be sparse using k-nearest neighbors.

3.2 Unsupervised Learning Using Autoencoder

A natural choice for CNN feature extraction is by use of
supervised deep learning which has shown a strong potential
for feature extraction in image recognition tasks. One ma-
jor challenge with supervised deep learning is it commonly
requires a large number of training data sets, which are not
always available or the data acquisition is costly.
An autoencoder is an unsupervised technique for deep rep-
resentation learning using neural networks [8]. The corre-
sponding optimization problem for applying autoencoder for
our kernel method is defined by,

θ̂θθ = argmin
θθθ
||xxx−φ(θθθ ;xxx)||2, (8)

where both the input and output are set to the x-ray CT
image xxx. The optimization essentially seeks an adaptive
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(a) (b) (c)

Figure 2: The digital phantom used in the PET/CT computer
simulation. (a) PET activity image in Bq/cc; (b) PET attenuation
image at 511 keV in cm−1; (c) x-ray CT image at 80 keV.

(a) (b)

Figure 3: Maps of the feature set used by (a) standard kernel and
(b) proposed Unet kernel.

CNN representation of the image xxx, without requiring a large
training database. Once the model is trained, the penultimate
layer is used to extract { fff CNN

j }.

4 Simulation Results

We simulated a GE Discovery 690 PET/CT scanner in 2D
with a TOF resolution of 550 ps. The true PET activity image
and 511 keV attenuation image are shown in Fig. 2(a) and
(b), respectively. The images were first forward projected
to generate noise-free sinogram of 11 TOF bins. A 40%
uniform background was included to simulate random and
scattered events. Poisson noise was generated using 5 million
expected events. The x-ray CT image at a low-energy 80 keV
was also simulated and is shown in Fig. 2(c).
Three types of reconstruction were compared, including (1)
standard MLAA [3], (2) existing kernel MLAA [2] with fff j
being the pixel intensities of x-ray CT image xxx in a 3×3
image patch centered at pixel j, and (3) Unet kernel MLAA:
proposed autoencoder kernel method with fff j extracted using
the Unet. The 511 keV attenuation map converted from the
x-ray CT image was used as the initial estimate of µµµ . All
different kernel matrices were built using 50 nearest neigh-
bors based on the distance of feature vectors in a way similar
to [4]. We used the Adam optimization algorithm to train
the Unet of the x-ray CT image with 300 epochs. The learn-
ing rate of Unet was chosen to be 10−2 for approximately
optimal performance. All MLAA reconstructions were run
for 3000 iterations for the purpose of studying convergence,
with one inner iteration for the λλλ -estimation step and five
inner iterations for the µµµ-estimation step. Different MLAA

(a) (b)

(c) (d)

Figure 4: GCT images by different reconstruction algorithms. (a)
Ground truth, (b) standard MLAA, (c) standard kernel MLAA, and
(d) Unet kernel MLAA.

Figure 5: Plot of image MSE as a function of iteration number for
different MLAA reconstruction algorithms.

methods were first compared for the image quality of GCT
using the mean squared error (MSE).
To demonstrate the differences between the Unet kernel and
standard kernel, Fig. 3(a) and (b) visualize the maps of
the feature set used by the two types of kernels extracted
from the x-ray CT image. Each subimage corresponds to one
element of the feature vector fff j or fff CNN

j at all different pixels.
The standard intensity-based kernel was formed from 3×3
neighboring patches, which explains why the feature maps
look similar. The Unet-derived CNN features was learned
using an autoencoder as the output of the penultimate layer
(12 channels).
Figure. 4 shows examples of the reconstructed GCT image
µµµ by different MLAA algorithms with a specific iteration
number 400. While the standard MLAA reconstruction was
noisy, the two kernel MLAA reconstructions significantly
improved the result according to both visual quality and
image MSE. The Unet kernel MLAA demonstrated least
artifacts with good visual quality and achieved the lowest
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Figure 6: True and estimated fractional images of two basis ma-
terials using different reconstruction algorithms: soft tissue (left
column) and bone (right column). (a-b) Ground truth,(c-d) stan-
dard MLAA, (e-f) standard kernel MLAA, (g-h) proposed Unet
kernel MLAA.

MSE among different algorithms. Figure. 5 further shows
image MSE as a function of iteration number for different
algorithms. The Unet kernel MLAA outperformed the other
two algorithms, though its convergence rate was slightly
slower.
Figure. 6 shows the fractional basis images of soft tissue and
bone from multi-material decomposition of the PET-enabled
dual-energy CT images. The results were obtained from the
MLAA reconstructions with the best GCT image MSE for
each method. Compared to the standard MLAA reconstruc-
tion, the standard kernel MLAA significantly suppressed the
noise but still with artifacts. The Unet kernel MLAA recon-
struction led to better visual quality and decreased image
MSE. Fig. 7 further shows image MSE as a function of itera-
tion number for each basis fractional image. The two kernel
MLAAs were significantly superior to the standard MLAA,
with the best MSE performance from the Unet kernel MLAA.

Figure 7: Plot of image MSE as a function of iteration number for
bone fractional image.

5 Conclusion

We have developed an autoencoder kernel MLAA recon-
struction method for PET-enabled dual-energy CT. The
autoencoder-derived feature set can provide an improved
kernel representation to incorporate x-ray CT as the image
prior for GCT image reconstruction from PET emission data.
Computer simulation results have demonstrated the improve-
ment of the autoencoder kernel MLAA over existing MLAA
algorithms for GCT image quality and dual-energy CT mate-
rial decomposition. The proposed method can suppress noise
efficiently and reduce image artifacts.
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Abstract PET image reconstruction methods are based on some pos-
sibly misspecified modelling assumptions: the model relating the
unknown image to the acquired data and the regularization assump-
tions may not fully match the reality. Here we provide a new point
of view on the uncertainty in PET image reconstruction. We use a
statistical framework that allows to: 1) state explicitely that the mod-
elling assumptions are misspecified, 2) define explicitely how much
we trust our prior beliefs, 3) given any image reconstruction estimator
(e.g. penalized ML), update our prior beliefs upon acquiring some
data into a posterior image distribution which remains true in the case
of estimator misspecification, and 4) provide uncertainty information
about some modelling assumptions in addition to the uncertainty due
to the data noise. Initial results are shown and explained on simulated
and real data for some common PET image reconstruction methods.
Future work will focus on including the uncertainty of more diverse
modelling assumptions.

1 Introduction

Image estimators in optimization-based (iterative) PET im-
age reconstruction are based on some modelling assump-
tions (e.g. Poisson data noise, system matrix, image smooth-
ness/roughness) and on some empirical adjustments (e.g. pa-
rameter values for spatial/temporal regularization). The loss
(objective) function to be minimized (maximized) may have
a statistical interpretation (e.g. data likelihood distribution,
image posterior distribution) and it may contain some em-
pirical customizable components. The assumptions implied
by this loss function approximate reality only to some extent
and so the entire model that generates the data is necessarily
somewhat misspecified. Usually, efforts are put into showing
that the approximation is good enough. An other approach is
possible: we can use statistical tools, [1], [2], to assert openly
that we are not entirely sure about the postulated model (e.g.
assumption that smooth areas in a PET image and in an as-
sociated MRI image match). The aim is to provide a more
honest statistical interpretation of the reconstruction process
and to take into account the uncertainty of some modelling
assumptions in addition to the uncertainty due to the noise in
the acquired data.

2 Theory

First, a vocabulary reminder: a "parametric" statistical model
assumes that the noisy measured data (e.g. PET sinogram)
follow a specific probability distribution type (e.g. Poisson,
Gaussian), whose parameters are unknown (e.g. PET image
of radiotracer emission concentration); a "non parametric"

statistical model assumes that the measured data follow a
probability distribution which is itself a realization drawn
from some chosen probability distributions capable of gener-
ating probability distributions (e.g. a Dirichlet process), so
the unknown of interest (PET image) is no longer an explicit
parameter.
Optimization-based (iterative) PET image reconstruction
methods produce a single image estimate by minimizing
a loss function based on a model relating the unknown image
to the acquired data. This model often has a parametric statis-
tical interpretation: the data are assumed to follow a Poisson
distribution (likelihood) whose unknown parameter is the
PET image. If the model is parametric Bayesian, an image
prior distribution can be specified, including some assump-
tions about image smoothness/roughness, similarities with an
associated MRI image, etc, to produce a posterior maximum
image estimate. Any such image estimator (e.g. regular-
ized/penalized ML, MAP) hence relies on the assumption
that the underlying model is true.
From now on, we are no longer concerned with the specific
contents of the loss function nor with the truthfulness of the
assumptions it is based on: it suffices that minimizing the
loss function produces practically useful image estimates
from an acquired PET dataset. Let’s consider a list-mode
dataset composed of K counts, where each detected count
rk and its attributes (e.g. LOR, TOF) are a realization from
an independent and identical (unknown) data distribution
F . Let λ be the (unknown) PET image, and λ̂ an image
estimate obtained using any chosen loss function defined
independently of any considerations about F . Then, the
image estimate can be defined as [1], [2]:

λ̂ = argminλ ∑
k

loss(λ ,rk)F(rk). (1)

We then build a nonparametric Bayesian model focused on
the data distribution F , independently of the loss function.
We express our prior assumptions about the data distribution
and how much we believe in them using a generic customiz-
able data prior, a Dirichlet process (DP), whose realizations
represent probability distributions. Then, upon acquiring
(observing) some data, we update these prior beliefs by pro-
ducing a posterior probability distribution of the data Fpost ,
which turns out to be an other Dirichlet process, see [1] for
more details.
We use this nonparametric posterior data distribution Fpost
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to produce a nonparametric posterior probability distribu-
tion of the image λ , which is meaningful with respect to
the nonparametric Bayesian model for the data distribution
and with respect to the chosen image estimator. It has a dif-
ferent meaning from posterior image distributions obtained
using parametric Bayesian models (e.g. [3], [4]). If fpost

is a realization drawn from Fpost , a realization λ ? from the
nonparametric posterior image distribution is obtained as
follows:

λ ∗ = argminλ ∑
k

loss(λ ,rk) fpost(rk). (2)

Hence, a sample of B realizations from the nonparametric
image posterior is obtained using the algorithm 1: we repeat-
edly produce posterior data distribution realizations fpost and
include them into image estimator runs.

Algorithm 1 General algorithm for list-mode datasets

1: for b = 1 to B do
2: draw fpostb

3: λ ∗b = argminλ ∑k loss(λ ,rk) fpostb(rk)
4: end for

To actually apply this method, we have to choose a prior
on the data distribution F . For these preliminary tests,
we chose the simplest prior which does not carry any as-
sumptions/information (except the iid assumption about list-
mode counts), a Dirichlet process with a null parameter,
DP(α = 0). Hence, the posterior data distribution Fpost

becomes a uniform Dirichlet distribution of K unitary pa-
rameters, Dir(1,1, . . . ,1), [1]. Drawing a realization fpost

from this posterior data distribution may be interpreted as
assigning a random probability to each detected count. The
algorithm for drawing a sample of B realizations from the
nonparametric image posterior from a list-mode dataset is
given in Algorithm 2.
Under some assumptions about the loss function (see the
Appendix), that are satisfied in most existing PET image
reconstruction estimators, an equivalent algorithm exists for
histogram datasets. If the list-mode data are histogrammed
into some kind of bins (sinogram, time-of-flight), resulting
in a histogram dataset y, it can be shown (see the Appendix)
that drawing realizations from the posterior data distribution
is equivalent to drawing randomized histograms, where the
number of counts for each bin i is drawn from Gamma(yi,1).
The algorithm for drawing a sample of B realizations from
the nonparametric image posterior from a histogram dataset
is given in Algorithm 3.

Algorithm 2 List-mode dataset
1: for b = 1 to B do
2: draw (w1,w2, . . . ,wK) from Dir(1,1, . . . ,1)
3: λ ∗b = argminλ ∑k loss(λ ,rk)wk
4: end for

Algorithm 3 Histogram dataset

1: for b = 1 to B do
2: draw posterior histogram realization y∗, where y∗ib ∼

Gamma(yi,1)
3: λb∗= argminλ ∑i loss(λ ,y∗ib)
4: end for

A sample from the nonparametric posterior image distribu-
tion remains true even if the image estimator contains as-
sumptions that do not match reality perfectly. In this initial
setting, the nonparametric data prior does not include any
modelling assumptions, so the nonparametric image posterior
contains mostly the uncertainty due to the data noise propa-
gation through the image estimator. However, the presented
algorithms are directly expandable to include data priors
that contain some of our beliefs about the data distribution,
see [1], and so include the uncertainty of some modelling
assumptions. There are many modelling assumptions that
could be taken into account, e.g. Poisson expectation param-
eterization, system matrix, relevance of an MRI image for
the spatial regularization of the PET image, and many ways
to define them, so it is material for further work.

There is a direct link between the described nonparametric
image posterior and the more classical parametric image pos-
terior. As shown in [1], if the loss function is based on a
parametric Bayesian model, as in MAP PET image recon-
struction methods, the nonparametric posterior (using the
noninformative Dirichlet data prior chosen here) becomes
approximately equivalent to the parametric posterior. The al-
gorithms shown here for nonparametric image posteriors are
identical to the algorithms shown in [3] for parametric image
posteriors. In other words, the same posterior sample can
have two different interpretations, according to the context
(well-specified vs misspecified model in the loss function),
and according to which Bayesian model the word "posterior"
refers to. If some prior assumptions are included into the
nonparametric data prior, the nonparametric image posterior
will deviate from the parametric image posterior and express
richer uncertainty information.

3 Methods and Results

All the image estimators (iterative image reconstruction meth-
ods) were implemented using the CASToR (Customizable
and Advanced Software for Tomographic Reconstruction)
platform in C++, [5], [6]. The methods were fully quantita-
tive, contained image PSF resolution modelling and correc-
tions (random/scattered coincidences, attenuation, normaliza-
tion).
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Figure 1: Nonparametric posterior mean, variance and interval
size for several image estimators. Colorscale maximum differs
across estimators.

3.1 Simulated data

Realistic simulations were performed using a 2D slice of
the high-resolution heterogeneous 18F-FDG PET/MRI brain
phantom [7]. The nonparametric posterior image distribution
was obtained for several common image estimators: MLEM,
pML-RD (ML penalized/regularized with a Markov Ran-
dom Field with relative differences potential function, [8]),
pML-RD-MRI (same including an additional MRI image
using the asymmetric Bowsher method [9]). Here we refer to
these image estimators as regularized ML instead of MAP, to
stress the fact that the loss function can include any (possibly
empirical) components and does not have to comply with a
parametric Bayesian model. Regularization parameters were
chosen to minimize the RMSE compared to the true phantom
and each image reconstruction estimator method was run for
1000 iterations, which resulted in relatively early stopping for
MLEM and a reasonable convergence for pML. The number
of nonparametric posterior image realizations was 1000.
Figure 1 shows some distribution characteristics (mean, vari-
ance, interval size). The mean of the nonparametric poste-
rior was visually indistinguishable from and quantitatively
close to the corresponding standard pML image estimate (not
shown). Hence, the nonparametric posterior mean and the
pML estimate had similar properties.
The voxel-wise nonparametric posterior variance has to be in-
terpreted with respect to the posterior mean. This variance is
higher for MLEM and decreases for estimators with stronger
spatial regularization. For pML-RD, it presents some local
smoothness and is relatively higher near strong edges, e.g.

Figure 2: Nonparametric posterior covariance images for a gray
matter voxel (left) for several image estimators.

the edge between the gray matter and the skull. For pML-
RD-MRI, it presents clearer edges, because of the spatially
regularizing influence of the MRI image. This nonparametric
posterior uncertainty conveys mostly the propagation of data
noise through the image estimator for the given dataset.
Each voxel has a nonparametric posterior covariance image,
as illustrated in Figure 2. The absolute covariance values
decrease with stronger regularization. For pML-RD, the
covariance is lower in edges and higher in smoother areas in
the voxel neighbourhood, while for pML-RD-MRI it is high
in a larger neighbourhood that appears smooth in the MRI
image.
TODO intervals assessment

3.2 Real data

Data were obtained from a GE Signa PET/MR scanner for
the brain bed step of a whole body 18F-FDG oncological
exam, with an associated 3D T1 weighted fast spin echo MRI
acquisition after Gadolinium injection. A nonparametric
posterior image distribution was obtained for pML-RD-MRI,
using 28 subsets and 16 iterations, with empirically adjusted
regularization parameters (neighbourhood sphere radius =
6mm, RDγ = 3, β = 0.005, Bowsher percentage=30%).

Figure 3: Clinical reconstruction (OSEM) and the nonparametric
posterior mean and variance for pML-RD-MRI

Figure 4: Zoomed lesion area (left) and nonparametric posterior
covariance for several voxels in the lesion for pML-RD-MRI

Figure 3 shows a clinical reconstruction (OSEM with 28
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subsets and 8 iterations) and the nonparametric posterior
voxel-wise mean and variance. The posterior mean is visu-
ally indistinguishable from the corresponding pML image
estimate (not shown). The posterior variance is highest in the
lesion area and in some high-contrast areas in the gray matter.
The covariance of lesion voxels is higher in the nearest voxel
neighbourhood and shows also in some non adjacent lesion
voxels, see Figure 4.
There are no well-established standard validation methods
for these posterior distributions, but some characteristics can
be explored and validated using for instance notions that
link frequentist and Bayesian points of view. In a nutshell,
if the PET examination is repeated on the same patient in
the exact same conditions several times, producing several
datasets corresponding to the same PET image, we can check
whether the intervals and percentiles on the posterior distri-
bution obtained from a single dataset match the intervals and
percentiles on the frequentist (estimator) distribution over
multiple datasets. As the applied algorithm presented here
are identical to the ones in [3], but with a different inter-
pretation, the detailed description and satisfactory results
regarding intervals validation provided in [3] apply also to
the nonparametric posterior distributions presented here.

4 Discussion

The proposed point of view on uncertainty in PET image
reconstruction is new and there are no available methods for
direct comparison to our knowledge. There are no standard
validation methods for this kind of nonparametric posterior
distributions, but some characteristics can be explored and
validated as exposed in the results. The proposed algorithms
build on the already available iterative PET image reconstruc-
tion methods and do not impose any requirements on their
performance, e.g. regarding tuning of parameters, achieving
convergence, empirical modifications. The computation time
depends on the number of required posterior realizations but
the multiple runs of image estimators can be entirely paral-
lelized. The interplay between parametric and nonparametric
Bayesian models and between estimation/optimization and
full probability distributions may appear confusing and re-
dundant, but this statistical framework may be viewed as a
versatile generalization of all these points of view. There are
many possibilities for the choice of the loss function and of
the nonparametric prior data distribution. It should be noted
that most usual assumptions in PET image reconstruction
can be included either in the loss function or in the data prior,
though the interpretation is different: if an assumption is
included in the loss function, it is considered as a more or
less misspecified though empirically useful approximation of
reality, and if a assumption is included in the nonparametric
data prior, we can explicitely state how much we believe in it.
The resulting nonparametric posterior distribution must be
interpreted accordingly. The data noise and its propagation

always show in the posterior uncertainty but depend on the
properties of the image estimator.

5 Conclusion

A different and generalized probabilistic point of view on
the uncertainty in PET image reconstruction is provided.
Modelling assumptions implied in iterative PET image re-
construction methods are viewed as an imperfect approxima-
tion of reality. Easy-to-implement algorithms are provided
for producing realizations from a type of posterior image
distributions that remains true if the image estimators are
misspecified. Such posterior distributions were produced and
explained for several usual images estimators on simulated
and on real data. The algorithms can be readily extended to
honestly state our prior beliefs about some modelling assump-
tions (e.g. match of smooth areas between PET and MRI)
and thus include some model uncertainty into the posterior
image distribution. This is material for further work.
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6 Appendix

Here, we show how the nonparametric posterior bootstrap
with the chosen data distribution prior can be applied on a his-
togram dataset (Algorithm 3) starting from the application on
a list-mode dataset (Algorithm 2). Drawing a realization from
the K-dimensional Dirichlet distribution (w1,w2, . . . ,wK) in
Algorithm 2 can be implemented using K Gamma distribu-
tions, with their shape parameters equal to the parameters of
the Dirichlet distribution, as:

pk ∼ Gamma(1,1) (3)

wk = pk/∑
m

pm (4)

(5)

To apply the proposed method to histogram PET datasets,
let’s replace wk with pk in Algorithm 2, as this does not
change the produced realizations λ ∗:

λ ∗ = argminλ ∑
k

loss(λ ,rk)pk. (6)

Let’s histogram the counts into some sort of bins (detection
LOR, TOF) i, where the number of counts yi = ∑k∈Si 1k,
where Si is the set of counts that belong to the bin i. Let’s
assume that the loss function is linear with respect to the
detected counts, i.e. ∑k∈Si loss(λ ,rk) = loss(λ ,yi), and with
respect to the multiplicative weigths, i.e. loss(λ ,rk)pk =
loss(λ ,rk pk), which is the case for all the loss functions that
rely on the Poisson assumptions for PET data [10]. Then, the
Equation 6 becomes:

λ ∗ = argminλ ∑
i

loss(λ , ∑
k∈Si

rk pk) (7)

λ ∗ = argminλ ∑
i

loss(λ ,y∗i ) (8)

Hence, this is equivalent to applying an optimization-
based image estimator to a new histogram dataset y∗.
Given the choice for pk ∼Gamma(1,1), the number of
counts in each histogram bin y∗i can be drawn from
∑k∈SiGamma(1,1) =Gamma(yi,1), as in Algorithm 3.
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Image reconstruction from tissue scattered events for β+γ
coincidences in Compton-PET
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Abstract For long time non-pure beta emitters are avoided from PET
imaging due to extra dose and increase in background from Compton
scattering. But advent of high-resolution Compton camera system
opens up new domain of imaging. Various non-pure beta emitters
are formed as beam irradiation byproduct in therapy which can be
used in online beam range verification. In this case, the number of
usable counts for imaging is generally 1-3 order lesser than normal
PET scan. On the other hand, we know that in human PET scanner, 30-
60% can be tissue scattered coincidences in 3D case containing 80%
single scattered events. In this work, we have investigated feasibility
of imaging using only single scattered coincidences for non-pure beta
emitters in a Compton-PET system. The locus of tissue scatter point
can be reduced to in generally two points after using Compton cone
from both ends of 511 keV detections. Finally, annihilation point
is estimated using Compton cone of 1157 keV gamma and time-of-
flight information for the 511 keV. We believe independent assessment
of underlying activity from single scattered data sets will increase
confidence in image interpretation.

1 Introduction

For long time non-pure beta emitter radioisotopes (e.g.,
44mSc,94Tc,14O,68Ga,124I,10C) are not used in PET imaging.
This is because of extra dose and Compton scattering back-
ground that the quasi-simultaneously emitted extra gamma
ray produces. But with the development of excellent reso-
lution Compton camera systems this situation had changed.
New concept of imaging using triple coincidence data was
proposed [1]. In this new imaging, Compton cone drawn
using extra gamma interaction points was used to estimate
original annihilation point on the LOR, similar to TOF-PET
imaging [2]. Application of these type of radioisotopes is in
generally of two types. It is used as conventional radiophar-
maceutical, e.g., [44Sc]Sc-PSMA-617 [3] in prostate cancer
imaging. Besides, various non-pure beta emitters are formed
as beam irradiation byproduct in ion therapy [4]. Hence, it
is online or offline beam range monitoring agent. But in this
case, generally the emitted count is 1-3 orders magnitude
smaller than conventional PET scan [5]. On the other hand,
it is known that tissue scattering can contribute to 30-60% of
coincidences in human 3D-PET [6] in which 80% are single
scattered [7]. So, in this work, we have investigated the fea-
sibility of image reconstruction from those tissue scattered
events in Compton-PET system. Our aim is to produce a
physically meaningful image from the single scattered data
which is independent from unscattered data. We believe
having two independent image of same underlying activity
distribution will assists us in better diagnosis. In this context,
it is worth to mention that the motivation of WGI imaging

concept is indeed to use all types data independently [8].
We performed GATE [9] simulation with finite resolution
parameters for a Compton-PET system with silicon as scat-
terer ring and LaBr3:Ce as absorber ring. Geometrical ar-
rangement and parameters were chosen keeping in mind the
sensitivity and resolution. Line sources of 44Sc was used.
And a cylindrical water phantom of diameter 10 cm was
placed axially. At first, we had shown that the locus of tissue
scattering point of a single scattered coincident (single scatter
surface) is prolate spheroid (for scattering angle, θs < 900)
and spindle toroid (for θs > 900) where to acquire these single
scattered coincidences photo-peak and off-peak energy win-
dows positioned in accordance with detector resolution were
used. Data acquisition was performed using an appropriately
defined trigger logic. Compton cones from both end of 511
keV detection were projected on the single scatter surface to
obtain two 3D curves which cut each other in generally at
two points forming two possible broken LORs. Finally, anni-
hilation point was estimated by projecting Compton cone of
1157 keV and TOF information was used to choose between
the two. The image we obtained is physically meaningful and
proves the feasibility of single scattered imaging in non-pure
beta emitter cases.

2 Materials and Methods

At first, we have discussed the locus of single scattering point
in case of Compton-PET system. For proving the feasibility
a GATE simulation was performed. Trigger logic was devel-
oped for data extraction. Finally the image reconstruction
algorithm was proposed for single scatter imaging.

2.1 Locus of scattering point

We have drawn a typical Compton-PET set in figure (1).
From here on, we named the locus as single scatter surface
to avoid any confusion. Now, we assume a single scattered
coincident event where annihilation happened at point O and
tissue scattering at C. To find the locus of the scattering point
C, at first, we write down the equation of locus depending
only on scattering angle in tissue (θs),

−→
AC.
−→
CB =

∣∣∣−→AC
∣∣∣
∣∣∣−→CB
∣∣∣ cos θs

⇒ (−→r −−→rA) .(
−→rB −−→r ) = |−→r −−→rA | |−→rB −−→r | cos θs (1)
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where tissue scattering angle is calculated using this equation

θs = arccos
(

2− 511
E1 +E2

)

where E1 and E2 are energies deposited in scatterer and ab-
sorber by the tissue scattered photon and here we have as-
sumed a full energy deposition.

D

A

B

C

E

Z

Y

X

O

Figure 1: Compton-PET set up with a single scatter event get
detected at points A, B (scatterer ring detection points) and points
D, E (absorber ring detection points) where annihilation happended
at O and tissue scattering happended at point C; tissue scattering
angle is θs and scattering angles in scatterer ring are θa, θb; locus
of scattering point shown in blue curve and Compton cones from
both ends of 511 keV detection are shown in green colored cones.

Now applying Compton cone constraint from both side of
511 keV detection the tissue scattering point can be further
localised. The equations of the Compton cones are

(−→r −−→rA) . n̂A = |−→r −−→rA | cos θa (2)

and,
(−→r −−→rB) . n̂B = |−→r −−→rB | cos θb (3)

where θa and θb are scattering angles from scatterer ring and
n̂a and n̂b are unit vectors along line joining from absorption
to scattering point respectively.
It is known that eq. (1), which represents single scatter
surface (blue curve in figure 1), is a surface equation of
a prolate spheroid for θs < 900 and of spindle toroid for
θs > 900. For further constraining the locus of scattering
point, we have solved eq. (1) with eq. (2) and (3) which
means solution between single scatter surface and cones. We
found that the solution to be closed contour 3D curves on
the single scatter surface. And two curves from both end of
511 keV detection cut each other in generally at two points.
Further discussion about this is given in section 3.

2.2 GATE simulation

We performed a GATE [9] simulation of a Compton-PET
system. Silicon scatterer ring of thickness 2.5 cm and radius
20 cm was chosen. Radius was chosen larger since we are
working with human scanner. And LaBr3:Ce absorber of ring
radius 28 cm and thickness 3 cm was used. Axial width of
each ring was 28 cm. Energy resolutions of scatterer and
absorber were 2.5% and 5% @511 keV and time resolutions
were 1 ns and 200 ps respectively. Finally the spatical reso-
lution was chosen to be 2 mm and 5 mm respectively. For
image resolution study a 44Sc line source, situated at the
centre of the scanner, of activity 1 MBq was used. Activity
was chosen low to have a smaller number of random events.
A cylindrical water phantom of diameter 10 cm and height
28 cm was defined axially. The decision of working with a
human scale Compton-PET set up was due to the fact that
the scatter fraction in human PET scan is significant enough
to interest us in the proposed idea whereas in small animal
imaging scatter fraction is not so high.

2.3 Trigger logic

After generating the data from GATE simulation, we had
defined a trigger logic to select out usable valid triple gamma
single scattered events. A coincidence time window of 10
ns was used for data selection. At first, two different energy
windows, for 511 keV, the energy window was from 10-
255 keV and for 1157 keV gamma it is 255-818 keV were
used to select out scatterer detector interactions. If three hits
in the above specified energy windows (two for 511 keV
and one for 1157 keV) for the scatterer were obtained then
we collected all the events in absorber ring falling in that
coincidence time window and sorted out events with only
three hits in absorber ring. In next stage, correspondence
between individual scatter hit and absorber interactions were
made. At first, the absorber hit corresponding to 1157 keV
is identified depending on closeness of summed energy to
1157 keV. Then remaining two absorber hits were allocated
depending on closeness from scatter hits. Finally, single
scattered coincidences were acquired using photo-peak and
off-peak energy windows of 495-525 keV and 250-495 keV
respectively.

2.4 Image reconstruction

Image reconstruction was performed without applying any
typical algorithm (e.g., MLEM, OSEM [7]). Rather the
annihilation points were estimated independently for each
event. At first, we had calculated two possible scattering
points on the single scatter surface as explained in section
2.1. Then Compton cone of 1157 keV was projected on the
two separate broken LORs to obtain at most four possible
annihilation points (figure 2). One point among those was
selected depending on FOV constraint and TOF information.
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Figure 2: A single scattered event is detected at points A, B in
scatterer ring and at point D, E in absorber ring; the intersection
between single scatter surface, two Compton cones for 511 keV
lefts us with two possible scattering points K, J; the intersection
between Compton cone of 1157 keV and broken LORs gives us
four possible annihilation points; one among those are chosen
depending on FOV constraint and TOF information.

3 Results

As described in the section 2.1, using Compton cones from
both sides of 511 keV detection, the locus can be further
constrained. The cross section between single scatter surface
and the cone in these cases is a type of 3D curves (red and
green curve in figure 3) such that two such 3D curves cut
each other in generally at two points. It is worth to mention
here that the generation of two cross points is not due to finite
resolution of detectors and hence those can be quite a distant
apart (figure 3).

Figure 3: The solution between single scatter surface (yellow
envelope) and Compton cones from each end of 511 keV detection
is shown as green and red curve, in generally these two curves cut
each other at two points, it is to be noted that two point is not due
to finite resolution of detector.

We had performed the GATE simulation of Compton-PET

system with parameters described in section 2.2. Then root
output data was processed using the trigger logic described
in section 2.3. The trigger logic was implemented through
MATLAB scripts. Figure 4-6 shows the 2D energy histogram
plot between scatter energy deposition vs. absorber energy
deposition for 511 and 1157 keVs. For unscattered photons
we can find x+y=511 keV line where x and y are absorber and
scatter deposition respectively which shows that the proposed
trigger logic is able to collect 511 keV data (figure 4). The
line is discontinued at scatter energy 10 keV and 255 keV,
because of energy window on scatter deposition (see section
2.3). Besides the width of the x+y=511 line is decided by
photo-peak width chosen in trigger logic. On the other hand,
for 1157 keV detection similar x+y=1157 keV line can be
seen (figure 5). Here we have discontinuity on scatterer
energy at 255 keV and 818 keV due to energy window applied
in trigger logic. Point to be noted, here unlike 511 keV we
have count below the x+y=1157 line. This is because there is
no window applied on total energy like photo-peak energy
window for 511 keV. We have assumed a full deposition of
energy of 1157 keV gamma in scatterer and absorber. Finally,
for single scattered events, rather than having a line we have
area bounded by x+y=250 keV, x+y=495 keV, x=10 keV, and
x=255 keV (figure 6). First two bounds are due to off-peak
window and last two are applied in initial stage of trigger
logic.
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Figure 4: The count histogram color plot between scatterer and
absorber energy deposition for 511 keV unscattered photon detec-
tion.
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Figure 5: The count histogram color plot between scatterer and
absorber energy deposition for 1157 keV photon detection.
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Figure 6: The count histogram color plot between scatterer and
absorber energy deposition for 511 keV single scattered photon
detection.
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Figure 7: Single scattered image (cross sectional) of line source,
pixel size was chosen to be 8×8 mm2.
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Figure 8: Intensity line profile (horizontal) of the single scatter
image through (0,0) point, pixel size was chosen to be 8×8 mm2.

Finally, we had produced image from single scattered data
set (figure 7). For image resolution study, we had calculated
FWHM of intensity line profile (horizontal) of the image. The
histograms were shown in figure (8) with FWHM calculated
to be 35.864 mm. To sum up, we were able to produce
physically meaningful single scatter images. This proves the
feasibility of single scatter imaging for Compton-PET system
with triple gamma source.

4 Conclusion

We have proposed the idea of feasibility of imaging from
single scattered (inside tissue) data in triple gamma imaging.

Tissue scattered data in human PET scan can go up to 40-60%.
On the other hand, triple gamma imaging suffers from low
count specially in online ion range verification in ion therapy
and hence in that context the idea of imaging from scattered
data is relevant. Although a better resolution image than un-
scattered image can’t be expected from scattered data due to
inherent resolution effects, we believe that producing image
from two independent data sets – unscattered and single scat-
tered – will improve our diagnosis ability. We have shown
the feasibility of the proposed concept. Analysing GATE
simulation data, we are able to produce physically meaning-
ful images. The trigger logic used here is not claimed to be
perfect. Rather simplicity is invoked to make the task com-
putationally simple as this work is related to only feasibility.
We believe that the idea proposed can be beneficial in triple
gamma imaging based beam range monitoring and late point
imaging in case of Scandium DOTA-TOC imaging.
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Abstract A unique feature of medical imaging is that the object to be 

imaged has a compact support. In mathematics, the Fourier transform of 

a function that has a compact support is an entire function. In theory, an 

entire function can be uniquely determined by its values in a small region, 

using, for example, power series expansions. Power series expansions 

require evaluation of all orders of derivatives of a function, which is an 

impossible task if the function is discretely sampled. In this paper, we 

propose an alternative method to perform analytic continuation of an 

entire function, by using the Nyquist–Shannon sampling theorem. The 

proposed method involves solving a system of linear equations and does 

not require evaluation of derivatives of the function. Noiseless data 

computer simulations are presented. Analytic continuation turns out to 

be extremely ill-conditioned. 

 

1 Introduction 

 

It is known that for stable image reconstruciton using 

noisy data, measurements must be sufficiently acquired. 

There are many data sufficiency conditions that are 

proposed. For example, in cone-beam imaging, Tuy’s 

condition must be satisfied [1]. In PET (positron emission 

tomography), Orlov’s condition must be satisfied [2]. In 

MRI (magnetic resonance imaging), the k-space (i.e., the 

Fourier space) preferably should be fully sampled. 

As theoretical curiosity, one would wonder whether it 

is possible to reconstruct the image using incomplete data. 

This subjuct has been systematically discussed in Natterer’s 

book [3], where the incomplete data situations are classified 

in to 3 categories: limited angle problems, exterior 

problems, and truncated problems. For the limited angle 

problems and exterior problems, the inversion is so 

seriously ill-posed that it is hopeless to have any practical 

value. 

The goal of this paper is not to develop an algorithm 

that can be used immediately in practice. The motivation of 

this paper is purely theoretical. Assuming that we live in an 

ideal world without any noise around, we investigate 

whether it is possible to reconstruct an image using 

incomplete measurements. 

2 Methods 

 

2.1 Mathematical foundation 

A function has compact support if it is zero outside of a 

compact set that is closed and bounded. The Fourier 

transform of a compactly supported function is an entire 

function. An entire function is a complex-

valued function that is holomorphic at all finite points over 

the whole complex plane. A holomorphic function is 

complex differentiable at every point of its domain. Any 

holomorphic function is infinitely differentiable and equal, 

locally, to its own Taylor series. A holomorphic function 

whose domain is the whole complex plane is called an entire 

function [4]. 

The possibility of imaging with incomplete data is 

established as follows, using a one-dimensional (1D) 

example. The object f(x) is compactly supported, for 

example, defined on [-½, ½] and f(x) = 0 elsewhere. Let 

F() be the Fourier transform of f(x). Assume that f(x) is 

unknown, F() is partially known. Without loss of 

generality, F() is assumed to be known in a small region 

around the point  = 0. One can evaluate derivatives of F() 

at  all orders, and thus construct the Taylor series of F() at 

 = 0. Since F() is an entire function, this Taylor series 

converges to F() in the entire complex plane. In other 

words, F() becomes known in the entire complex plane 

through analytic continuation. 

This analytic continuation of F() is actually of no use 

in practice, because most real-world measurements are 

discrete. This fact inhibits the evaluation of derivatives of 

F(), and thus the Taylor series of F() cannot be obtained. 

 

2.2 Lagrange interpolation method 

Other than the Taylor series expansion, the Lagrange 

interpolation formula can be an alternative method to 

perform analytic continuation [5]. The essential idea of the 

Lagrange interpolation formula is to find the lowest order 

polynomial that passes through given points.  

We do not believe that the Fourier transform of a 

compactly supported function in medical imaging behaves 

like a polynomial. The energy of a compactly supported 

function f(x) is finite. Parseval’s Theorem tells us that the 

energy of its Fourier transform F() is the same and finite. 

As |𝜔| → ∞, we must have 𝐹(𝜔) → 0. Hence, F() cannot 

behave as a polynomial, because the magnitude of a 

polynomial tends to infinity as the magnitude of the variable 

tends to infinity.  

 

2.3 Nyquist-Shannon method 

If a spatial-domain function is band-limited, then this 

signal can be represented by its discrete samples, and the 

sampling interval is inversely proportional to the 
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bandwidth. If we switch the roles of these two domains, the 

spatial-domain function f(x) is spatially bounded and the 

corresponding Fourier-domain function F() can be 

represented by its discrete samples. The Fourier-domain 

sampling interval  is inversely proportional to the 

spatial-domain object size. According to the Nyquist-

Shannon Theorem, we can express the complex Fourier-

domain function F() by its own samples F(n) as 

𝐹(𝜔) = ∑ 𝐹(𝑛∆𝜔) ∙ 𝑠𝑖𝑛𝑐 (
𝜔 − 𝑛∆𝜔

∆𝜔
)

∞

𝑛=−∞

, (1) 

where the sinc function is defined as 

𝑠𝑖𝑛𝑐(𝑥) = {
𝑠𝑖𝑛(𝜋𝑥)

𝜋𝑥
𝑖𝑓 𝑥 ≠ 0

1 𝑖𝑓 𝑥 = 0.

(2) 

Formula (1) is referred to as the Whittaker-Shannon 

interpolation formula. Formula (1) implies that the function 

F() is sufficently determined by its discreste values 

F(n), where 𝑛 ∈ ℤ (integers). Because f(x) is the inverse 

Fourier transform of F(), the spatial-dumain compactly 

supported function f(x), in turn, is determined by the 

samples F(n). 

According to the fact that 𝐹(𝜔) → 0 as |𝜔| → ∞, we 

can obtain an approximate expression of (1) by using only 

a finite number of terms in the summation: 

𝐹(𝜔) ≈ ∑ 𝐹(𝑛∆𝜔) ∙ 𝑠𝑖𝑛𝑐 (
𝜔 − 𝑛∆𝜔

∆𝜔
)

𝑁

𝑛=−𝑁

. (3) 

It is reasonable to further assume that the function f(x) is 

real and 𝐹 = 𝐹𝑟 + 𝑖𝐹𝑖, and then the real part Fr() is even 

and the imaginary part Fi() is odd. Therefore, (3) can be 

written as 

𝐹𝑟(𝜔) ≈ 𝐹𝑟(0) + 2 ∑ 𝐹𝑟(𝑛∆𝜔) ∙ [𝑠𝑖𝑛𝑐 (
𝜔−𝑛∆𝜔

∆𝜔
) +𝑁

𝑛=1

𝑠𝑖𝑛𝑐 (
𝜔+𝑛∆𝜔

∆𝜔
)]    (4a) 

𝐹𝑖(𝜔) ≈ 2 ∑ 𝐹𝑖(𝑛∆𝜔)[𝑠𝑖𝑛𝑐 (
𝜔−𝑛∆𝜔

∆𝜔
) −𝑁

𝑛=1

𝑠𝑖𝑛𝑐 (
𝜔+𝑛∆𝜔

∆𝜔
)] .    (4b) 

 

2.4 Proposed method 

This part presents the main result of current paper. We 

consider a Fourier transform pair: f(x) and F(), where f(x) 

is real and has a compact support, and F() is complex and 

entire. The spatial-domain function f(x) is unknown. The 

Fourier-domain function F() is measured at discrete 

points, 𝜔𝑘, k = 1, 2, …, M, which are in a smaller interval 

than [-N, N]. Let us form 2 real column vectors: 

𝑝 = 

[𝐹𝑟(𝜔1), 𝐹𝑟(𝜔2), … , 𝐹𝑟(𝜔𝑀), 𝐹𝑖(𝜔1), 𝐹𝑖(𝜔2), … , 𝐹𝑖(𝜔𝑀)]𝑇  

  (5) 

and 

𝑢 = 

[𝐹𝑟(0), 𝐹𝑟(∆𝜔), … , 𝐹𝑟(𝑁∆𝜔), 𝐹𝑖(∆𝜔), … , 𝐹𝑖(𝑁∆𝜔)]𝑇.  

 (6) 

The vector p contains the measurements, and the vector u 

contains the unknowns. It is allowed that some of the 

unknowns are the measurements. The approximations (4a) 

and (4b) can be written in the matrix form as  

𝐴𝑢 ≈ 𝑝, (7) 

where the real (2𝑀) × (2𝑁 + 1) matrix A is determined 

according to (4a) and (4b). A numeric algorithm is required 

to solve the unknown vector u from (7). Once the vector u 

is obtained, the spatial-domain function f(x) is constructed 

by u as follows. 

If we consider the compactly supported function f(x) as 

one period of a periodic function, then f(x) has a Fourier 

series expansion 

𝑓(𝑥) = ∑ 𝑐𝑛𝑒
𝑖2𝜋𝑛𝑥

𝑇

∞

𝑛=−∞

≈ ∑ 𝑐𝑛𝑒
𝑖2𝜋𝑛𝑥

𝑇

𝑁

𝑛=−𝑁

(8) 

with Fourier coefficients 

𝑐𝑛 =
1

𝑇
∫ 𝑓(𝑥)𝑒−

𝑖2𝜋𝑛𝑥
𝑇 𝑑𝑥,

𝑇/2

−𝑇/2

(9) 

where T is the period and can be same as (or larger than) the 

span of f(x). Since the Fourier transform of f(x) is defined as 

𝐹(𝜔) = ∫ 𝑓(𝑥)𝑒−𝑖2𝜋𝜔𝑥𝑑𝑥,

𝑇/2

−𝑇/2

(10) 

we have 

𝑐𝑛 =
1

𝑇
𝐹 (

𝑛

𝑇
) . (11) 

If we choose ∆𝜔 = 1/𝑇, the Fourier series coefficients can 

be obtained by solving (7). When the Fourier series (8) is 

truncated, the summation can be implemented by the 

(2N+2)-point inverse discrete Fourier Transform (IDFT) or 

the inverse fast Fourier Transform (IFFT). 

∑ 𝑐𝑛𝑒
𝑖2𝜋𝑛𝑥
2𝑁+2

2𝑁+1

𝑛=0

(12) 

where 𝑐𝑁+1 = 0 and 𝑐𝑁+1+𝑘 = 𝑐𝑁+1−𝑘
∗ , k = 1, … , N. 

Solving for u from (7) is challenging, because the 

system is seriously ill-posed. In the computer simulations in 

this paper, no noise is added to the measurements p. The 

computer roundoff errors are already serious enough to 

make the solution deviate from the true solution. The 

following approaches can be used to find the vector u: 

Approach 1:  

The Moore-Penrose pseudoinverse with a tolerance tol. 

This approach finds the singular value decomposition 

(SVD) of the matrix A and replaces the singular values that 

are smaller than tol by zeros before calculating the 

generalized inverse of A. 

𝑢 = 𝐴†𝑝. (13) 

Approach 2:  

 

𝑚𝑖𝑛
𝑢

(‖𝐴𝑢 − 𝑝‖2 + 𝛼‖𝑢‖2).  (14) 

Approach 3:  
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𝑚𝑖𝑛
𝑢

(‖𝐴𝑢 − 𝑝‖1 + 𝛼‖𝑢‖2).  (15) 

Approach 4:  

𝑚𝑖𝑛
𝑢

(‖𝐴𝑢 − 𝑝‖∞ + 𝛼‖𝑢‖2).  (16) 

 

Approach 5: 

𝑚𝑖𝑛
𝑢

(‖𝑢‖2)    (17) 

Subject to 

𝐴𝑢 = 𝑝. (18) 

Approach 6: 

𝑚𝑖𝑛
𝑢

(‖𝑢‖1) (19) 

Subject to (18). 

Approach 7: 

𝑚𝑖𝑛
𝑢

(‖𝑢‖∞) (20) 

Subject to (18). 

 

2.5 Applications to medical imaging 

One application of the proposed method is in limited 

angle tomography, where the Radon transform is only 

available in an angular range smaller than 180º. According 

to the Central Slice Theorem, in the two-dimensional (2D) 

Fourier domain, two angular sections are measured, and two 

remaining angular sections are not, as illustrated in Fig.1.  

 
The measured Fourier components are in the shaded 

regions. In theory, it is possible to complete the unmeasured 

Fourier components by line-by-line (which can be row-by-

row, or column-by-column) analytic continuation. One 

analytic continuation method is suggested in Section 2.4. 

Another application of the proposed method is in fast 

MRI (magnetic resonance imaging),  where the k-space is 

not completely measured. The unmeasured k-space data can 

be estimated from measured data. If this analytic 

continuation technology works, MRI procedures can be 

sped up significantly. 

3 Results 

 

The first computer simulation considered a 1D function 

f(x) that was composed of two boxcars. The Fourier 

transform of a boxcar function is a sinc function. Therefore, 

the closed-form of F() in this case was known. It was 

assumed that 64 uniform discrete samples of F() were 

sufficient to represent the function.  

We measured the first 16 frequency components, and 

measured additional 135 components within the measured 

range. The condition number of ATA was 6.0325×1017. The 

strategy of the proposed method is to over-sample the 

region where data is available. However, when we used 

additional 1350 components (instead of 135 components) 

within the measured range, the condition number of ATA 

worsened to 3.4168×1018. 

The following parameters were used for this simulation:  

Approach 1: tol = 10-14. Approach 2:  = 10-9. Approach 3: 

 = 10-8. Approach 4:  = 0. 

The second simulation was with a Shepp-Logan 

phantom, for which we did not have a closed-form 

expression for its Fourier transform. To work around this 

problem, we first used a computer simulated digitized 

Shepp-Logan phantom in a 256×256 array that was column-

by-column zero-padded so that each column had 2560 

pixels. After taking 2560-point 1D DFT, we obtained an 

over-sampled Fourier spectrum. Among these 2560 

samples, we chose the first 100 samples as our 

measurements. These low-frequency 100 components were 

used to estimate the unmeasured frequency components 

using the method proposed in Section 2.4. 

The DFT assumes discrete and periodic f(x), as well as 

discrete and periodic F(). The actual F() is aperiodic, 

because the actual f(x) is continuous. The errors introduced 

by discretization of f(x) can be reduced by using smaller 

sampling intervals. For example, using an array size of 

1024×1024 or 2048×2048 to represent the Shepp-Logan 

phantom. 

 Fig. 2 shows the Fourier-domain signals and their 

associated inverse DFT reconstructions. All computer 

simulation results for the simulations are shown in Figs. 3 

and 4. In the first simulation, it was assumed that 64 samples 

were good enough to represent the original signal. 

Frequency components were available only lower than 

sample #15. In the second simulation, frequency 

components lower than #10 were avialable. 

 
Fig. 2. Fourier-domain signal F() and its reconstruction f(x), up to “64” 

and up to “15”, respectively. 

 

 

Measured 

Unmeasured 

Fig. 1. Illustration of a 2D Fourier 

space when the angular sampling is 

less than 180º. The shaded regions 

are measured, while the unshaded 

regions are not measured. In 

theory, one can use analytic 

continuation to estimate the data in 

the unmeasured regions. 
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Fig. 3. Results for the first simulation. Estimated Fourier componets F() 

and their reconstructions f(x) using proposed 7 approaches. 

 
Fig. 4. Left: Reconstructed result from measured data. Right: 

Reconstructed result for the second simulation, using approach #1.  

4 Discussion 

 

Analytic continuation is a powerful tool in mathematics 

to determine the values of an entire fucntion in a wider 

region. This paper has developed an analytic continuation 

method by over-sampling the ‘known’ region and solving a 

system of linear equations. The system turns out to be 

seriously ill-posed. Our computer simulations cannot obtain 

exact estimation even though no noise is added to the 

measurements. The computer rounding errors are already 

too large to handle. Seven approaches have been tested. It 

is interesting to notice that Approach #4 with the infinity 

norm allows  = 0, while Approaches #1-#3 with L1 or L2 

norms  require some regularization. The L1 norm forgives 

outliers, the L2 norm manages the error energy, and the L∞ 

norm controls the maximum error. 

Our results do not imply that the analytic continuation 

is useless in the real world. Our simulations used sampled 

data. The analytic continuation requires ‘continuous’ data, 

which is difficult to implement with today’s computers. It 

is still an open problem whether analytic continuation is 

helpful if ‘continuous’ and ‘rounding error free’ computers 

are available. We believe that denoising must be performed 

prior to analytic continuation. 
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Abstract In this work, we propose and analyze a modification of the
stochastic primal-dual hybrid gradient (SPDHG) algorithm which sub-
stantially reduces its memory requirements for reconstruction of sparse
time-of-flight (TOF) PET data with non-smooth priors. Moreover, we
study the influence of the ratio of the primal and dual step sizes on
the convergence of SPDHG. The performance of the optimization
algorithm is investigated based on simulated 2D TOF data using a
brain-like software phantom. We find that the memory requirement of
SPDHG for sparse TOF PET data can be substantially reduced by a
better initialization without noticeable losses in the convergence speed.
Moreover, a careful choice of the ratio of the primal and dual step
sizes, depending on the magnitude of the image to be reconstructed, is
crucial to obtain fast convergence.

1 Introduction

Due to limitations in acquisition time, injectable dose and
scanner sensitivity, acquired data in positron emission tomog-
raphy (PET) suffer from high levels of Poisson noise that is
transferred into the reconstructed image, necessitating noise
suppression during or post reconstruction. One possible way
of noise suppression is the maximum a posteriori approach
where a smoothing prior is added next to the data fidelity
term (the negative Poisson loglikelihood) in the cost function
optimized in iterative image reconstruction. Unfortunately,
many advanced smoothing priors such as e.g. Total Varia-
tion (TV) [1], Total Generalized Variation (TGV) [2], Joint
T(G)V [3, 4] or Parallel Level Sets [5, 6] are non-smooth
functions which permits the use of simple and efficient purely
gradient-based optimization algorithms. Moreover, due to
the large number of data bins in a (time-of-flight) sinogram of
modern PET scanners, the computation time for a single eval-
uation of the complete forward (and adjoint) model is usually
slow, favoring optimization algorithms that use only a subset
of the data in every update step like maximum expectation
maximization with ordered subsets (OSEM).
Recently, Chambolle et al. [7] and Ehrhardt et al. [8] intro-
duced the stochastic primal-dual hybrid gradient (SPDHG)
algorithm which is a provably convergent algorithm that al-
lows to solve the PET reconstruction problem including many
non-smooth priors with only a few iterations. Algorithm 1
shows SPDHG using a typical PET forward model. As seen
in line 6 and 7, in every update only a forward and backpro-
jection of a subset of the data is required. Using two clinical
FDG and Fluorbetapir data sets from the Siemens mMR, it
was shown in [8], that approximately 10 iterations, meaning
10 complete forward and back projections of the data are

Algorithm 1 SPDHG for PET reconstruction [8]
1: Initialize x(= 0),y(= 0), (Si)i,T,(pi)i,
2: z = z = PT y
3: repeat
4: x = proj≥0(x−T z)
5: Select i ∈ {1, . . . ,n+1} randomly according to (pi)i

6: if i≤ n then
7: y+i ← proxSi

D∗i
(yi +Si(Pix+ si))

8: else
9: y+i ← proxSi

D∗i
(yi +SiPix)

10: end if
11: δ z← PT

i (y
+
i − yi)

12: yi← y+i
13: z← z+δ z
14: z← z+(δ z/pi)
15: until stopping criterion fulfilled
16: return x

sufficient to reach reasonable convergence for clinical pur-
poses when using preconditioning and proper sampling of
the subsets.
In this work, we focus on time-of-flight (TOF) PET recon-
struction using TV regularization, noting, however, that gen-
eralizations to other non-smooth priors as mentioned above
are possible within the same framework. The TV regular-
ized TOF PET reconstruction method requires to solve the
optimization problem

argmin
x≥0

∑
j
(Px) j−d j log((Px) j + s j)+β ‖∇x‖1, (1)

where x is the PET image to be reconstructed, P is the TOF
forward projector including the effects of attenuation and
normalization, d are the acquired prompt TOF coincidences
(the emission sinogram), and s are additive contaminations
including random and scattered coincidences. The operator
∇ is the gradient operator, ‖∇u‖1 is sum over all entries
of the pointwise Euclidean norm of ∇u, and β is a scalar
controlling the level of regularization.
In the application of Algorithm 1 we follow the approach of
[8] by splitting the data into n non-overlapping subsets with
the corresponding sequence of partial PET forward operators
denoted as (Pi)

n
i=1. To simplify notation, we set Pn+1 = ∇

and choose the probabilities p1 = . . . = pn = 1/(2n) and
pn+1 = 1/2. For ρ < 1 and γ > 0, we define preconditioned

134



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

step sizes for the partial PET operators, for i = 1, . . . ,n

Si = γ diag(
ρ

Pi1
) Ti = γ−1diag(

ρ pi

PT
i 1

)

and for the gradient operator

Sn+1 = γ
ρ
‖∇‖ Tn+1 = γ−1 piρ

‖∇‖ .

As mentioned in [8], if we set T = mini=1,...,n+1 Ti pointwise,
SPDHG converges.
The proximal operator for the convex dual of D j(y) := y j−
d j log(y j) is given by

(proxSi
D∗j
(y)) j =

1
2

(
y j +1−

√
(y j−1)2 +4(Si) jd j

)
(2)

and the proximal operator for the convex dual of the TV term
is given by

(proxD∗n+1
(y)) j = β y j/max(β , |y j|) . (3)

As discussed in Remark 2 of [8], a potential drawback of
SPDHG is that it requires to keep at least one more complete
(TOF) sinogram (y) in memory. Moreover, if the proposed
preconditioning is used, a second complete (TOF) sinogram
(the sequence of step sizes (Si)

n
i=1) needs to be stored. In gen-

eral, this is less of a problem for static single-bed non-TOF
PET data, where sinogram sizes are relatively small. How-
ever, for simultaneous multi-bed, dynamic or TOF PET data,
the size of complete sinograms can be become problematic,
especially when using GPUs. E.g., for modern PET TOF
scanners with 25 cm axial FOV and a TOF resolution of ca.
400 ps, a complete unmashed TOF sinogram in single pre-
cision for one bed position has approximately 4.4 ·109 data
bins, requiring ca. 17 GB of memory. Note that the memory
required to store a complete TOF sinogram will further in-
crease with better TOF resolution. Due to the large number
of data bins and the limitations in injected dose and acqui-
sition time, modern TOF sinograms are usually very sparse,
meaning that in most data bins no data is acquired. E.g.,
for a typical 3 min-per-bed-position whole-body FDG scan
with an injected dose of around 200 MBq acquired 60 min p.i.
on a state-of-the-art TOF PET/MR scanner, more than 95%
of the data (TOF sinogram) bins are empty. For short early
frames in dynamic brain scans, this fraction is even higher.
And even for “high count” late static 20 min FDG brain scans
with an injected dose of 150 MBq acquired 60 min p.i., still
around 70% of the data bins are empty.

Considering the very sparse nature of TOF emission sino-
grams, in this work, we propose and analyze a modification
of SPDHG for sparse PET data which substantially reduces
its memory requirements. Moreover, we also analyze the
influence of the scalar hyperparameter γ , that determines the
ratio between the primal and dual step sizes, on the conver-
gence of SPDHG.

2 Materials and Methods

2.1 Memory efficient TOF PET SPDHG through bet-
ter initialization

In [8], the authors propose to initialize x and y with zeros
everywhere. However, we can observe from Eq. (2) that
for data bins j where d j = 0 (empty TOF sinogram bins),
(proxD∗j

(a)) j = 1 for a j ≥ 1 and (proxD∗i
(a)) j = a j otherwise.

Moreover, we see that a j = (yi +Si(Pix+ si)) j ≥ 1 provided
that (yi) j ≥ 1 since all other quantities are positive. Hence, if
we initialize all bins of y where the data d equals zero with 1,
these bins remain equal to 1 during all iterations. This in turn
means that these bins do not contribute to the solution, since
only the change in y is backprojected in line 7 of algorithm 1.
Consequently, this implies that these bins do not need to be
kept in memory after the initialization of the z and z̄ with the
backprojection of y, which dramatically reduces the memory
requirement and also the number of projections that need
to be calculated, keeping in mind that for most acquisitions
with modern TOF PET scanners, most of the data bins are 0
as discussed before. To differentiate between SPDHG with
the originally proposed initialization and the initialization
proposed above, we call the latter SPDHG-S.

2.2 Numerical experiments

To compare the convergence of SPDHG and SPDHG-S, we
performed reconstructions of simulated TOF PET data from a
virtual 2D scanner mimicking the TOF resolution (ca. 400 ps
FWHM) and geometry of one ring (direct plane) of the GE
SIGNA PET/MR (sinogram dimension: 357 radial bins, 224
projection angles, 27 TOF bins). A software brain phan-
tom with a typical gray to white matter contrast of 4:1 was
created based on the brainweb phantom and used to gener-
ate simulated data including the effects of attenuation and
flat contamination (scattered) coincidences with a simulated
scatter fraction of 16%. Noisy simulated prompt emission
TOF sinograms were generated for 105, 106, and 107 counts.
In the case of 105, 80% of the bins in the 2D TOF emis-
sion sinogram are 0. The simulated data were reconstructed
with SPDHG and SPDHG-S using 50 iterations, 112 sub-
sets, a fixed level regularization (β = 0.6 for 105 counts, and
β = 0.2 for 106 and 107 counts), and different values for γ .
As in [8], convergence was monitored by tracking the relative
cost function

crel(x) = (c(x)− c(x∗))/(c(x0)− c(x∗)).

and the peak signal to noise ratio

PSNR(x) = 20 log10

(
‖x∗‖∞/

√
MSE(x,x∗)

)

compared to an approximate minimizer x∗. which was cal-
culated using the deterministic PDHG with 5000 iterations
without subsets. In all reconstructions, the TOF PET opera-
tor P was renormalized such that the norm of P equaled the
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Figure 1: Cost and PSNR relative to the approximate minimizer of SPDHG and SPDHG-S for different γ values, using 105 counts and
112 subsets.

Figure 2: Reconstruction results of SPDHG (top) and SPDHG-S (bottom) after 10 iterations with 112 subsets for different γ values
indicated above the reconstructions using 105 counts.

Figure 3: Comparison of convergence of SPDHG (top) and SPDHG-S (bottom) in early iterations using 105 counts, γ = 10 and 112
subsets.
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number of projection angles and the subsets were defined
via equidistant projection angles. The gradient operator was
implemented as the finite forward difference.

3 Results

Figure 1 shows the relative cost and PSNR to the approx-
imate minimizer of SPDHG and SPDHG-S for different γ
values, using 105 counts and 112 subsets. First of all, we
see that the choice of γ has a strong influence on the conver-
gence for SPDHG and SPDHG-S which can be also seen in
Fig. 2 where the reconstructions after 10 iterations are shown.
Moreover, it can be observed in both figures that, with in-
creasing γ , SPDHG-S performs more and more similar to
SPDHG in terms of PSNR and the relative cost. Figure 3
shows a comparison of SPDHG and SPDHG-S in the very
early iterations for γ = 10.

4 Discussion

All three figures in this work demonstrate that the difference
in the convergence between SPDHG and SPDHG-S for ap-
propriate γ values (e.g. 10) after ca. 3 iterations is very
minor. As reported in [8], we can confirm that after ca. 10
iterations the visual difference in the image quality compared
to the approximate minimizer is very small. The remaining
slight differences are mainly in low uptake regions in the
skin around the brain. Major differences in the convergence
between SPDHG and SPDHG-S are only seen after the 1st
iterations which is explained by the impact of the initializa-
tion of y on the initialization of z and z̄ as shown in line 2 in
algorithm 1.
The finding reported for 105 counts were also confirmed for
the higher count levels of 106 and 107 counts not shown here.
However, note that at 107 the emission sinogram is of less
sparse which naturally reduces the influence of our proposed
initialization. In contrast to [8], we find that in general γ = 1
is not optimal in terms of convergence speed. Comparing the
results with different simulated count levels, we find that the
optimal value for γ is inversely proportional to the magnitude
of the image to be reconstructed, or, in other words, inversely
proportional to the number of acquired counts.
So far, the proposed SPDHG algorithm uses binned data
(sinograms). However, the promising results shown in this
work might help to develop a convergent algorithm that al-
lows to directly reconstruct list-mode TOF PET data with
non-smooth priors.

5 Conclusion

The memory requirement for the SPDHG algorithm for
sparse TOF PET data, can be substantially reduced by a
better initialization of the dual variable y without noticeable
losses in the convergence speed. Careful choice of the step

size ratio parameter γ depending on the magnitude of the im-
age to be reconstructed is crucial to obtain fast convergence.
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Abstract:  Photon counting spectral computed tomography (PCCT) 

produces attenuation maps at different narrow energy windows 

simultaneously, being a promising technique due to its ability of 

material decomposition.  However, because of its low signal-to-noise 

(SNR) and nonideal detector response in each individual energy 

channel, PCCT encounters the challenge of reconstructing distorted 

data for material decomposition.  Generally, material decomposition 

methods aim to obtain the product of two sets of unknown variables 

(i.e., material densities and material composition maps).  In this paper, 

we proposed a PCCT material decomposition method, which uses the 

ratio of multi-channel representation (RMCR) to achieve material 

decomposition in a one-step procedure.  With the help of RMCR, the 

distortion caused by nonideal detector response was corrected.  Hence, 

we estimated the material composition maps from the post-log data 

directly, avoiding knowing spectrum information which is necessary for 

existing one-step decomposition methods.  Given the calculated 

material composition maps, the material densities could be accurately 

recovered.  In addition, the noise could be reduced by strengthening 

prior information into the iterative framework.  Experimental results 

show higher accuracy of material decomposition of our proposed 

method compare with traditional methods. 

1 Introduction 

Photon counting spectral computed tomography (PCCT) 

can separately obtain the incident photons at multiple 

energy bins via pulse-height analysis, enabling more than 

three materials decomposition and K-edge imaging.  

PCCT also provides a relatively high signal-to-noise ratio 

(SNR) compared to conventional energy-integration 

detection, because the electronic noise is eliminated.  

However, in each individual channel, the SNR is relatively 

low due to the limited counting rate.  On the other hand, 

the PCCT measurements are also corrupted by 

complicated noises and artifacts caused by nonideal 

detector response, such as detector elements response 

variation, fluorescence x-ray effects, charge sharing, K-

escape, and pulse pileups, in each individual energy 

channel [1]. 

Aimed to improve the accuracy of material 

decomposition, numerous methods were proposed to 

reconstruct basis material map images which are usually 

employed to quantify material composition and density.  

These methods can be divided into two categories: indirect 

(two-step procedure) (e.g., [2-4]) and direct (one-step 

procedure) (e.g., [5-7]) methods.  Indirect methods 

estimate the material composition maps by two steps.  In 

the two-step procedure, image reconstruction and materials 

decomposition are independent.  The information lost in 

the first step cannot be compensated in the second step, 

which may result in aberrant decomposition.  Direct 

methods estimate basis material maps from the energy-

windowed measurements in a one-step procedure.  The 

direct methods combine the statistical properties of 

measured projections, prior information in the basis 

material maps, and even parameters of the imaging system 

into one unified objective function, which can greatly 

improve decomposition accuracy.   

However, Mory et al. compared the convergence speeds 

of five direct methods and mentioned that these methods 

are relatively time consuming [6].  In addition, these one-

step methods are typically relied on detailed knowledge 

about the spectral response of the detectors.  However, it’s 

difficult to obtain the spectral information in real clinical 

practice.  To solve the spectrum dependency of these one-

step methods, Chang et al. proposed a spectrum 

estimation-guided iterative reconstruction algorithm for 

dual-energy CT [7].  Nevertheless, this method is hard to 

be introduced into PCCT because the decomposition 

results are sensitive to the spectrum. 

In this study, we proposed a PCCT material 

decomposition method that is based on the previously 

proposed RMCR [8]. The improvement lies in that we 

proposed a material decomposition method with one-step 

procedure, named as decomposition based on RMCR 

(DRMCR), while the previous work adopted a two-step 

procedure with RMCR only as a constraint.  Specifically, 

RMCR is defined as the ratio of each individual channel 

image with the reconstructed broad-spectrum image using 

all available photons.  With the help of the RMCR 

operation, beam-hardening artifacts and ring artifacts are 

suppressed.  And also, the density variation of same 

materials is eliminated because it’s energy independent.  

As a result, the RMCR image is sparser than linear 

attenuation coefficient image, with which the proposed 

DRMCR may lead to better noise reduction ability by 

strengthening prior information into iterative framework.  

On the other hand, since the decomposition not affected by 

density, we estimated the material composition maps from 

the post-log data directly, rather than calculate the product 

of material densities and material composition maps.  

After that, given the material composition maps, the 

density of materials could be accurately recovered. 
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2 Materials and Methods 

A. Ratio of Multi-Channel Representation 

In PCCT imaging, the linear attenuation coefficient of 

the reconstructed image can be denoted as 𝝁 ∈ ℝ𝑆×𝐽 , 

where 𝑆 is the number of energy channels, 𝐽  is the number 

of image pixels, and its element 𝜇𝑠𝑗 , 𝑠 = 1,2, ⋯ 𝑆 ,  𝑗 =

1,2, ⋯ 𝐽, can be expressed as the product of density and 

mass attenuation coefficient: 

𝜇𝑠𝑗 = 𝜌𝑗𝜎𝑠𝑗                                        (1) 

where 𝜌𝑗  is the density at the  𝑗𝑡ℎ  pixel, 𝜎𝑠𝑗  denotes the 

mass attenuation coefficient of the  𝑗𝑡ℎ  pixel at energy 

channel 𝑠.  However, same materials may have different 

densities, such as the iodine solution with different 

concentrations, muscle and fat.  To eliminate the effect of 

density, which is energy independent, on materials.  We 

define the RMCR as: 

𝑟𝑠𝑗 =
𝜇𝑠𝑗

�̅�𝑗
=

𝜌𝑗𝜎𝑠𝑗

𝜌𝑗�̅�𝑗
=

𝜎𝑠𝑗

�̅�𝑗
                           (2) 

where 𝑟𝑠𝑗  denotes the RMCR of the  𝑗𝑡ℎ  pixel at energy 

window 𝑠 , �̅�𝑗  is the linear attenuation coefficient 

reconstructed by the broad-spectrum projection using all 

available photons. 

To illustrate the benefits of RMCR, a physical phantom is 

scanned in a PCCT system. One representative 

reconstructed linear attenuation coefficient image and its 

corresponding RMCR image are shown in Fig. 1.  Both the 

linear attenuation coefficient and RMCR images are 

energy dependent which used to describe the same object.  

The mean values in the red box region are marked in the 

images.  In linear attenuation coefficient image, it can be 

observed that iodine solution with different concentrations 

are also different linear attenuation coefficient.  In RMCR 

images, it does not include density information, resulting 

in the same RMCR value of Iodine solution with different 

concentrations. In linear attenuation coefficient images, 

the streak artifacts caused by beam-hardening are indicated 

by arrow “1”, which are not observed in the RMCR 

images.  Similarly, the ring artifacts caused by inconsistent 

detector response are indicated by arrow “2” in the linear 

attenuation coefficient images, which are eliminated or 

suppressed in RMCR images. 

Given M basic materials for decomposition, the RMCR 

can be decomposed into two parts: 

𝑟𝑠𝑗 = ∑ 𝑟𝑠𝑚𝑓𝑚𝑗

𝑀

𝑚=1

                                 (3) 

where 𝑟𝑠𝑚 is the RMCR of material 𝑚 at energy channel 𝑠, 

𝑓𝑚𝑗 denotes the material composition value at 𝑗𝑡ℎ pixel of 

basis material 𝑚, 𝑀 is the total number of material types.  

Obviously, density is not embedded in material 

composition value. In this study, we first estimate the 

material composition maps.  After that, given the material 

composition maps, the densities of materials can be 

recovered by the following equation: 

𝜌𝑚𝑗 =
𝑓𝑚𝑗 × �̅�𝑗

�̅�𝑗
                                 (4) 

 

Fig. 1: The reconstructed images of a physical phantom.  From left to right are 

abridged general view, a reconstructed linear attenuation coefficient image 

(energy bin information), and one RMCR image (energy bin information), 

respectively.  The corresponding markers are list at the bottom of the figure.  The 

display window for linear attenuation coefficient images is [0.02 0.035] 𝑚𝑚−1.  

The display window for RMCR image is [0 1.5]. 

B. PCCT Image Reconstruction Framework 

Considering the basis material decomposition, the 

measured photons of PCCT at photon counting detector 

(PCD) can be estimated as follows:  

𝐼𝑠𝑖 = 𝑏𝑠𝑖𝑒𝑥𝑝 (− ∑ ∑ 𝑎𝑖𝑗𝑟𝑠𝑚�̅�𝑗𝑓𝑚𝑗

𝐽

𝑗=1

𝑀

𝑚=1

)              (5) 

where 𝑏𝑠𝑖  and 𝐼𝑠𝑖  are incident photons and the expected 

value of measured photons in energy channel 𝑠 along the 

𝑖𝑡ℎ x-ray path, respectively.  𝑎𝑖𝑗 denotes the length of the 

intersection between ray 𝑖 and pixel 𝑗. 

After negative logarithmic operation, we obtain the 

post-log data: 

�̅�𝑠𝑖 = − log (
𝐼𝑠𝑖

𝑏𝑠𝑖
) = ∑ ∑ 𝑎𝑖𝑗𝑟𝑠𝑚�̅�𝑗𝑓𝑚𝑗 

𝐽

𝑗=1

𝑀

𝑚=1

         (6) 

With the post-log data, the solution for spectral CT 

material decomposition can be solved by minimizing 

following objective function: 

argmin
𝒇

∑ ∑
𝐼𝑠𝑖

2
(�̅�𝑠𝑖−𝑦𝑠𝑖) 2

𝐼

𝑖=1

𝑆

𝑠=1

+ 𝛽𝑅(𝒇)                 (7) 

where 𝑦𝑠𝑖 is the measurement along the  𝑖𝑡ℎ x-ray path at 

energy channel 𝑠.  𝑅(𝒇) is the regularization term on the 

material composition maps.  𝛽  represents a parameter to 

balance the strength between fidelity term and the 

regularization term. 

In this paper, the regularization term in Eq. (7) is 

described by normally used TV, without loss of generality.  

Using the TV regularization, the material composition 

value 𝑓𝑚𝑗 can be denoted in triple subscripts as 

𝑓𝑚𝑗 = 𝑓𝑚𝑝𝑞 ,                                  (8) 

where 𝑊 and 𝐻 are respectively the width and height of 

the each two-dimensions material composition maps, and 

𝐽 = 𝑊 × 𝐻 , where 𝑗 = (𝑝 − 1) × 𝑊 + 𝑞, 𝑝 =
1,2, ⋯ 𝐻, 𝑞 = 1,2, ⋯ , 𝑊 .  Then, the TV of material 

composition maps can be expressed as: 
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TV(𝒇) = ∑ ‖∇𝒇𝒎‖1

𝑀

𝑚=1

                             (9) 

where ∇𝒇𝒎 = (∇𝑓𝑚1, ∇𝑓𝑚2, ⋯ , ∇𝑓𝑚𝐽)
𝑇
 and 

∇𝑓𝑚𝑗 = ∇𝑓𝑚𝑝𝑞                                                                             

= √(𝑓𝑚𝑝𝑞 − 𝑓𝑚(𝑝−1)𝑞)
2

+ (𝑓𝑚𝑝𝑞 − 𝑓𝑚𝑝(𝑞−1))
2

 (10) 

When the TV regularization is introduced to Eq. (7), the 

problem can be solved by minimizing the following 

objective function 

argmin
𝒇

∑ ∑
𝐼𝑠𝑖

2
‖�̅�𝑠𝑖 − 𝑦𝑠𝑖‖2

2

𝐼

𝑖=1

𝑆

𝑠=1

+ 𝛽 TV(𝒇)       (11) 

C. Optimization Via Alternating Minimization 

We present an alternating minimization strategy to 

minimize the objective function Eq. (11).  Introducing an 

auxiliary variable 𝒗𝒎 = ∇𝒇𝒎, we can obtain the following 

unconstraint objective function: 

argmin
𝒇

∑ ∑
𝐼𝑠𝑖

2
(�̅�𝑠𝑖−𝑦𝑠𝑖) 2

𝐼

𝑖=1

𝑆

𝑠=1

+ 𝛽 ∑ ‖𝒗𝒎‖1

𝑀

𝑚=1

+ 𝛼 ∑ ‖𝒗𝒎 − ∇𝒇𝒎‖2
2

𝑀

𝑚=1

                                 (12) 

Eq. (12) can be solved by three steps in an alternating 

manner until the stopping criterion is met. 

Step 1) Minimize the fidelity term. 

In this paper, we utilize the separable paraboloid 

surrogate method to update 𝑓𝑚𝑗: 

𝑓𝑚𝑗
𝑡+1 = 𝑓𝑚𝑗

𝑡 −

𝜕𝐻
𝜕𝑓𝑚𝑗

|
𝑓=𝑓𝑡

𝜕2𝐻
𝜕𝑓𝑚𝑗

2 |
𝑓=𝑓𝑡

                    (13) 

where 

𝜕𝐻

𝜕𝑓𝑚𝑗

= ∑ ∑ 𝑟𝑠𝑚𝑎𝑖𝑗

𝐼

𝑖=1

𝑆

𝑠=1

( ∑ ∑ 𝑎𝑖𝑗𝑟𝑠𝑚�̅�𝑗𝑓𝑚𝑗 

𝐽

𝑗=1

−𝑦𝑠𝑖

𝑀

𝑚=1

) (14) 

𝜕2𝐻

𝜕𝑓𝑚𝑗
2 = ∑ ∑ 𝑟𝑠𝑚𝑎𝑖𝑗

𝐼

𝑖=1

𝑆

𝑠=1

( ∑ ∑ 𝑎𝑖𝑗𝑟𝑠𝑚�̅�𝑗 

𝐽

𝑗=1

𝑀

𝑚=1

)      (15) 

Step 2) Update 𝑣𝑚𝑗: 

𝑣𝑚𝑗
𝑡+1 = 𝑚𝑎𝑥{∇𝑓𝑚𝑗

𝑡+1 − 𝛽 2𝛼⁄ , 0}         (16) 

This process is a soft-threshold filtration of the TV with 

a threshold 𝛽 2𝛼⁄ . 

Step 3) Minimize 𝛼 ∑ ‖𝒗𝒎 − 𝛻𝒇𝒎‖2
2𝑀

𝑚=1  . 

This problem can be solved by inverted 𝛻𝒇𝒎.  Because 

𝛻𝒇𝒎 is not uniquely invertible, we use a pseudo-inverse of 

𝛻𝒇𝒎 to solve this problem. 

In summary, the workflow of the proposed method can 

be described as following. 

 

WORKFLOW FOR THE PROPOSED DRMCR ALGORITHM 

Input: {𝑦𝑠𝑖} 

Output: 𝒇 

One-step material decomposition 

        Initialize 𝒇 

Set parameters 𝛽, 𝛼 

While stop criterion is not met: 

        Setp1: Update the material fraction maps using Eq. (13); 

        Step2: Update  𝑣𝑚𝑗  using Eq. (16); 

        Step3: Minimize α ∑ ‖𝐯𝐦 − ∇𝐟𝐦‖2
2M

m=1  ; 

End until the stop criterion is satisfied. 

Recover density maps using Eq. (4) 

3 Results 

A. Numerical Simulation Study 

In the numerical simulation study, a two-dimensions 

(2D) numerical circle phantom was employed.  Fig. 2 

shown the circle phantom consists of water background 

with diameter of 200 mm, four circular inserts with a 

diameter of 35 mm.  The materials were indexed, and the 

corresponding densities are listed in Table I.  The bases 

materials are selected as water, calcium and iodine.  

Gaussian blurs are applied to iodine to simulate the 

permeation of iodine, where the Gaussian window is 

20 × 20 and the standard deviation of Gaussian filter is 5.  

It worth noting that iodine solution consists of iodine and 

water and the density of the water remains constant. 

 
Fig. 2 Numerical circle phantom. From left to right are water, calcium and iodine, 

respectively. The display window for water and calcium is [0 1.2] g/𝑐𝑚3. The 

display window for iodine is [0 0.02] g/𝑐𝑚3. The materials were indexed, and 

the corresponding densities are listed in Table I. 

TABLE I:  LIST OF THE MATERIALS AND DENSITIES. 

Index Material Density (g/𝑐𝑚3) 

1 Water 1 

2 Calcium 0.8 

3 Calcium  0.5 

4 Iodine 0.01 

5 Iodine 0.015 

Four monochromatic images (30 keV, 40 keV, 50 keV, 

and 60 keV) are used to simulate the multi-energy 

projection data.  A 90 kVp x-ray spectrum was assumed, 

which was generated from the SpectrumGUI software.  

Poisson noise is superimposed onto the measurement by 

assuming that there are 5000 photons emitted from each x-

ray path.  The emitted photons were distributed to each 

energy bin with the weights calculated from the x-ray 

spectrum.  An equidistant fan-beam geometry is assumed 

for a PCCT scanner. 640 post-log projections are collected 

over a full scan range, the detector is composed of 512 

detector elements, and each element size is 0.1 mm.  The 

reconstructed images are 512 × 512  with in-plane 
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resolution of 0.075 𝑚𝑚 × 0.075 𝑚. The linear attenuation 

coefficient images for each window reconstructed by 

simultaneous algebraic reconstruction technique (SART) 

method are shown in Fig. 3. 

 

Fig. 3. Numerical circle phantom reconstructed linear attenuation coefficient 

images at noise scenarios by SART. The display window is [0 0.05] 𝑚𝑚−1 . 

For comparison study, one is the post-reconstruction 

method which first reconstruct the linear attenuation 

coefficient images in each individual energy channel by 

SART.  Then decompose the reconstructed images into 

material fraction maps [9] (DSART). Another two-step 

method is also employed.  This method first reconstructs 

the linear attenuation coefficient images by tensor 

dictionary learning.  Then decompose the reconstructed 

images into material fraction maps [3] (DTDL).  The other 

one is direct method which estimate material fraction maps 

from the energy-windowed measurements in a one-step 

procedure (DOS). This method is similar with our 

proposed method but without using RMCR. 

Fig. 4 show the decomposition results.  We can observe 

that the results of DSART method contains severe noise, 

especially the iodine is hard to identify.  DTDL method 

can suppress noise tremendously. However, in region “3”, 

part of calcium is decomposed to water using DSART and 

DTDL methods.  In addition, a circle edge, which indicate 

by the arrow, introduces to iodine fraction maps, this is 

because the error in the reconstruction step cannot be 

compensated by decomposition step. DOS and DRMCR 

methods can avoid these errors because the material 

fraction maps are estimated from measurements directly.  

The noise also well suppressed thanks to TV constraints.  

The material fraction values in the indexed regions are 

listed in TABLE II.  The mean values of DSART are 

significantly different from that in the noise free scenario 

because of the severe noise.  It worth noting that selecting 

different density regions to calculate the decomposition 

matrix will lead different results in DSAR, DTDL and 

DOS methods. Our proposed method excludes the effect 

of density.  Hence, the result is not affected by density.  

We will further discuss that in the discussion section. 

The recovered density maps are shown in Fig. 5.  The 

density can be recovered well with a good performance in 

noise reduction.  The quantitative evaluation of the ROIs 

in Fig. 5 is listed in Table. III.  The mean values are close 

to the reference. 

 
Fig. 4. From top to bottom are the material composition maps estimated by 

DSART, DTDL, DOS and DRMCR methods. From left to right are water, 

calcium, iodine and the corresponding color images. The display window is [0 

1.2]. 

TABLE II:  THE MEAN AND STD VALUES OF THE ROIS IN FIGURE 4. 

 Region 1 2 3 4 5 

 DSART 0.4522 0.9838 0.5749 0.5521 0.6361 

Mean DTDL 0.9656 0.9997 0.5681 0.7729 0.8530 

 DOS 0.9624 0.9868 0.6174 0.6553 0.9622 

 DRMCR 0.9710 0.9911 0.9912 0.3153 0.4157 

 DSART 1660.5 291.06 196.94 1856.7 1421.9 

STD DTDL 16.648 0.2373 0.1853 23.469 0.1018 

(e-4) DOS 3.7734 1.4544 1.0466 19.287 18.297 

 DRMCR 11.973 0.7579 1.3520 3.6589 2.3214 

 
Fig. 5. Recovered density maps for numerical study.  The display window for (a) 

and (b) is [0 1.2] 𝑔/𝑐𝑚3. The display window for (c) is [0 0.02] 𝑔/𝑐𝑚3 
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TABLE III:  THE MEAN AND STD VALUES OF THE ROIS IN FIGURE 5. 

 Region 1 2 3 4 5 

MEAN Reference 1.0000 0.8000 0.5000 0.0100 0.0150 

 DRMCR 0.9710 0.7929 0.4956 0.0099 0.0151 

STD(e-5) DRMCR 120.00 4.8508 3.3799 0.0358 0.0306 

B. Physic Phantom Study 

Fig. 6 shows a photography of a cylindrical physical 

phantom. The cylindrical phantom is a 

polymethylmethacrylate (PMMA) container filled with 

water, which contains two calcium solution rods with 

concentrations of 100 mg/ml and 50 mg/ml, and iodine 

solution rods with concentrations of 5 mg/ml and 15 

mg/ml.  The diameters of PMMA background and four 

circular inserts are 35 mm and 10 mm, respectively.  The 

physical phantom was scanned in a PCD based micro-CT 

system in Institute of High Energy Physics (IHEP) of 

Chinese Academy of Sciences (CAS).  For the micro-CT 

system, an X-ray source with 4 mm aluminum filter is 

operated at 90 kVp with a PCD detector.  The dimension 

of the linear detector is 1027 with size of 0.2 mm.  2160 

projections are collected per rotation. Six energy windows 

are used to collect projection with the set energy 

thresholds at 28keV, 34 keV, 40 keV, 47 keV, 56 keV, and 

67 keV, respectively.  The CT images of experimental 

materials for each window reconstructed by SART method 

are shown in Fig. 7.  The reconstructed images are 

512 × 512  with in-plane resolution of 0.25 𝑚𝑚 ×
0.25 𝑚𝑚. 

The decomposition results for cylindrical physical 

phantom study are shown in Fig. 8.  Since the basis 

material is selected as water with density of 1 g/𝑐𝑚3 , 

calcium with density of 0.1 g/𝑐𝑚3 and iodine with density 

of 0.015 g/𝑐𝑚3.  The regions including basis materials, e. 

g. water, can be accuracy decomposed using all the four 

methods.  In water fraction maps, the results of DSART 

method contain noise.  DTDL method can suppress noise 

in some extent. DOS and DRMCR methods suppress noise 

significantly.  However, DOS method includes beam-

hardening artifacts and ring artifacts, which are indicated 

by arrow “1” and “2”, respectively.  And also, the PMMA 

and water have different fraction values because of the 

density variation.  RMCR method could eliminate both the 

artifacts and density variation.  In calcium fraction maps, 

because we select the calcium with density of 0.1 g/𝑐𝑚3 

instead of calcium solution as the basis material, both 

DSART and DTDL methods failed at calcium 

decomposition.  And a ring artifact in the edge of the 

phantom are introduced. DOS and DRMCR method can 

avoid this error decomposition.  In iodine fraction maps, 

while DSART and DTDL methods decompose calcium 

into iodine, DOS and DRMCR obtain accuracy 

decomposition.  The mean value and STD are listed in 

Table. IV.  The quantitative evaluation is consistent with 

the visual inspection. 

 
Fig. 6. Photography of physical phantom. 

 
Fig. 7. Physical phantom reconstructed LAC images by SART. The display 

window is [0 0.035] 𝑚𝑚−1. 

 
Fig. 8. From top to bottom are the images estimated by DSART, DTDL, DOS 

and DRMCR, respectively. From left to right are the fraction maps of water, 

calcium, and iodine, respectively. The display window is [0 1.5]. 
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TABLE IV:  THE MEAN AND STD VALUES OF THE ROIS IN FIGURE 8. 

 Region 1 2 3 4 5 

 DSART 0.9767 0.0000 0.0000 1.5049 0.6792 

Mean DTDL 0.9930 0.0000 0.0000 1.5047 0.6798 

 DOS 1.0039 0.9817 0.3755 0.9817 0.3517 

 DRMCR 1.0039 0.6170 0.1120 0.6170 0.3648 

 DSART 0.0231 0.0000 0.0000 0.0106 0.0167 

STD DTDL 0.0130 0.0000 0.0000 0.0086 0.0077 

 DOS 0.0072 0.0786 0.0355 0.0228 0.0130 

 DRMCR 0.0037 0.0193 0.0084 0.0088 0.0084 

4. Discussions 
The decomposition results are usually affected by the 

selection of basis materials.  In the simulation study, the 

densities of calcium in region “2” and “3” are 0.8 g/𝑐𝑚3 and 0.5 

g/𝑐𝑚3 , respectively.  The concentration of iodine solution in 

region “4” and “5” are 0.01 g/𝑐𝑚3  and 0.015 g/𝑐𝑚3 , 

respectively.  In section 3.A, we select calcium with density of 

0.8 g/𝑐𝑚3 , water, and iodine with density of 0.015 g/𝑐𝑚3  as 

basis materials.  Here, we select calcium with density of 0.5 

g/𝑐𝑚3, water, and iodine with density of 0.01 g/𝑐𝑚3 as basis 

materials.  The decomposition results are shown in Fig. 9, both 

of DSART and DOS methods produce different material 

composition maps because of the difference of density of basis 

materials.  Our proposed method excludes the effect of density.  

Hence, the results are same as section 3.A.  TABLE V shows the 

mean values in the ROIs.  In the selected basis material regions 

“1” and “3”, all the three methods could obtain same 

decomposition value. In region “2”, the decomposition values of 

DSART and DOS methods become 1.6, because the density in 

this region is 1.6 times than region “3”.  In region “4” and “5”, 

the composition values of DSART are close to zeros.  For DOS 

method, the composition values in region “4” is close to 1. In 

region “5”, the composition values are close to 1.5, because the 

concentration in this region is 1.5 times than region “4”.  Our 

proposed DRMCR method obtain an exactly similar value 

compare with section 3.A, thanks to the density excluded from 

the reconstruction procedure.  Hence, our proposed method was 

more robustness about the selection of basic materials. 

 

Fig. 9. From top to bottom are the material composition maps estimated by 

DSART, DOS and DRMCR method. From left to right are water, calcium, 

iodine and the corresponding color images. The display window is [0 1.2]. 

TABLE V:  THE MEAN VALUES OF ROIS IN FIGURE 9. 

Region 1 2 3 4 5 

Reference 1.0000 1.6000 1.0000 0.0000 0.0000 

DOS 1.0000 1.6000 1.0000 1.0004 1.5006 

DRMCR 1.0000 1.0000 1.0000 0.3192 0.4141 

5. Conclusions 

In this paper, we present a RMCR based spectral CT 

material decomposition method with one-step procedure.  

The presented method estimates the material composition 

maps from post-log data directly, followed by densities 

recovery.  With the help of RMCR operation, the beam-

hardening artifacts and ring artifacts are suppressed.  In 

addition, the noise could be reduced by strengthening prior 

information in iterative framework.  Both numerical and 

physic phantom results demonstrate that the presented 

method can achieve attractive decomposition accuracy 

with high computational efficiency. 
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Abstract  
A method was implemented to increase the comfort during PET/MR 
imaging for patients diagnosed with amyotrophic lateral sclerosis (ALS). 
The system head holder and the system software require appropriate 
positioning of the head, and for many of these patients, this required head 
pose is not possible. Some hardware was developed to enable a more 
flexible positioning, and new software was developed to ensure that 
accurate quantitative images are obtained independent of the head 
position. 

1 Introduction 
Amyotrophic Lateral Sclerosis (ALS) is a rare neuro-
degenerative disease in which patients experience among 
other symptoms, increasing weakness and difficulty in 
breathing. In a recent study conducted at UZ Leuven [1] 
patients underwent dynamic Positron Emission 
Tomography / Magnetic Resonance (PET/MR) imaging for 
which the typical patient positioning in the scanner was 
either not possible or very uncomfortable. To increase 
patient comfort, additional hardware (a wedge shaped 
apparatus) was designed which the MR coils were placed 
on. This setup allowed patient positioning and data 
acquisition in an elevated head position. However, since the 
PET/MR system assumes that the MR coils are anchored to 
a fixed position on the bed, additional processing was 
required for accurate quantitative tracer reconstruction. 
For quantitative reconstructions of tracer distributions in 
PET imaging, an accurate correction for photon attenuation 
of the emission data is critical. In hybrid PET/MR scanners 
the problem of attenuation correction can at times still be 
challenging. It has been shown that joint activity and 
attenuation reconstructions from TOF-PET can provide 
accurate tracer distribution reconstructions, comparable to 
the state of the art [2]. The study, demonstrates that accurate 
attenuation estimation (and hence correction) can be 
obtained for regions with in the tracer activity support. Joint 
reconstruction of activity and attenuation has been used 
previously for the completion of truncated  attenuation 
images [3] or for the reconstruction of flexible attenuating 
hardware [4] (e.g. MR headphones for ear protection). 
 In this work, we describe our pipeline for processing of 
patient scans with the MR head coils being (un)intentionally 
improperly positioned according to the scanner. Clearly as 
there are no ground truth reconstructions to compare the 
results against, examples of the alignment will be shown for 
brain and neck/thorax patient datasets. 
 

2 Materials and Methods 

2.1 Data Acquisition and Processing 

Brain and neck/thorax 18F-FDG patient scans were 
acquired on the GE SIGNA TOF-PET/MR scanner [5] at 
UZ Leuven [1]. The local institutional review board 
approved this study and informed consent was obtained 
from all subjects. The emission data were acquired in 1 and 
2 bed positions for the brain and the neck/thorax datasets, 
respectively. The data were collected in 5D sinograms 
consisting of 357 radial bins of 2.016 mm width, 224 
azimuth angles over 180 degrees, a combined 1981 planes 
of 2.658 mm width for sinogram planes and 27 TOF-bins of 
169 ps width. Duetto v02.03 provided by GE Healthcare 
was used to process the raw data and to generate the 
expected scatter and randoms contribution of the emission 
measurements independently for each bed position.  

2.2 Reconstruction 

Using in-house reconstruction software data collected 
from multi-bed scans were reconstructed simultaneously in 
a single volume. Our in-house projector works on a bed-by-
bed basis, however the (back/) projections are computed 
(onto) from a single whole-body volume. Activity and 
attenuation images were reconstructed in a 210 × 210 pixel 
grid of 3.125 mm width transaxially and up to 154 planes of 
2.78 mm width axially. The TOF resolution of the scanner 
was modelled as a Gaussian having a 400 ps full width at 
half maximum (accounting for the TOF-binning of the 
data).  

The activity reconstruction was initialized by applying 1 
iteration and 32 subsets of the OSEM algorithm, taking into 
account all attenuating components except the wedge and 
coil attenuations. Using the patient attenuation in 
combination with the OSEM activity reconstruction a 
sinogram mask of the activity support was generated which 
was used to encourage zero attenuation outside the activity 
support [6], [7].  

The attenuation reconstruction was initialized with an 
image of all zeros. Since all but the wedge and coil 
attenuation components have been accounted for during 
OSEM (and will be accounted for during OSAA) updates, 
the attenuation reconstruction will contain these hardware 
attenuating volumes. To further control any attenuation 
buildup (and to minimize changes to the scale problem of 
joint estimation) an intensity prior favoring zero attenuation 
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was active on the entire attenuation volume as well as a 
quadratic smoothing prior. Activity and attenuation 
reconstructions (with a 1:2 update activity to attenuation 
ratio) were generated using 1 iteration of 32 subsets of 
OSAA. 

2.3 Registration 

A template of the head/body coil was subsequently 
rigidly aligned to the reconstructed attenuation image. The 
registration was done using in-house developed tools, 
initially using normalized mutual information as the 
registration cost function, and then using normalized cross-
correlation to refine the 6 estimated degrees of freedom of 
the rigid transform. 

3 Results  
Figure 1 and Figure 2 show the results of our processing 
pipeline for a brain and neck/thorax dataset. Since the 
patient and bed attenuation were accounted for during 
reconstruction, the OSAA attenuation reconstructions only 
contain the missing coil attenuation structures. We see in 
the reconstruction that although parts of the coil attenuation 
have been “smeared”, the high attenuating components and 
high spatial frequency regions are well resolved. These are 
the “control-points” which the subsequent template 
registration operate on. 
 

  
Figure 1 Results of a brain scan dataset; top: original attenuation image, 
center: aligned attenuation image, and bottom: OSAA attenuation 
reconstruction. The red contour is showing the position of the aligned 
coil template.  

 
Figure 2 Same results as in Figure 1 for a two bedposition neck and chest 
scan dataset. 

 

4 Discussion 
PET/MR scans were collected for an ALS research study at 
our institution, where depending on the stage of the disease 
the typical patient positioning was not possible for all 
patients. These patients were scanned with MR coils placed 
on an in-house developed (low attenuating) wedge sitting 
on the scanner bed, which made the scan possible for some 
and slightly more convenient for others. Since the head and 
neck MR coils are assumed to be anchored and fixed to the 
bed by the scanner, additional alignment of the coils was 
required for this study. 
We had access to the PET/MR coil templates used in this 
study, and hence we opted for aligning the coils using the 
TOF-PET data as opposed to reconstructing the additional 
hardware attenuation as proposed in [4]. As a consequence 
no additional scale correction strategies were required 
during OSAA reconstructions, since quantitatively accurate 
attenuation images are not necessary for the alignment. 
Furthermore, we believe that this approach would allow for 
a slightly more accurate scatter simulation, which requires 
further quantification. 

5 Conclusion 
In this work we demonstrate how we have utilized the 
maximum likelihood activity and attenuation reconstruction 
algorithm for the alignment of harware atteruation. The 
processing pipeline was created for data collected from 
patients diagnosed with ALS for which normal patient 
positioning was not possible. We find that although exact 
reconstruction of external attenuating hardware outside the 
activity support is challenging, in cases where a template of 
the hardware attenuation is available, reliable alignment of 

default attenuation 

aligned attenuation 

OSAA attenuation reconstruction 

default attenuation 

aligned attenuation 

OSAA attenuation reconstruction 
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the attenuating medium is possible using the TOF-PET 
emission data. 
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Abstract X-ray diffraction (XRD) has shown its great performance in 

distinguishing molecular level structures of different materials which is 

hopefully to be applied in clinical diagnostics. In the literatures, pencil-

beam X-ray diffraction computed tomography (XRDCT) has been 

studied to improve the spatial-resolution of point-wise XRD scan. Line-

integral XRD projections are reconstructed analytically similar to 

transmission CT. However, in XRDCT imaging, the XRD projection is 

weighted by the scattering solid angle. For a fixed size detector pixel, the 

scattering solid angle is non-uniform along X-ray transmission paths 

which causes artifacts after direct FDK reconstruction. The non-uniform 

solid angle can be modelled by squared-distance weights mathematically. 

In this work, we proposed a correction method for the squared-distance 

weights in the frequency domain of XRD projection data. For validation, 

we simulated the XRDCT scan weighted by non-uniform solid angle 

analytically based on a manually designed digital phantom, the proposed 

method corrected the artifacts caused by solid angle non-uniformity well.   

1 Introduction 

XRD measurs the coherent scattering signal of materials 
which is sensitive to molecular level structures. XRD has 

been a powful component analysing tool in crystallography, 

material science and security screen. Many studies have 

also shown that XRD has the ability distinguishing different 
types of biological tissues. For instance, there are 

significant differencies in the XRD patterns of fat and 

glandular tisssue, which indicates that the XRD inspection 
can be a useful method in breast cancer diagnosis [1-3]. 

Oliveira et. al. used a commercial powder diffractor for nue-

plasias classification [3]. Moss et. al. adopted a pixelated 

energe-dispersive dectecor for breast sample XRD 
inspection, the XRD results were in correspondance with 

histopalogical classification [2]. However, point-wise XRD 

inspection has shown a poor spatial resolution along the X-
ray transmission direction. With the hole size of collimator 

on the detector side being 0.5 mm, the spatial resolution is 

worse than10 mm caused by the small diffraction angle [4], 

which leads to significant partial volume effects for 
biological tissues. Thus point-wise XRD are mainly suitable 

for thin sample inspection.  

XRDCT have been proposed over the decades for 

crystallography as well as diagnostics [5-7]. Generally, an 
XRDCT scan follows the first generation CT scan mode. 

For each measurement in the Radon space, XRDCT collects 

photons scattered along the X-ray transmission path with 
collimator on the detector side removed. With analytical CT 

reconstrution, XRDCT provided XRD pattern information 

accompanied by strtuctural information of improved spatial 

resolution, which is very valuable for non-invasive 
diagnosis. However, one of the differences between 

transmission CT and XRDCT is that the XRDCT projection 

is weighted by the scattering solid angle [7]. For a fixed size 

detector pixel, the solid angle is non-uniform along X-ray 
transmission paths. In most studies, the sizes of inspected 

samples were assumed far smaller compared to the center-

to-detector distance, thus the solid angle can be 
approximated to a constant. However, larger center-to-

detector distance weakens the coherent scattering signal 

greatly. In applications for luggage check or cancer ROI 

imaging in vivo, the center-to-detector distance may be 
reduced to about only twice the ROI radius to increase the 

intensity of scattering signals. When the center-to-detector 

distance is reduced to the magnitude of object size, the 
influence of non-uniform solid angle is not ignorable. The 

non-uniformity of solid angle can be expressed by a 

squared-distance weighting function mathematically. In this 

work, we address the influence of non-uniform solid angle 
in the frequency domain of the XRD projection data, and 

further proposed a mathematical correction method in the 

frequency domain, the artifacts caused by solid angle non-
uniformity were removed in our results of simulation 

experiments. 

 

2 Methods 
2.1 XRDCT physical model 

The linear differential coherent scattering coefficient 

( )coh S

S

 , 







E
 of an amorphous material is given by: 

 
( ) ( )

( ) ( )
2 2

e Scoh S 2A

IAM

S

1 cos ,

2

rE N
F q m q

M

  



+
=


     (1) 

Here, E denotes the incidence X-ray photon energy, S  the 

scattering angle which is generally in the range from three 

to eight degree, er the classical radius of electron, AN  the 

Avogadro constant,   the material density, M  the mean 

relative molecular mass of material, 2

IAMF the molecular 

form factor function determined by the atomic composition 

with independent atomic model (IAM), m  the molecular 

interference function, q  the momentum transfer which is  a 

function of both E and S given by: 
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( )Ssin / 2E

q
hc


=                                 (2) 

where h  is the Planck constant and  c  the speed of light.  

Here, we define the material specific factor in 
( )coh S

S

 , 







E
 

as relative scattering intensity: 2

IAM( ) ( ) ( )f q F q m q
M


. The 

curve ( )f q forms the specific XRD pattern of a material.  

For a two-dimensional slice of a non-uniform object, the  

( )f q  is also a function of spatial location ( , )x y . For 

convenience, we denote ( ), ,f x y q ( )2

IAM , ,F m x y q
M


 to 

address its spatial distribution. 

For a pencil-beam energy-dispersive XRDCT system, a pin-

hole collimator installed in front of an X-ray source. The 

incident pencil-beam X-ray photons are attenuated and 
scattered along transmission paths. Photons scattered by 

materials along X-ray transmission paths are collected by a 

pixelated energy-dispersive photon-counting detector. The 

transmission signals are detected by an additional 
transmission detector placed before the energy-dispersive 

pixelated detector for attenuation correction. The XRDCT 

scanning process is the same as the first-generation parallel-
beam CT scan. The X-ray source, collimator and detector of 

XRDCT system rotate around the iso-center together. At 

each view, the X-ray source, collimator and detector 
translate perpendicular to the X-ray transmission path. Thus 

a full set of XRDCT data is acquired. Each XRD 

transmission path is determined uniquely by the rotation 

angle   and translation position t . We denote the 

transmission path as tranl , the plane that pixelated detector 

for scattered photons as   that is perpendicular to tranl  , 

their intersection point as 
O , the distance from iso-center 

to   as D. An illustration of a pencil-beam XRDCT system 
is in Fig. 1. 

The diffraction signal reaches a unit area in   at a distance 

r  from 
O   can be modelled as: 

( )
( )

( ) ( )

2 2

e AXRD T
1 cos

, , ( , , )
2

, , , , ( cos sin )d d

    

s
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r N
I t E,r I t E
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+
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• + −



        (3)  

Here, ( ) ( ) ( )T 0, , = , , I t E I E T t E measures the influence of 

incident spectrum ( )0I E  and diffraction signal attenuation 

ratio ( ), ,T t E . ( )T , ,I t E  is recorded by the transmission 

detector. The scattering angle 

arctan( )
cos sin

s

r

D y x


 
=

− +
 is at position ,x y  is 

computed from system geometry.

( )
( )

S

22

cos
, , =

cos sin
r x y

r D y x




 


+ − +
 accounts for the 

non-uniform scattering solid angle at position ,x y toward a 

unit area in  . In small diffraction angle situations, 

( )
( )

2

1
, ,

cos sin
r x y

D y x


 
 

− +
.       

We define the diffraction signal without incident spectrum 
weighting and attenuation as intrinsic XRD projection 

denoted by ( )XRD , ,s t E,r . With the small angle 

approximation, the momentum transfer 

( )

( )
Ssin / 2

2 cos sin



 
= 

− +

E Er
q

hc hc D y x
， 

( )XRD , ,s t E,r  can be written as: 
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Figure 1: Perspective view of a pencil-beam XRDCT system with pixelated energy-dispersive detector. 
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Here 2 2

AeA r N D  is a constant. From Eq. 4, the intrinsic 

XRD projection ( )XRD , ,s t E,r  is the function of Er rather 

than the function of independent variables E  and r . Thus, 

we introduce a new variable k Er , the ( )XRD , ,s t E,r  can 

be averaged according to k weighted by transmission signal 

intensity for data dimension reduction and noise reduction: 

( ) ( )
( )
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max max

min min

max max

min min
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= =

−
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     (5) 

Here,  ( , , )g t k denotes the mean XRD projection from 

( )XRD , ,s t E,r . Combining Eq. 4 and 5,  ( , , )g t k can be 

acquired from raw XRD data ( )XRD , ,I t E,r  directly by: 

( )
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max max
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      (6) 

Eq. 6 forms the pre-processing method of raw XRD data 

with attenuation correction and signal average. And 
according to Eq. 4, the final XRDCT model is: 

( )
( )

( )

2

2

, ,
 , , ( cos sin )d d

cos sin

D f x y q
g t k x y t x y

D y x
   

 
= + −

− +


(7) 

Here, 
( )2 cos sin

k
q

hc D y x 
=

− +
. The XRDCT 

reconstruction is to reconstruct ( ), ,f x y q  from XRD 

projection ( ), ,g t k . As displayed in Eq. 7, the XRDCT 

reconstruction is similar to cone-beam transmission CT. 
Previous works adopt either FBP reconstruction assuming 

2

k
q

hcD
 [5, 6] or FDK reconstruction with Taylor 

approximation [7]. The reconstruction method is not 

discussed in this work. Here we only focus on the non-

uniform solid angle weights 
( )

2

2
cos sin

D

D y x − +
 which is 

different from transmission CT reconstruction. 

 

2.2 Solid angle non-uniformity correction in frequency 

domain 

To solve the solid angle non-uniformity weighing problem, 

we consider the 1D Fourier transform of  ( , , )g t k  at 

dimension t : 

( ) ( )( )
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                , , , ,
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Taking partial derivative of  ( , , )G k   with respect to   

gives: 
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We further define the Fourier transform of XRD projection 

with first-order distance weights in denominator as 

( )1 , ,G k  : 

( )
( )

1 ( cos sin )( , , )
, , exp d d

cos sin

j x yDf x y q
G k x y

D y x

   
 

− +

− +  

(10) 

The first term in Eq. 9 becomes 1( - )j D G G . The second 

and third terms are actually the residual terms between 1G  

and G . We approximate the denominators of the second 

and third term in Eq.9 as:  

3 2

1 1

( cos sin ) ( cos sin )D y x D D y x   


− + − +
    (11) 

With the approximation, Eq. 9 can be simplified as: 
2

1

2 2
+ 2

G G k G
G G

j D D D k     

  
= + +

   
            (12) 

With Eq. 12, the second order distance weights in 

denominator is reduced to first order.  

Further define the Fourier transform of XRD projection 

without non-uniform solid angle as ( ), ,P k  : 

( ) ( ) ( cos sin ), , , , exp d dj x yP k f x y q x y    − +

      (13) 

Similar to Eq. 12, ( ), , P k  can be acquired with: 

1 1 2 1
1

2 2

G G k G
P G

j D D D k     

  
= + + +

   
            (14) 

The ideal XRD projection without non-uniform solid angle 

weights can be acquired through I-Fourier transform on   

( ), ,P k  . 

The non-uniform solid angle correction process can be 

concluded as: 

(1) Calculate the Fourier transform of ( ), ,g t k  to acquire 

( ), ,G k  . 

(2) Estimate the ( )1 , ,G k  with Eq. 12. 

(3) Estimate the ( ), ,P k   with Eq. 14. 

 

3 Experiments and  results 

In our simulation experiments, we adopted a 90 mm 

diameter manually designed phantom containing water, 
glandular, fat and bone as shown in Fig. 2 (a). The energy-

dispersive detector was set of 100 mm 100 mm with 

detector bin size 1 mm and the energy bin was set 1keV. 

The detector was placed at 150 mm away from the iso-
center. We compared direct FDK reconstruction of the 

original XRD projection (referred as FDK), FDK 

149



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                     19 - 23 July 2021, Leuven, Belgium 
 

reconstruction of the XRD projection corrected with the 
proposed method (referred as Corrected-FDK). We also 

simulated FDK reconstruction of XRD projection without 

solid angle weights for reference (referred as Reference-
FDK). As the XRDCT physical model does not satisfy data 

completeness condition, cone-beam artifacts are not 

avoidable at XRD pattern peak positions. In this work, we 

do not discuss the cone-beam artifacts, and Reference-FDK 
is treaded as the up-limit performance for the solid angle 

correction step. The cone-beam artifacts and discrete 

artifacts in Corrected-FDK are similar to those in 
Reference-FDK. 

 

A. Simulation study of ideal configuration  

To evaluate the accuracy of the proposed correction method 

with the influence of discrete error and noise avoided, we 

set simulation sampling rate during scan high enough and 
the projection noise free. In this ideal configuration study, 

there were 320 translation steps under each view with 

translation step interval 0.3375 mm, and there were 360 

views uniformly distributed over  2 . The reconstruction 

image was of 256 256  grids with pixel size 0.36 mm. The 

reconstruction results at fat XRD pattern peak q=1.12 nm-1  
were displayed in Fig. 2. 

In Fig. 2, the artifacts caused by non-uniform solid angle are 

majorly low frequency bright artifacts which is structure 

related, while there are also weak dark artifacts near fat. The 
proposed method corrected the non-uniform solid angle 

well, and the Corrected-FDK reconstruction was similar to 

Reference-FDK. The relative root mean square error 
(RRMSE) between Reference-FDK and Corrected-FDK 

was 0.0117, while the RRMSE between Reference-FDK 

and FDK was 0.1313. Quantitative results also confirmed 

the accuracy of the proposed correction method. 

 

B. Simulation study of realistic configuration 

In practical XRDCT scans, the sampling rate is lower 
limited by the pin-hole size on the collimator and scan time.  

For the realistic configuration, we set 80 translation steps 

under each view with step interval 1.35 mm, and 90 views 
uniformly distributed over  2 . The pin-hole was a square 

hole with height and width 0.5 mm. The X-ray source was 

placed 150 mm from the collimator, the source voltage was 
80kVp and incident tube current time was 24 mAs for each 

beam. Poisson noise was added to ( )XRD , ,I t E,r with mean 

photon counts estimated analytically. The reconstruction 

image was of 64 64  grids with pixel size 1.44 mm. When 

calculating projection differential operation in Eq. 12 and 
Eq. 14, we smoothed the noisy XRD projections at the other 

two dimensions except the differential dimension for noise 

reduction. Ground-truth and the results of Reference-FDK, 
FDK and Corrected-FDK were displayed in Fig. 3. And the 

profiles of different methods at the red line in Fig. 3 were 

compared in Fig. 4. 

In this realistic configuration study, although the sampling 

rate was low, and the noise was not-ignorable, the results 

 
Figure 2: FDK reconstruction results of different XRD 

projections under ideal configuration. Martial 0: water, material 

1: glandular, material 2: bone, material 3: fat. (a) Ground-truth, 

(b) Reference-FDK, (c) FDK, (d) Corrected-FDK, display 

window: [0.5,4.5] mm-1; (e) is the difference between (a) and 

(b), (f) is the difference between (a) and (c), (g) is the difference 

between (a) and (d), display window: [-0.5, 0.5] mm-1. 

1 2
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3
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(e) (g)(f)

 
Figure 3: FDK reconstruction results of different XRD 

projections under realistic simulation condition. (a) Ground -

truth, (b) Reference-FDK, (c) FDK, (d) Corrected-FDK, display 

window: [0.5,4.5] mm-1; (e) is the difference between (a) and 

(b), (f) is the difference between (a) and (c), (g) is the difference 

between (a) and (d), display window: [-0.8, 0.8]. 

(a) (b) (c) (d)

(e) (g)(f)

 
Figure 4: Comparison of profiles of different reconstruction 

results. 
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were still in consistent with ideal simulation results 
suggesting the robustness of the proposed method.  

4 Conclusion  

In XRDCT, the XRD projection differs from a general cone-
beam transmission CT projection by a weighting term. The 

weighting term is due to the scattering solid angle according 

to its physical model. The scattering angle is non-uniform 

along the X-ray transmission path and it introduces 
aditional artifacts to analytical reconstruction results if 

treated as a general cone-beam projection reconstruction 

problem. In mathematics, the solid angle weights are in a 
squared-distance form. In this work, we addresed the 

influence of the weights in the frequecy domain of the 

projection data. The residual terms were well corrected in 

frequency domain, and the artifacts caused by the solid 
angle non-unifomity were restored after reconstruction in 

simulation studies in both ideal and realistic situations. The 

solid angle non-uniformity problem is one problem in 
XRDCT reconstruction. The scattering angle also varies at 

different locations, it transforms the XRDCT reocnstruction 

to a more complicated 3D reconstruction problem. 
Reconstructed with traditional FDK methods, cone-beam 

artifacts may further degrades the results significantly. We 

will further work on the XRDCT analytical reconstruction 

methods to improve thereconstruction accuracy. 
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Abstract The Ultra-fast Monte Carlo PET simulator (UMC-PET) is an 

accurate, fast and flexible PET simulator which has been developed for 

multiple purposes. The UMC-PET was tested against other MC PET 

simulators such as PeneloPET, obtaining similar results while being more 

than 3000 times faster. These features allow applying the UMC-PET for 

a 3D iterative reconstruction, with a projection step based on, on-the-fly, 

raw, MC calculations and thus avoiding physics simplifications in the 

system response matrix.  We compared this novel reconstruction scheme 

with traditional projection techniques combined with Monte Carlo based 

scatter correction. On a single common GPU (500 USD) these fully MC 

reconstructions require a few hours for a scanner with > 1 billion lines of 

response. This provides not only a useful and flexible gold standard 

method, but may become a practical reconstruction approach if it is 

combined with variance reduction methods and/or high performance 

multi-GPU systems.  

1 Introduction 

 

Positron Emission Tomography (PET) is a complex medical 

imaging technique that involves many processes related to 

nuclear and particle physics, optics inside the detectors, and 

biological processes [1]. In order to predict the scanner 

performance before manufacture, it is important to have fast 

and accurate models capable of reproduce all the nature of 

the technique. Monte Carlo (MC) methods allow us to 

precisely model all the physics involved, such as positron 

range, scatter and attenuation inside the patient, photon 

interaction with the scanner, and detector response [2]. 

Furthermore, the current development of parallel 

computing with GPU affords to speed up the simulation 

codes several orders of magnitude [3]. Simulators must also 

be prepared to be flexible since state-of-the-art scanners are 

being focused on dedicated geometries that require arbitrary 

morphologies [4]-[5]. 

MC simulators may also be used to improve image quality 

via corrections implemented in the reconstruction software. 

The ordered subsets expectation maximization (OSEM) [6] 

is the most commonly used algorithm for PET 

reconstruction, and its success depends on the accuracy of 

the System Response Matrix (SRM) in the projection 

kernels. Furthermore, scatter and attenuation corrections are 

usually approximated instead of using a realistic MC 

approach. 

We present a fast, accurate, and flexible Ultra-fast Monte 

Carlo PET simulator (UMC-PET), a GPU-based code that 

implements all the aforementioned physics in a flexible 

framework that allows to simulate any kind of scanner. We 

also propose to use the UMC-PET directly in the 

reconstruction, for scatter estimation, and implement it as a 

realistic projector in the OSEM algorithm. 

 

2 An Ultra-Fast Monte Carlo PET simulator 

 

The UMC-PET simulator has been developed focusing in 

three aspects: accuracy, flexibility and speed. 

 

2.1 Accuracy  

The UMC-PET simulator included the most relevant 

physics related to the emission, transport and detection of 

photons inside a PET acquisition. The positron range was 

modeled using the convolution kernels developed by J. Cal 

et al. [12]. Non-collinearity is modeled with a gaussian 

distribution for the deviation angle 0.5 degrees FWHM. The 

photon interaction cross sections of photoelectric effect, 

Compton scatter, and Rayleigh scatter were taken from 

PENELOPE [13]. Only annihilation photons with 511 keV 

energy were considered. The energy resolution and time 

resolution are implemented using a gaussian distribution. 

For multiple crystal events, the Anger logic has been 

implemented in the crystal pixel identification. 

The time evolution was not implemented, and therefore the 

exponential decay rule for activity and random or multiple 

events are not included.  

 

2.2 Speed 

The code was implemented using PGI CUDA Fortran 

Compiler, which gives the possibility to define CUDA 

kernels to be run in NVIDIA GPUs.  

 

2.3 Flexibility 

The UMC-PET easily adapts to any kind of scanner 

geometry. The scanner geometry, patient composition, and 

source distribution are described in voxellized images that 

are loaded in the GPU global memory, thus allowing to 

simulate any kind of predefined geometry. With this 

framework, several scanners have already been successfully 

simulated, like the 6R-SuperArgus (see section 3), and other 

spherical morphologies [7]. 
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3 Materials 

 

Two preclinical scanners based on the GE healthcare 

eXplore VISTA scanner [8] were implemented in this work, 

the 2R-Argus PET/CT, and the 6R-SuperArgus PET/CT 

(Sedecal Medical Imaging). Both were based on 13×13 

double layer modules of LYSO-GSO pixellized scintillator 

phoswich of 1.55 mm crystal pitch. The 2R-Argus scanner 

consisted of two rings of 18 modules with 118 mm 

diameter, a transversal field of view (FOV) of 70 mm and 

axial FOV of 50 mm. The 6R-SuperArgus is made of six 

rings of 24 modules with 178 mm diameter, 130 mm 

transversal FOV and 150 mm axial FOV. 

An acquisition following the NEMA NU4-2008 [9] 

protocol was used to measure the percent standard deviation 

of the uniform region against the recovery coefficient (RC) 

in an image quality (IQ) phantom for the preclinical 6R-

SuperArgus PET/CT scanner. 

 

4 Validation 

 

We have tested the UMC-PET accuarcy against the latest 

version of PeneloPET [2], a validated PET simulator. In this 

section we have simulated the NEMA NU 4-2008 [9] rat 

phantom for the scatter fraction (SF) study inside the 6R-

SuperArgus scanner. Since the UMC-PET does not 

simulates the time evolution, the scanner parameters for the 

PeneloPET simulation were set to avoid random 

coincidences (ideal time resolution).  

As stated in the NEMA protocol, the sinograms for each 

simulation were centered to the maximum of each angular 

bin, and angularly and axially collapsed. In fig. 3, the 

resultant radial profiles for two energy windows are shown. 

The SF calculated is shown in table I.  

 

 Rat SF (%) 

 (keV) 425-600 100-700 

UCM-PET 11.2 24.7 

PeneloPET 11.5 24.9 

Table I. Scatter Fraction (SF) for the rat-like phantoms with 

UMC-PET and PeneloPET for two different energy 

windows. 

 

The code was executed in an Intel(R) Xeon(R) W-2155 

CPU @ 3.30GHz with a single 11 Gb GeForce RTX 2080 

Ti GPU, with 4352 cores. We compared the timing 

performance against PeneloPET [2] running in a single 

Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz, obtaining a 

ratio of 3.25·107 decays per second for the UMC-PET, 

whereas PeneloPET achieved 1.7·104 decays per second. 

 

5 Image reconstruction implementations 

 

5.1 Geometrical projection scheme with Spatially 

Variant PSF (SV-PSF) 

The SRM is separated in geometrical projections combined 

with a gaussian Point Spread Function (PSF) [10]. We will 

compare the use of a homogeneous PSF and a variable PSF 

based in point source simulations to correct DOI effect. The 

attenuation correction is estimated based on the CT image, 

and the scatter correction is estimated using the UMC-PET 

simulator (fig. 4.1). Both factors are included in the 

projection scheme. 

 

5.2 UMC-PET projection 

A homogeneous object with the correspondent CT was 

simulated to obtain a list of events emission voxel-

coincidence LOR. To estimate the projections, in each 

OSEM iteration we run over the list and accumulate the 

image values of the emission event for each coincidence 

LOR (fig. 4.2). Since the projection statistics are limited, 

this methodology was combined with a MAP-OSEM [11] 

Fig. 3. Comparison of the axially and angularly collapsed 

profiles for the NEMA NU 4-2008 rat-like phantom for 

two different energy windows (425-600 keV and 100-700 

keV). 

Fig. 4. Schematic representation of the suggested 

reconstruction methods. 
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preconverged image with very low noise and resolution 

(fig. 4.3).  

 

5.3 symUMC-PET projection 

We use the projection scheme in subsection 5.2 without the 

CT to explode the scanner symmetries, and the attenuation 

and UMC-PET scatter corrections in subsection 5.1. The 

corrections are incorporated to the symUMC-PET 

projection in the OSEM algorithm.  

 

6 Results 

 

6.1 Simulation of a micro Derenzo phantom in the 2R-

Argus scanner.  

 

 

The simulated micro Derenzo phantom has been located at 

the edge of the FOV (25 mm off-center) to increase the DOI 

effects. The rods diameter were 0.6 mm, 0.8 mm, 1.0 mm, 

1.2 mm, 1.4 mm and 1.6 mm, and the rods to background 

activity ratio was 4:1. In this case, no object was inserted in 

order to test the image quality separately to the scatter and 

attenuation corrections. The UMC-PET simulation with 

~1.78·109 coincidences took less than 20 minutes, and each 

iteration took 24 seconds, resulting in an image 

reconstruction in less than 2 hours. 

 

6.2 Image Quality phantom in the 6R-SuperArgus 

scanner 

The IQ phantom described in fig. 6 (1.08·108 coincidences) 

was reconstructed with all the methods in section 5. The 

noise, recovery coefficients and spill over were measured as 

stated in the NEMA NU 4-2008 protocol (the regions under 

study are schematized in fig. 6), and the results are 

summarized in fig. 7 and table II. Figure 7 shows the 

evolution of the recovery and spill over against noise when 

we increase the number of iterations.  

The simulation of the events list used for the UMC-PET 

projector took 12 hours to generate ~6.4·1010 events. The 

reconstruction took 4 minutes and 37 seconds per iteration, 

resulting in a total reconstruction of 17 hours (60 iterations). 

Fig. 5. Reconstruction of the simulated micro Derenzo 

phantom with fixed PSF, variable PSF, and the UMC-

PET projection. The line profile along the 0.6 mm rods 

and 1.0 mm rods is shown. 

Fig. 6. Scheme of the image quality phantom of the 

NEMA NU 4-2008 [9] (left) and regions for 

quantification of noise (center, green region in the 

uniform region of the phantom), recovery coefficients 

(right top, yellow regions in the rods; transversal top 

view), and spill over (right bottom, blue regions in the 

non-active inserts filled with water and air; transversal 

bottom view). 

Table II. Noise, spill over, and recovery coefficients for the IQ phantom (fig. 6) in the 6R-Super Argus scanner (1.08·108 

coincidences) for all the methods in section 5. The SV-PSF is tested with and without MAP-OSEM preconverged input 

image (all the UMC-PET based methods include the input image). The UMC-PET (filt) was post-filtered with a gaussian 

FWHM of 0.75 mm. 
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In the symUMC-PET projection, the events list took 4 hours 

to generate ~5.1·1010 events, and each iteration took 7 

minutes. Since the events list can be generated in advance, 

the image reconstruction with 60 iterations took than 7 

hours.  

 

7 Discussion 

 

The UMC-PET has been tested against Penelopet, a realistic 

and validated PET simulator, showing great agreement in 

the sinogram distribution of detected activity. Further 

validation would require testing it against a real scanner 

acquisition.  

One of the main goals of this simulator was to accurately 

predict the SRM. For this reason, the physics related to time 

evolution were not implemented. Furthermore, the 

implementation of a global timing in the simulation may 

require processing the single events sequentially, 

complicating the computational parallelization of the code 

in the GPU. However, if necessary, a list of single events 

generated with the UMC-PET simulator might be post 

processed to include the global time stamps. 

The line profile shown in fig. 5 proves the image quality 

gain when the SRM is optimized. In table II, the results for 

the recovery and spill-over for the UMC-PET projector 

outperform the traditional projection scheme. The recovery 

coefficients show promising improvements against the 

standard methods, although the overshoot should be 

reduced. In the other hand, the noise in the projections must 

be reduced as well since the UMC-PET projector itself 

raised the noise without increasing image quality and 

regularization methods were necessary to achieve practical 

results (see fig. 7 and table II). The symmetries helped to 

increase the statistics in the projection and reduce the 

overshoot. The spill over obtained the best results with the 

UMC-PET projector without symmetries. Since the scatter 

is obtained in both cases using the UMC-PET simulator, we 

assume that the differences may relay in the evolution of the 

scatter estimation within each image update.  

The reconstruction times of the UMC-PET projector were 

very high for practical use (17 hours and 7 hours for each of 

the presented examples) and will vary depending on the 

scanner and image size. For this reason, the proposed 

method is presented as a gold standard that might not be 

available for daily use. The use of multiple GPUs will help 

to reduce the computation time, and further strategies to 

optimize the PSF implementation will be studied.  

 

8 Conclusion 

 

The UMC-PET simulator is a flexible, fast and accurate 

PET simulator based on Monte Carlo methods and GPU 

acceleration. The simulator might be used to simulate any 

kind of scanner geometry. Its high-performance allows to 

use it for real time scatter prediction and gold standard 

reference for reconstruction. However, more optimizations 

in the code and variance reduction methods might be 

necessary to reduce the computation time to practical 

applications. 
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Abstract Limited-angle based cone-beam computed tomography 
(CBCT) acquisition can reduce the imaging dose, shorten the scan time, 
and allow fast and continuous tumor/target localizations throughout arc-
based radiotherapy treatments. The lack of sufficient scan angle spans, 
however, leads to severe distortions/artifacts in the reconstructed CBCT 
images by traditional reconstruction algorithms. In comparison, 2D-3D 
deformable registration can deform a prior fully-sampled CT/CBCT 
volume to estimate a high-quality CBCT, by a deformation vector field 
(DVF) solved using only limited-angle projections. The CBCT images 
estimated by 2D-3D deformable registration can successfully suppress 
the distortions and artifacts by incorporating prior information, and 
reflect up-to-date patient anatomy through deformation. However, 
currently the 2D-3D deformable registration algorithm is limited by its 
computational speed, which can take up to several hours to converge to 
an accurate DVF. In this study, an end-to-end, unsupervised 2D-3D 
deformable registration framework (2D3D-RegNet) was developed 
using convolutional neural networks to address the speed bottleneck of 
the conventional iterative 2D-3D deformable registration algorithm. 
2D3D-RegNet can solve the DVFs in < 5 seconds for 90 orthogonally-
arranged projections covering a combined 90⁰ scan angle, with DVF 
accuracy superior to 3D-3D deformable registration, and on par with the 
conventional 2D-3D deformable registration algorithm.  

I Introduction 

    For radiotherapy treatments, fast and accurate imaging-
guided tumor localization is often needed to account for 
anatomical motion/deformation, and to pinpoint the 
radiation to the tumors and avoid surrounding healthy 
organs. Limited-angle CBCT, which is acquired through a 
partial arc rotation, can allow 3D imaging at a high 
temporal resolution [1]. A limited-angle acquisition also 
naturally reduces the overall imaging dose to patients, and 
may allow continuous tumor localizations through arc-
based radiotherapy deliveries. However, the image quality 
of limited-angle CBCT is severely affected by the poor 
resolution along the direction perpendicular to the scan 
angle due to partial Fourier domain sampling [2].  
    2D-3D deformable registration, which is a technique 
that solves a DVF to map a previously acquired fully-
sampled CT/CBCT (source) to a new on-board CBCT 
(target) via 2D projection matching, can be particularly 
effective under the limited-angle sampling scenario [1]. 
The combination of a priori high-quality information from 
the source image, and on-board information from limited-
angle projections, can effectively mitigate the under-
sampling issue to render high-quality on-board CBCT 
images. Instead of measuring the similarity directly 
between a deformed source image and the artifacts-ridden 
limited-angle CBCT image, 2D-3D deformable 
registration calculates the similarity between the projected 
2D digitally reconstructed radiographs (DRRs) of the 
deformed 3D source image and the 2D artifacts-free on-

board projections. 2D-3D deformable registration has been 
investigated in recent years for its potential in sparse-view 
and limited-angle projection based CBCT estimation with 
very promising results [1, 3]. However, the current 2D-3D 
deformable registration algorithms involve a very 
computationally-expensive optimization scheme, with 
considerable runtimes up to hours needed to derive a high-
accuracy DVF even with GPU acceleration.  
    To address this issue, we developed an unsupervised, 
end-to-end, 2D-3D deformable registration network 
(2D3D-RegNet) on the basis of a core U-net structure, 
which proved effective in handling various image domain 
tasks [4]. A simple Feldkamp-Davis-Kress (FDK) 
reconstruction module was included into the 2D3D-
RegNet to align the 2D projections with the source image 
to feed into the U-net as parallel channels [5]. Forward 
projection module was also included into the network to 
generate 2D DRRs from the deformed 3D source images 
to assess their match to 2D target cone-beam projections. 
A DVF inversion module was included in the 2D3D-
RegNet to invert the forward DVF to promote inverse 
deformation consistency, which also adds additional 
constraints and regularizations for the ill-conditioned 2D-
3D deformable registration problem. Different limited-
angle sampling scenarios were simulated to evaluate the 
accuracy of 2D3D-RegNet against the traditional 2D-3D 
deformable registration algorithm, and against a 
mainstream, open-source 3D-3D deformable registration 
package (Elastix) [6].  

II Materials and Methods 

II.A. Network structures 

Fig. 1 shows the overall workflow of 2D3D-RegNet. 
The function and design of each of the modules were 
introduced as following: 

II.A.1. Reconstruction layer: 

The input source 3D images and the cone-beam 
projections are of different physical properties, on different 
image reference frames, and also of different 
dimensionality and resolution. To align the two inputs as 
parallel channels, we added a GPU-enabled, non-trainable 
reconstruction layer on the basis of the 3D FDK algorithm 
to convert the 2D projections into the 3D image domain 
[7].  The FDK-reconstructed target image and the source 
image were concatenated as two channels to input into a 
following U-net core structure to solve the DVFs.  
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II.A.2. U-Net core: 

    In this study, we used U-net as the core structure to 
generate the DVFs [4]. The U-net structure starts with a 
16-filter convolutional layer, which was followed by four 
down-sampling convolutional layers (stride of two) of 16, 
32, 32, and 32 filters, respectively. The expansive path 
features four layers symmetric to the contractive path, with 
each layer composed of up-sampling, concatenating skip 
connection, and convolution (32 filters) operations. The 
output of the expansive path was further convolved by 
three additional layers of 16, 16 and 3 filters, respectively. 
The final 3-filter convolutional layer yields a DVF output 
the same size as the original image, with three channels 
each representing the DVF along one Cartesian direction 
(x, y and z). All convolutional filters are of size 3 x 3 x 3, 
and each convolution operation was followed by a 
LeakyRelu activation with parameter 0.2. 

II.A.3. DVF inversion layer: 

    The U-net core structure outputs the forward DVF that 
maps the source image to the target image. Contrary to the 
forward DVF, inverse DVF maps the target image back to 
the source image. The simultaneous solution of the inverse 
DVF along with the forward DVF is desired for many 
applications [8]. The solution of inverse-consistent DVF 
pairs also further regularizes and improves the DVF 
accuracy. In 2D3D-RegNet, we incorporated a DVF 
inversion layer based on the iterative fixed-point method to 
generate the inverse DVFs [9].     

II.A.4. Forward projection layer: 

    To compute the similarity metric in the 2D projection 
domain, a GPU-enabled, non-trainable forward projection 
layer was incorporated as a network layer, which computes 
2D cone-beam projections from the deformed images 
using the Siddon’s ray-tracing algorithm [7]. The 
conjugate filtered backprojection operation (FDK) was 

registered as the gradient of the network layer when back-
propagating the gradient of the designed network.  

II.B. Loss function design 

    In 2D3D-RegNet, we defined three different loss 
functions to train the network. The 1st loss term (𝐿𝑜𝑠𝑠ଵ) 
measures the similarity between the input 2D cone-beam 
projections and the DRRs projected from the deformed 
source image (Equation set 1, Fig. 1). It serves as the main 
data fidelity term to drive the optimization of the DVF (𝒗). 

                  𝐼ௗ =  𝐼௦௨(𝒙 + 𝒗),                                                                 
                            𝐿𝑜𝑠𝑠ଵ = 𝐷 (𝐴 ∗ 𝐼ௗ, 𝑃௧௧)                   (1) 
𝐼௦௨ indicates the source image to be deformed. 𝒙 
indicates the Cartesian coordinates of 𝐼௦௨  voxels, and 
𝒗 indicates the corresponding DVF at each voxel 
coordinate. 𝐼ௗ represents the deformed source image. 
𝑃௧௧ indicates the on-board acquired target 2D 
projections. 𝐴 is the system matrix that maps 𝐼ௗ onto the 

𝑃௧௧ reference frame. 𝐷 indicates the image similarity 
metric (mean squared error for this study). 

    The 2nd loss term (𝐿𝑜𝑠𝑠ଶ) is the inverse similarity loss, 
based on the inverse DVF generated from the DVF 
inversion layer (II.A.3). In the DVF inversion layer, the 
inverse DVF (𝒗𝒊𝒏𝒗) was calculated via an iterative fixed-
point conversion scheme as [9]: 

                   𝒗𝒊𝒏𝒗
𝟎 =  0,    

𝒗𝒊𝒏𝒗
𝒏 =  −𝒗 ൫𝒙 +  𝒗𝒊𝒏𝒗

𝒏ି𝟏൯,     𝑛 = 1, … , 𝑁              (2) 
𝑛 indicates the iteration number, with its maximum 𝑁. To 
strike a balance between the computational/memory load 
and accuracy, we set 𝑁 = 7. 𝒗𝒊𝒏𝒗 yields the corresponding 
𝐿𝑜𝑠𝑠ଶ as shown in Equation set 3: 

                       𝐼௩ିௗ =  𝐼ௗ(𝒙 + 𝒗𝒊𝒏𝒗), 

Figure 1. The overall 2D3D-RegNet structure 
and workflow. 
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                  𝐿𝑜𝑠𝑠ଶ = 𝐷 (𝐴 ∗ 𝐼௩ିௗ, 𝐴 ∗ 𝐼௦௨)              (3) 
This loss term serves to measure the similarity between the 
inversely-deformed 𝐼௩ିௗ and the original 𝐼௦௨, 
enforcing the inverse-consistency of the DVF.  

    The 3rd loss term (𝐿𝑜𝑠𝑠ଷ) for the network training 
calculates the DVF energy and enforces the DVF 
smoothness:  

E(𝒗) = ∑ ∑ ∑ ∑ ൬ቀ
డ௩

డ௫
ቁ

ଶ
+   ቀ

డ௩

డ௬
ቁ

ଶ
+ ቀ

డ௩

డ௭
ቁ

ଶ
൰ୀ௫,௬,௭

ೖ
௭ୀଵ

ೕ

௬ୀଵ

௫ୀଵ      (4) 

In Equation 4, 𝑚 indicates one of the three Cartesian 
directions 𝑥, 𝑦 and 𝑧. 𝑣 indicates the DVF along the 
corresponding 𝑚 direction. 𝑛, 𝑛 and 𝑛 indicate the 
image dimension along the three Cartesian directions.  

II.C. Training and testing scheme 

    To train the 2D3D-RegNet, we used 4D-CT lung 
datasets from two public libraries: the cancer imaging 
archive (TCIA) [10] and the CREATIS laboratory [11]. A 
total of 26 4D-CT sets were used as our training dataset. 
Each 4D-CT set has 10 respiratory phase volumes. For 
each 4D-CT, we extracted the end-expiration phase as the 
3D source image, and simulated 2D cone-beam projections 
from all phases (including the end-expiration phase) for 
2D-3D registration. The projection matrix was simulated 
in full-fan mode with 512 x 512 pixels, with each pixel 
measuring 0.8 mm x 0.8 mm in dimension. The projections 
were simulated under two limited-angle acquisition 
scenarios: (1). Single-view: projections distributed over a 
single-angle spanning around the anterior-posterior (AP) 
direction of the patient; and (2). Ortho-view: projections 
distributed over two orthogonally-arranged angles, one 
along AP, and the other along the left lateral direction. A 
total of 50000 iterations were used to train 2D3D-RegNet, 
which took ~72 hours on a NVIDIA V100 GPU card 
(NVIDIA Corporation, Santa Clara, CA). Independent 
models were developed and trained for each of the angular 
acquisition scenarios.  

    We used an independent in-house 4D-CT lung dataset to 
test the 2D3D-RegNet. The corresponding dataset has 12 
lung patient cases, and each has 10-14 respiratory phase 
volumes. The end-expiration phase of each case was 
selected as the source image, and cone-beam projections 
were simulated from the end-inspiration phase volume. 
The end-inspiration phase was used for testing as it has the 
largest extent of deformation from the source image, and 

could better assess the accuracy of 2D3D-RegNet. Both 
the relative error (RE) of the deformed images and the 
target registration error (TRE) of the solved DVFs were 
assessed to compare different algorithms [3].  

III Results 
As shown in Fig. 2, the limited-angle projections from 

a single-view yielded significant artifacts and structure 
distortions in the reconstructed FDK images (Target-
FDK). Correspondingly, direct 3D-3D deformable 
registration by Elastix is error-prone, which generated 
severe distortions in the deformed images (Elastix). For 
the Elastix registration, we used a region-of-interest mask 
to exclude regions outside the imaging field-of-view to 
account for the limited projection size, which however is 
unable to suppress the strong distortion artifacts from 
limited-angle sampling. In comparison, 2D3D-RegNet has 
preserved the image integrity and did not introduce the 
distortions into the deformed image (2D3D-RegNet). It 
also deformed the lungs to well match with the ground-
truth target images (Target-GT). Quantitative results 
shown in Table 1 echoed the images presented in Fig. 2. 
The 2D3D-RegNet substantially improved the accuracy of 
the estimated CBCT images through the deformation-
driven approach, as compared to that of the CBCT images 
directly reconstructed by the FDK algorithm. The 2D3D-
RegNet also outperformed the Elastix in terms of the 
accuracy of the deformed images and the accuracy of the 
DVFs. Increasing the scan angle expectedly improves the 
accuracy of 2D3D-RegNet. With the same total scan 
angles, projections acquired from an orthogonal-view 
setting yielded better results than those acquired from a 
single direction, due to the complimentary information 
offered from the orthogonal directions. Comparing the 
traditional 2D-3D deformable registration with 2D3D-
RegNet, under the single-view scan angles their results are 
similar (2D3D-RegNet performed better on the TRE 
metric), while under the orthogonal-view scan angles the 
traditional 2D-3D deformable registration algorithm 
performed better in the RE metric. Speed-wise, the 2D3D-
RegNet solved DVFs for image volumes of size 256 x 256 
x 256 in < 5 seconds at test time. In comparison, the 
iterative 2D-3D registration technique takes ~1.5 hours for 
30 projections, and 4-5 hours for 90 projections.  

Metrics Target Registration Error (TRE, mm) Relative Error (RE, %) 
Scan Angle Scenarios Elastix  2D-3D Def 2D3D-RegNet FDK Elastix  2D-3D Def 2D3D-RegNet 

single
-view 

0⁰  28.4 ± 17.7 6.4 ± 4.7 5.4 ± 4.1 155.3 ± 20.0 53.7 ± 8.9 21.3 ± 3.4 20.4 ± 3.0 
15⁰  29.3 ± 18.2 5.5 ± 4.1 4.8 ± 3.5 113.0 ± 15.2 53.4 ± 8.7 19.6 ± 3.1 18.2 ± 2.8 
30⁰  25.0 ± 16.8 5.2 ± 4.0 4.6 ± 3.5 95.3 ± 12.9 53.5 ± 9.9 18.1 ± 2.9 17.7 ± 2.8 
60⁰  14.0 ± 9.3 4.6 ± 3.7 4.3 ± 3.4 72.5 ± 8.5 44.6 ± 8.5 15.5 ± 2.5 16.1 ± 2.5 
90⁰  7.0 ± 5.3 5.0 ± 3.9 4.3 ± 3.3 57.1 ± 5.7 41.0 ± 7.9 15.0 ± 2.8 15.3 ± 2.4 

ortho-
view 

0⁰ (0⁰ each) 9.4 ± 6.0 6.0 ± 4.4 5.4 ± 3.7 133.2 ± 19.0 36.8 ± 5.1 17.8 ± 2.7 19.2 ± 2.4 

15⁰ (7.5⁰ each) 9.5 ± 6.2 4.7 ± 3.5 4.8  ± 3.4 105.3 ± 15.6 36.3 ± 5.4 13.8 ± 2.5 16.3 ± 2.8 
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30⁰ (15⁰ each) 8.8 ± 6.2 4.3 ± 3.4 4.5 ± 3.4 90.3 ± 13.1 34.1 ± 5.4 12.4 ± 2.1 15.4 ± 2.5 
60⁰ (30⁰ each)  7.3 ± 5.8 4.0 ± 3.3 4.1 ± 3.1 67.8 ± 10.6 29.3 ± 4.9 11.2 ± 1.6 14.8 ± 2.4 
90⁰ (45⁰ each)  5.4 ± 4.6 3.8 ± 3.1 3.9 ± 3.0 52.0 ± 9.9 24.3 ± 4.6 11.1 ± 1.5 14.4 ± 2.1 

Table 1. Comparison between the target registration errors (TREs) of DVFs, and the relative errors (REs) of images solved by different methods, using different scan 
angle schemes. FDK: Feldkamp-Davis-Kress (reconstruction algorithm). Def: deformation. 
 

 

IV Discussion 
    To address the speed bottleneck of current iterative 2D-
3D deformable registration techniques, we developed an 
end-to-end, unsupervised 2D-3D deformable registration 
network to allow near real-time DVF solution. Visual 
comparisons of the deformed images (Fig. 2), and 
corresponding quantitative evaluations of these images and 
the solved DVFs (Table 1), demonstrated the superiority of 
2D3D-RegNet over the conventional FDK reconstruction 
algorithm, and a 3D-3D registration method (Elastix). In 
the current 2D3D-RegNet structure, we reconstructed the 
2D projections at the beginning to a 3D volume via FDK 
to align with the source 3D image, such that both can be 
conveniently fed into a subsequent U-net core as parallel 
channels. The FDK reconstruction is a degenerative 
process, especially considering the 2D projections are 
limited-angle, which leads to severe under-sampling 
artifacts in the reconstructed images (Fig. 2). However, 
since the image similarity metric is measured by 2D3D-
RegNet on re-projected 2D DRRs of the deformed image, 
instead of directly on artifact-ridden 3D images, the final 
deformation results are superior to direct 3D image-
domain registration, with artifacts and distortions 
successfully suppressed.  

The results also showed that 2D3D-RegNet 
performed similarly to the traditional iterative 2D-3D 
registration algorithm (Table 1), while with substantially 
improved efficiency (< 5 seconds as compared to hours). 
However, the iterative 2D-3D registration algorithm 
generated comparatively smaller REs than 2D3D-RegNet 
(Table 1) under ortho-view scan angles. The discrepancy is 
potentially due to the artifacts and the distortions presented 
in the FDK input channel when the projections from two 
distinct, orthogonally-arranged scan angles were mixed 
together in reconstruction, as well as the loss of 
information from the degenerative FDK reconstruction 
process (Fig. 2). Potential solutions to further improve the 
accuracy of 2D3D-RegNet include adding additional 

image filtration or enhancement layers after the 
reconstruction module, or directly inputting the 2D 
projections into the network without explicit 
reconstruction, or feeding the projections into the network 
multiple times through a recurrent or cascaded pattern.  

V Conclusion 
We developed an unsupervised 2D-3D deformable 

registration network, 2D3D-RegNet, for efficient and 
accurate CBCT estimation from limited-angle projections. 
2D3D-RegNet solves DVFs with similar accuracy as the 
traditional iterative 2D-3D deformable registration 
algorithm, while only takes a few seconds as compared to 
several hours of the latter method. 
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Figure 2. Three-view image comparison 
between ‘ground-truth’ target images (Target-
GT), FDK-reconstructed target images 
(Target-FDK) by limited-angle projections, 
source images (Source) before deformable 
registration, difference images (Source-diff) 
between Source and Target-GT, Elastix-
deformed images (Elastix) with deformation 
between Source and Target-FDK, difference 
images (Elastix-diff) between Elastix and 
Target-GT, and 2D3D-RegNet-deformed 
images (2D3D-RegNet), and difference 
images (2D3D-RegNet-diff) between 2D3D-
RegNet and Target-GT. The results are based 
on projections from a 90⁰ scan angle (single-
view). 
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Abstract  

X-ray fluorescence CT(XFCT) is a novel medical imaging modality for 

molecular imaging. The structure of XFCT can be pinhole collimation 

structure or Compton camera(CC) structure. In this work, we study the 

imaging resolution upper-limit of Compton camera imaging with 20-

80keV X-ray fluorescence(XF) photons through theoretical analysis. We 

choose two-layer detectors structure CC and four elements (I, Ba, Gd, 

and Au) which are most commonly used in XF contrast agents. The 

imaging spatial resolution of CC depends strongly on detection distance. 

So angular resolution measurement(ARM) is commonly used to evaluate 

the performance of CC. Three mainly affecting factors of ARM are taken 

into consideration: energy resolution, spatial resolution and Doppler 

broadening. From the results, when incident photons are low-energy, 

spatial resolution of detectors has minimal impact, while Doppler 

broadening is the most significant influencing factor. The ARM upper-

limit of the four elements is 12.1971°, 10.7426°, 7.9424° and 4.9747° 

respectively. As a conclusion, through theoretical analysis, we believed 

that the feasibility of X-ray fluorescence Compton camera is not high 

because of the significant negative impact of Doppler broadening effect. 

1 Introduction 

XFCT is a novel medical imaging(MI) modality that can 

present molecular and functional information in organisms 

[1]. Compared with some traditional MI modalities such as 

CT and MRI, XFCT has higher molecular sensitivity due to 

the specific characteristic energy of XF photons. Compared 

with nuclear MI modalities, such as SPECT and PET, the 

tracers used in XFCT are not spontaneously decayed. So the 

synthesis, storage of contrast agents is more convenient and 

the administration time of patients is more unlimited. The 

facility cost of XFCT is lower as well[2]. 

Among MI modalities mentioned above, PET can only 

image with 511keV photons. While SPECT and XFCT, 

which can use a variety of traces, usually use mechanical 

collimation methods to obtain the direction of incident X-

rays. Collimation results in the reduction of collected 

photons and the decline of detection efficiency. 

Compton camera (CC) is a double-layer detector structure 

imaging system without mechanical collimation[3]. 

Compton imaging has been used for photon detection in 

many application fields[4, 5]. However previous researches 

were all focused on radioisotopes with high photon energy. 

For example, ZhongHe used 3D position-sensitive large-

volume  CZT detectors for CC imaging[6], which has 

excellent performance in high-energy and wide-energy-

spectrum imaging, but was not optimal under tens keV. 

Therefore, combining the advantages of X-ray fluorescence 

and CC imaging is a brand new idea. In world, the Monte 

Carlo simulation work carried out by Vernekohl in 2016 is 

the only exploration to X-ray fluorescence Compton camera 

(XFCC) MI modality[2]. 82keV monochromatic X-rays is 

incident into gold nanoparticle (GNPs) solution, and 

Si/CdTe double-layer detector CC is used to collect photons. 

This work verified the clinical feasibility of XFCC. 

The purpose of this work is to theoretically analyze the 

imaging resolution upper-limit of CC imaging under 20-

80keV low-energy XF photons. The imaging SR of CC 

depends strongly on reconstruction method and detection 

distance. Thus, ARM is commonly used to evaluate the 

performance of CC. In order to examine the ARM upper-

limit, we choose two-layer detectors structure CC which has 

two state-of-the-art detectors with high ER and SR. We 

selected four elements (I, Ba, Gd, and Au, whose typical 

fluorescence peak energy is 28.610keV, 32.191keV, 

42.983keV, 68.794keV respectively.) which are most 

commonly used in XF contrast agents. 

2 Methods 

Although the 3D position-sensitive CZT detector CC 

system mentioned above has good performance, we hope to 

use low-Z material suchas Si detectors due to imaging with 

20-80keV low energy XF photons. The main reason is that 

low-Z detectors will lead to lower Doppler broadening and 

better energy resolution for low-energy photons. Therefore, 

Therefore, we abandon the single large-volume CZT crystal 

structure, and choose the traditional double-layer detector 

CC structure to carry out the research. 

In CC imaging , as shown in Figure1, photons are incident 

into the first layer of detector and has Compton scattering 

interaction with detector atoms. The scattering detecor will 

record the interaction position 𝑟1 and the deposited energy 

of the recoil electron 𝐸1 . Then the scattered photons are 

emitted out of the first detector, and absorbed by the second 

layer of detector. The absorption position 𝑟2  and the 

deposited energy 𝐸2 are recorded by the absorption detector. 

The sum of the two deposited energy is the energy of the 

incident photon, that is, 𝐸0=𝐸1+𝐸2. According to Compton 

kinematics, with 𝐸0  and 𝐸2  substituted into Eq. (1), the 

scattering angle θ of Compton scattering can be calculated: 

 𝑐𝑜𝑠𝜃 = 1 − 𝑚𝑒𝑐
2 (

1

𝐸2
−

1

𝐸0
) (1) 

 Where 𝐸0 is the energy of incident photon. 𝐸2 is the energy 

of scatted photon. 𝜃  is the scattering angle of Compton 

scattering. 𝑚𝑒  is the the rest mass of the electron and 

𝑚𝑒𝑐
2 = 511𝑘𝑒𝑉. 

 After calculating the scattering angle 𝜃, we are still not sure 

where the specific incident direction of the incident photon 

is. But we can build a cone surface with 𝑟1𝑟2 as the axis and 

𝜃  as the cone angle, on which we can find the incident 

direction. When enough Compton scattering events are 

161



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
  

detected, each event can be inversely calculated to a cone 

surface. The intersection of these cone surfaces is 

theoretically the spatial position of the radioactive source. 

 
Figure1 diagram of Compton camera principle 

ARM is most important when evaluating the performance 

of a CC system, which is defined as the deviation between 

the calculated scatter angle θ (cone angle) and the real 

scatter angle. There are three main factors affecting ARM: 

ER of detector, SR of detector, and Doppler broadening 

effect[4]. ARM = 𝜃𝐴𝐿𝐿, and 𝜃𝐴𝐿𝐿 is shown as Eq. (2): 
tan(𝜃𝐴𝐿𝐿)

2 = tan(Δ𝜃𝐸)
2 + tan(Δ𝜃𝑟)

2 + tan(Δ𝜃𝐷)
2 (2) 

Where Δ𝜃𝐸  is the angle uncertainty caused by the ER of 

detector. Δ𝜃𝑟  is the angle uncertainty caused by erros of 

detecting interaction position, which is related to SR of 

detector. Δ𝜃𝐷 is the angle uncertainty caused by Doppler 

broadening. Next, we will analyze the angle uncertainty 

caused by each factor separately. 

2.1 Angle uncertainty due to energy resolution:𝚫𝜽𝑬 

From Eq. (1), the calculated scattering angle 𝜃 is related to 

the detected energy. Bad energy resolution of the detector 

will lead to  a larger angle uncertainty. In real detection 

process, not all scattered photons will completely deposit all 

of its energy in the detector. Therefore, electronic 

coincidence is  used to filter out Compton scattering events 

that have deposited all energy in the two-layer detector 

system to reconstruct the image. This will reduce the 

background noise caused by incomplete-deposition events. 

Then  Eq. (1) can be transformed into the form of Eq. (3), 

which brings another advantage that we can calibrate the 

specific XF peak energy 𝐸0 , which can be obtained by 

summing th detected energy 𝐸1  and 𝐸2 . After energy 

calibration, 𝐸0  is unbiased and  the angle uncertainty is 

mainly determined by the energy resolution of the first layer 

detector. 

 𝑐𝑜𝑠𝜃 = 1 −𝑚𝑒𝑐
2 (

1

𝐸0−𝐸1
−

1

𝐸0
) (3) 

According to the law of error propagation, the uncertainty 

of scattering angle caused by ER Δ𝜃𝐸 is shown as Eq. (4): 

 (∆𝜃𝐸)
2 = (

𝑑𝜃

𝑑𝐸0
)2(∆𝐸0)

2 + (
𝑑𝜃

𝑑𝐸1
)2(∆𝐸1)

2 (4) 

Where the derivative is calculated as eqution (5) and (6): 

 
𝑑𝜃

𝑑𝐸0
=
𝑚𝑒𝑐

2

𝑠𝑖𝑛 𝜃
 [
1

𝐸0
2 −

1

(𝐸0 − 𝐸1)
2] (5) 

 
𝑑𝜃

𝑑𝐸1
=
𝑚𝑒𝑐

2

sin 𝜃

1

(𝐸0 − 𝐸1)
2 (6) 

The uncertainty of 𝐸0 after energy calibration is extremely 

small, ∆𝐸0 ≪ ∆𝐸1Finally Δ𝜃𝐸 can be expressed as Eq.(7): 

 ∆𝜃𝐸 ≈
𝑚𝑒𝑐

2

sin 𝜃

1

(𝐸0 − 𝐸1)
2
∆𝐸1 (7) 

2.2 Angle uncertainty due to spatial resolution:𝚫𝜽𝒓 

For double-layer detector CC imaging problem, Ordonerz 

et al. gave the analytical form of the angular uncertainty 

caused by the spatial resolution of the detector Δ𝜃𝑟 through 

theoretical calculations in 1999[7]. There are three parts of 

angle uncertainty contributing to Δ𝜃𝑟 :(a) Δ𝜃1  caused by 

horizontal-direction SR of the first layer detector Δ𝑟1 ; 

(b) Δ𝜃2  caused by depth-direction SR of the first layer 

detector Δ𝑧1; (c)Δ𝜃3 caused by horizontal-direction SR of 

the second layer detector Δ𝑟2. Δ𝜃𝑟 is expressed as Eq. (8): 

 
∆𝜃𝑟 = √Δ𝜃1

2 + Δ𝜃2
2 + Δ𝜃3

2

=
1

𝑑
√2𝑐𝑜𝑠2𝜃(Δ𝑟1)

2 + 𝑠𝑖𝑛2𝜃(Δ𝑧1)
2 + 2(Δ𝑟2)

2 

(8) 

Where 𝜃 is scattering angle. 𝑑 is the distance between two 

layers of detectors. 

2.3 Angle uncertainty due to Doppler broadening:𝚫𝜽𝑫 

Eq. (1) describes the classic Compton effect, in which the 

scattering angle formula is under the assumption that the 

inner electron interacting with the incident photon is at rest. 

However in reality, the electrons constantly move around 

the nucleus and have  momentum. As a result, for specific 

scattering angles and incident photons with specific energy, 

the energy of recoil electrons and scattered photons is 

diffused and no longer a specific value. This phenomenon 

is called Doppler broadening effect[8]. According to 

Matscheko’s research in 1989[9], The broadening of the 

recoil electron energy 𝐸1  caused by Doppler broadening 

follows Eq.(9): 

 ∆𝐸1𝐷 ≈
𝐸0 − 𝐸1
𝐸0

√𝐸0
2 + (𝐸0 −𝐸1)

2 − 2𝐸0(𝐸0 −𝐸1)𝑐𝑜𝑠𝜃
∆𝑝𝑧
𝑚𝑒𝑐

 (9) 

Where ∆𝑝𝑧  is the FWHM of the Compton profile of 

detector material, which reflects the distribution of the 

initial momentum 𝑝𝑧  of the electrons around the nucleus. 

The relationship between 𝛥𝜃𝐷  and 𝛥𝐸1𝐷  can be derived 

form the law of error propagationas as Eq.(7). 

3 Calculation and Results 

We select state-of-the-art detectors with high ER and SR in 

our theoretically analysis. About the material of detectors, 

we choose low-Z Silicon material for the first layer detector. 

Despite of lower detection efficiency, low-Z detectors have 

lower Doppler broadening and better energy resolution. 

Besides, for low-Z elements Compton scattering cross-

section accounts for larger proportion of the total cross-

section. Besides, the energy resolution of Si detectors is 

better when detecting low-energy X-rays. As for the second 

layer detector, we chose CdTe detector in order to absorb as 

many scattered photons as possible. 

3.1 Calculate 𝚫𝜽𝑬 

The novel array silicon drift detector (SDD) is able to detect 

low-energy X-rays with high energy resolution, such as 

127eV (@5.9keV) [10]. Its electronic noise can reach about 

(𝐹𝑊𝐻𝑀)𝑛𝑜𝑖𝑠𝑒 = 0.09𝑘𝑒𝑉. For Silicon, best Fano-factor is 

𝐹 = 0.084  and mean ionization energy is 𝑊 = 3.8𝑒𝑉 . 
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With these parameters we calculate the FWHM of statistical 

fluctuations as Eq. (10) and energy resolution as Eq. (11): 

 
(𝐹𝑊𝐻𝑀)𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 2.35√𝐹𝑊𝐸

= 2.35√0.132 × 0.0038𝐸 𝑘𝑒𝑉 
(10) 

 

∆𝐸 = (𝐹𝑊𝐻𝑀)𝑡𝑜𝑡𝑎𝑙

= √(𝐹𝑊𝐻𝑀)𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐
2 +(𝐹𝑊𝐻𝑀)𝑛𝑜𝑖𝑠𝑒

2

= √0.002770𝐸 + 0.0081𝑘𝑒𝑉 

(11) 

 According to Eq. (11), Figure2 shows the energy resolution 

of silicon detector. Combining Eq.(11) and Eq.(7), we can 

calculate  Δ𝜃𝐸  when the XF rays of 4 elements are the 

incident rays. The results are shown in Figure3. 

 
Figure2 ER as a function of Energy for Silicon drift detector 

 
Figure3  Δ𝜃𝐸 as a function of Scattering Angle 𝜃 for four XF elements 

From Figure3, when the scattering angle is close to 0° or 

180°,  Δ𝜃𝐸 is too large because 𝑠𝑖𝑛𝜃 is close to 0. Therefore, 

large-angle scattering and small-angle scattering events 

should be discarded in actual measurements. Considering 

backscattering events are discarded as well, we select 

moderate angles in the range of 20°~80° and calculate 

average value of Δ𝜃𝐸. The number of scattered photons in 

each scattering angle 𝜃  direction is not isotropic, but 

conforms to the description of the Klein-Nishina formula as 

Eq. (12). So we take this factor into consideration and 

calculate the weighted average value of Δ𝜃𝐸. 

 

𝑓𝐾𝑁(𝐸0, 𝜃) =
𝑑𝜎

𝑑𝜃
= 2𝜋𝑠𝑖𝑛𝜃

𝑑𝜎

𝑑𝛺

=
2𝜋𝑠𝑖𝑛𝜃𝑟𝑒

2

(1 + 𝛼(1 − 𝑐𝑜𝑠𝜃))
2 (

1 + 𝑐𝑜𝑠2𝜃

2
) {1

+
𝛼2(1 − 𝑐𝑜𝑠𝜃)2

(1 + 𝑐𝑜𝑠2𝜃)(1 + 𝛼(1 − 𝑐𝑜𝑠𝜃))
} 

(12) 

Where 𝑓𝐾𝑁(𝐸0, 𝜃) is Compton scattering differential cross-

section. α = 𝐸0 𝑚𝑒𝑐
2⁄ . 𝑟𝑒  is the electronic classical 

radius,𝑟𝑒 = 𝑒2 𝑚𝑒𝑐
2⁄ = 2.818 × 10−13𝑐𝑚. 

With Eq. (12), we can plot the curve of Compton scattering 

cross-section as a function of scattering angle𝜃, as shown 

in Figure4. Use 𝑓𝐾𝑁  under different 𝜃  as the weight and 

calculate the weighted average of Δ𝜃𝐸  in the range of 

20°~80°. We finally get the results as shown in Table1. 

 
Figure4 KN Cross-Section as a function of Scattering angle 𝜃 

Table1 The results of the average Δ𝜃𝐸 for 4 different elements 

Incident XF 

energy/keV 

I 

(28.620) 

Ba 

(32.191) 

Gd 

(42.983) 

Au 

(68.794) 

Δ𝜃𝐸/° 4.5835 3.7102 2.2554 1.0892 

3.2 Calculate 𝚫𝜽𝒓 

According to Eq. (8), there’re three factors affecting Δ𝜃𝑟. 

For horizontal SR Δ𝑟1 andΔ𝑟2, we select the performance 

index of advanced array SDD in world, which can reach 

0.5mm[10].About Δ𝑧1 , with the decrease of detector 

thickness Δ𝑧1  will be better, but the detection efficiency 

will be worse. Considering these two factors, the thickness 

is set to 0.5mm. As for the distance between detectors 𝑑, too 

small 𝑑  makes Δ𝜃𝑟  terrible, while too large 𝑑  makes the 

number of scatted photon detected by the second detector 

decrease. Referring to previous works we set 𝑑 = 60𝑚𝑚,. 

Substituting these performance parameters into Eq. (8), the 

curve of Δ𝜃𝑟 can be plotted, as shown in Figure5. 

 
Figure5 Δ𝜃𝑟 as a function of Scattering Angle 𝜃 

Similarly, calculate the weighted average of Δ𝜃𝑟  in the 

range of 20°~80° according to Eq. (12), and the calculation 

results are shown in Table2. 
Table2 The results of the average Δ𝜃𝑟 for 4 different elements 

Incident XF 

energy/keV 

I 

(28.620) 

Ba 

(32.191) 

Gd 

(42.983) 

Au 

(68.794) 
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Δ𝜃𝑟/° 0.8142 0.8143 0.8148 0.8160 

3.3 Calculate 𝚫𝜽𝑫 

In this section we calculate the scattering angle uncertainty 

caused by Doppler broadening when XF photons of four 

elements are incident on Si detector. According to Eq. (9) 

and (7), the curve how Δ𝜃𝐷 varies with the scattering angle 

𝜃 is shown in Figure6. It is worth noting that in Eq.(9) ∆𝑝𝑧  

is constant for specific material. For silicon, ∆𝑝𝑧/𝑚𝑒𝑐 =
9.50 × 10−3. Result of the average value of  Δ𝜃𝐷 according 

to Eq. (12)  is shown in Table3. 

 
Figure6 Δ𝜃𝐷 as a function of Scattering Angle 𝜃 for four XF elements 

Table3 The results of the average Δ𝜃𝐷 for 4 different elements 

Incident XF 

energy/keV 

I 

(28.620) 

Ba 

(32.191) 

Gd 

(42.983) 

Au 

(68.794) 

Δ𝜃𝐷/° 11.3229 10.0779 7.5806 4.7867 

3.4 Calculate 𝑨𝑹𝑴 

Combining all the calculation results and Eq. (2), we can 

calculate ARM upper-limit of CC imaging under 4 types of 

20-80keV low-energy XF photon. The results are shown in 

Table4. Table4 also shows SR value corresponding to ARM 

at a typical imaging detection distance of 10 cm. 
Table4 ARM upper-limit of CC imaging for 4 elements 

Incident XF 

energy/keV 

I 

(28.620) 

Ba 

(32.191) 

Gd 

(42.983) 

Au 

(68.794) 

𝐴𝑅𝑀/° 12.197 10.743 7.9424 4.9747 

SR/mm 21.62 18.97 13.95 8.70 

4 Discussion and Conclusion 

In this paper, four most commonly used XF elements, I, Ba, 

Gd and Au, are selected to explore the upper-limit of the 

ARM of CC for 20-80keV XF photon imaging through 

theoretical analysis. From the results, with the increase of 

incident photon energy, the angular error caused by energy 

resolution Δ𝜃𝐸 and Doppler broadening Δ𝜃𝐷 will decrease, 

while the angular error caused by spatial resolution Δ𝜃𝑟 has 

little relationship with incident photon energy. As for the 

results of ARM as shown in Table4, with the incident light 

energy increasing, ARM will gradually decrease. Among 

the four elements, Au has the best performance 4.97°, which 

corresponding to SR 8.70mm at the detection distance of 

10cm. So Au has a certain imaging potential. 

As a conclusion, Compton imaging has very limited 

feasibility under the low-energy incidence of 20-80keV 

fluorescent photons. Because the negative impact of the 

Doppler broadening effect is too significant, which makes 

the angular and spatial resolution unsatisfactory. Through 

analysis, we believed that the feasibility of XFCC imaging 

modality is not very well. 
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Abstract In this work, we investigate the dual-energy CT imaging
with limited-angular-range data. A scan configuration is set up with
two∼ 90◦ arcs of low- and high-kVp spectra that are next to each other.
Low- and high-kVp images of a digital phantom containing different
materials are reconstructed separately from their respective ∼ 90◦ data
of limited-angular range by use of the directional total-variation (DTV)
algorithm previously developed. The images are assessed visually for
artifacts reduction, and decomposed into interaction-type bases for
estimating the effective atomic number. The results suggest that the
DTV algorithm can effectively reduce the artifacts in reconstructed
images from the limited-angular-range data. The estimated values of
the effective atomic number from the decomposed dual-energy images
reconstructed from the limited-angular-range data by use of the DTV
algorithm are comparable to those from the full-scan data by use of
the standard FBP algorithm.

1 Introduction

Dual-energy CT (DECT) imaging is able to correct for beam-
hardening artifacts, improve image contrast, and differentiate
different materials by collecting data from two spectrally dis-
tinct scans [1]. A standard method to acquire and process the
dual-energy data, commonly referred to as the image-domain
decomposition method, takes two full-rotation data sets with
low- and high-kVp X-ray spectra for each set, reconstructs
them separately, and accesses the dual-energy information
with image post-processing steps [2]. As a result, the recon-
struction step for either the low- or high-kVp scan data is no
different than that for the conventional CT scan data.
Meanwhile, CT imaging with limited-angular-range data
is of high level of interest in clinical and industrial appli-
cations, for its ability to reduce radiation dose, increase
scanning throughput, and avoid collision. Considering the
severe ill-conditionedness of the reconstruction problem
from the limited-angular-rage data, recent works have used
optimization-based reconstructions with different designs of
objective functions and image constraints [3–6]. We have
previously developed a directional total-variation (DTV) al-
gorithm for image reconstruction from limited-angular-range
data, based on an optimization problem with separate con-
straints along two orthogonal axes in the image array [7, 8].
The DTV algorithm has been demonstrated to reduce artifacts
in images, especially for very small angular ranges, and also
yield smaller minimum angular range than the isotropic TV
method in terms of accurately inverting the discrete X-ray
transform (DXT) data model [3]. In this work, we aim to
bring the potential of reducing the angular range to DECT
imaging by applying the DTV algorithm.
In this work, the low- and high-kVp images are reconstructed

separately from their corresponding limited-angular-range
data of low- and high-kVp scans. As a result, the limited-
angular ranges can, but do not necessarily need to, overlap,
and can also cover an arbitrary range of degrees. In this
work, we present results from one particular type of scan
configurations of interest, as they have been previously in-
vestigated and reported [9, 10]. It consists of two arcs of
∼ 90◦, that are next to each other either with or without a gap
in between, for low- and high-kVp scans. In our approach,
no effective extrapolation from limited-angular range into
full- or short-scan range is needed for either kVp data set.
The image reconstruction from each kVp data set, despite
being of limited-angular range, is carried out individually
and separately by use of the DTV algorithm.
Numerical studies with a digital suitcase phantom are car-
ried out, focusing on industrial applications such as luggage
screening. Dual-energy data with limited-angular ranges of
∼ 90◦ for each kVp scan, as well as full-scan data with two
full rotations, are generated using a non-linear data model
considering polychromatic X-ray spectra. Reconstructed im-
ages from limited-angular-range data are assessed with visual
inspection and quantitative metrics, and compared against
the reference images reconstructed from the full-scan data.

2 Materials and Methods

2.1 Data generation

The digital phantom, as shown in Fig. 1a, is designed as a
suitcase containing four elliptical features, representing water,
ANFO (a type of explosives), PVC, and Teflon, as well as
three calibration bar structures of elements C, Al, and Ca. It is
discretized on an image array of size 175×256, where each
pixel is labeled with a specific material type associated with
a spectral response, i.e., the linear attenuation coefficient
as a function of energy. The image shown in Fig. 1a, for
example, represents the linear attenuation coefficients for
each material at 40 keV, i.e., the monochromatic image of
the suitcase phantom at 40 keV.
Schematic drawings of the scanning configurations studied
in this work is also shown in Fig. 1. Data are collected over
two ∼ 90◦ circular arcs that are next to each other. For the
case without a gap in between two arcs, as shown in Fig. 1b,
the limited-angular ranges covering the low- and high-kVp
scans are 90◦ each, i.e., α1 = α2 = 90◦. For the case with a
gap of 5◦, as shown in Fig. 1c, the limited-angular ranges are
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(a) suitcase phantom

(b) 90-plus-90 scan w/o a gap (c) 90-plus-90 scan with a 5◦ gap

Figure 1: Top (a): the monochromatic image of the suitcase
phantom at 40 keV, with a displaying window of [0.15, 0.75]
cm−1; Bottom: schematic drawings of the 90-plus-90 scanning
configurations without a gap (b) and with a 5◦ gap (c) between the
two arcs of low- and high-kVp scans.

then 85◦ each, i.e., α1 = α2 = 85◦. The two configurations
simulate an instantaneous or 5◦-delayed operation of switch-
ing the kVp [11], and are thus referred to as the 90-plus-90
scans without and with a gap, respectively. As a reference,
a scanning configuration with two full rotations, i.e., 360◦

angular ranges for both kVp scans, are also generated and
referred to as the full scan. With an angular interval of 1◦

per view, 360◦ or 90◦ scans collect 360 or 90 views in the
data, respectively. Other scanning geometry parameters in-
clude source-to-rotation and source-to-detector distances of
100 and 150 cm, respectively, and a linear detector of 32 cm
consisting of 512 bins. The image array is set up such that
the x- and y-axes divides evenly the high- and low-kVp scan
angular ranges, respectively.
The dual-energy data are generated using the non-linear,
energy-integrated data model [12], with the 80 and 140 kVp
spectra generated using the TASMIC model with an addi-
tional 5-mm Al filter [13]. A series of monochromatic images
of the phantom at different energy levels are generated from
the material label map of the phantom and used for forward
projection with the DXT, followed by negative exponential
transform, energy integration with the normalized X-ray spec-
trum, and negative logarithmic transform. As a linear data
model is considered in the reconstruction with either the FBP
or the DTV algorithm, the generated data in this work neces-
sarily contain inconsistencies including the beam-hardening
effect and possibly decomposition errors with a limited num-
ber, i.e., 2 in this work, of basis functions used in the image
post-processing.

2.2 Image reconstruction

Images are first reconstructed by use of the standard FBP
algorithm. The FBP algorithm is applied with a Hanning
kernel and a cutoff frequency of 0.5. It is used in this work for
providing a benchmarking reference with the full-scan dual-
energy data and for demonstrating typical limited-angular-
range artifacts in the image, if not accounted for.
Image are then reconstructed by use of the DTV algorithm,
which has been previously proposed and developed for
conventional CT reconstruction with limited-angular-range
data [7, 8]. The DTV algorithm is developed based on the
first-order primal-dual (PD) algorithm [14, 15]. The detailed
derivation and its pseudo-codes of the algorithm can be found
in Ref. [8], while a brief summary is provided as below. The
DTV algorithm is based on a linear data model, g =H f, and
a constrained optimization problem with a data-`2-distance
as its objective function to minimize and two directional TV
constraints, together with an image non-negativity constraint.
The directional TVs are `1 norms of image’s partial deriva-
tives along the x and y directions, and they are upper-bounded
by two constraint parameters, referred to as tx and ty, form-
ing two inequality constraints. The constrained optimization
problem is adapted into the framework of the general PD al-
gorithm and then solved by deriving an instance, particularly
by solving analytically the proximal-mapping problems, of
the PD algorithm. Just like any other algorithms, the DTV
algorithm involves parameters, most importantly, the DTV
constraints parameters tx and ty, which have impact on the
reconstruction results. We will report at in the conference
how these parameters are selected.
In this work, for either the FBP or DTV algorithm, it is
applied separately and directly to each of the low- and high-
kVp data with limited-angular ranges, thus reconstructing
two individual images of low- and high-kVp scan, referred
to as low- and high-kVp images, or fL and fH , respectively.

2.3 Image post-processing

2.3.1 Basis decomposition

For the two images, fL and fH , an interaction-based decom-
position model is used to decompose the images into basis
images of Photoelectric effect (PE) and Compton scattering
(KN), as below

(
fL

fH

)
=

(
µL

PE,µL
KN

µH
PE,µH

KN

)(
bPE
bKN

)
, (1)

where bPE and bKN are the basis images of Photoelec-
tric effect and Compton scattering, and µs

k (s = L or H,
k = PE or KN) are effective linear attenuation coefficients
of basis PE or KN for the low-(L) and high-kVp (H) spec-
tra. While the spectral responses of the two basis interaction
types, PE and KN, are known to be 1/E3 and the Klein-
Nishina formula [16, 17], respectively, the effective linear
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Full 90◦, FBP 90◦, DTV 85◦, FBP 85◦, DTV

fL
fH

Figure 2: Reconstructed low- (row 1) and high-kVp (row 2) images from full-scan data (column 1), 90-plus-90-scan data without a
gap and with a 5◦ gap by use of the FBP algorithm (columns 2 & 4) and by use of the DTV algorithm (columns 3 & 5). The displaying
windows are [0, 0.65] cm−1 and [0,0.43] cm−1 for rows 1 and 2, respectively.

Table 1: Estimated effective atomic numbers for the materials in the suitcase phantom. The standard values are either the true atomic
number for the elements or calculated using Murty’s formula for the compounds.

Carbon Aluminum Calcium Water ANFO Teflon PVC
Standard value 6.00 13.00 20.00 7.42 7.40 8.43 13.86
Full, FBP 6.04 12.79 20.20 7.28 7.22 8.19 13.72
90◦, DTV 5.89 13.91 19.03 7.39 7.02 8.01 13.24
85◦, DTV 5.88 14.14 18.77 6.71 6.32 7.47 12.80

attenuation coefficients used in this work are the spectrum-
weighted average of the spectral responses. We can then
obtain the basis images from the low- and high-kVp images
by inverting the 2×2 matrix in Eq. (1).

2.3.2 Effective atomic number estimation

An important application for dual-energy CT imaging in lug-
gage screening is to identify different materials, especially
with explosive detection, by estimating the effective atomic
number of materials. It can be estimated by exploring the de-
pendence on the atomic number, Z, of the basis components
in the interaction-based decomposition model [16, 18], as

Z = K(
bPE

bKN
)1/n, (2)

where K and n are two coefficients that can be theoretically
defined and approximated. Alternatively, in this work we
choose to calibrate K and n with a linear fitting in the log-
log domain using the three calibration slabs of C, Al, and
Ca (Z = 6,13, and 20, respectively) in the suitcase phantom.
The estimated K and n are then used to estimate the effec-
tive atomic numbers of the other compounds, namely, water,
ANFO, teflon, and PVC, in the phantom.

3 Results

3.1 Image results

We show in Fig. 2 reconstructed low- and high-kVp images
from the 90-plus-90-scan data without and with a 5◦ gap

by use of the FBP and DTV algorithms, as well as the ref-
erence images from the full-scan data by use of the FBP
algorithm. It can be observed that the limited-angular-range
artifacts in the FBP images, mostly notably the “invisible
boundaries” [19] that are parallel to the source’s scanning
directions, are effectively compensated and corrected for in
the DTV images, which are visually similar to the reference
images from the full-scan data, except for some minor re-
maining artifacts. Moreover, the displayed gray-scale values
in the DTV images are closer to those in reference images, in-
dicating comparable quantitative accuracy. The reconstructed
images from the full-scan data by use of the DTV algorithm
are not shown here, as they are visually similar to the refer-
ence FBP images.

3.2 Estimation of effective atomic numbers

We show in Table 1 estimated values of the effective atomic
numbers for the 7 different materials in the suitcase phantom.
The standard values are either the true atomic numbers for
the elements or calculated using Mutry’s formula [20] for the
compounds. It can be observed that the estimated effective
atomic numbers from the 90-plus-90-scan data by use of the
DTV algorithm are comparable to those from the reference
images. Admittedly, biases exist, as compared to the standard
values, in the estimated values from the 90-plus-90-scan
images, as well as the reference images. They are likely due
to the beam-hardening effect in the data. Further, for the task
of explosive detection, while the estimated effective atomic
numbers of ANFO from the full- or 90-plus-90-scan data
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are not the same as the standard value, they are sufficiently
different from those of, and thus can be differentiated from,
water. On the other hand, the FBP images of 90-plus-90
scans are filled with negative values, which led to numerical
errors in the estimation, and are thus not shown in the table.

4 Discussion and conclusion

In this work, we have investigated dual-energy CT imaging
with limited-angular-range data by applying the DTV algo-
rithm previously developed. Data were collected from two
∼ 90◦ arcs that are next to each other either with or without
a gap, and reconstructions were performed separately and
directly on each kVp data set of limited-angular range. Nu-
merical studies with a suitcase phantom were carried out, and
the evaluation is based on image visualization and the estima-
tion of effective atomic numbers. Results have suggested that
the DTV algorithm can reconstruct dual-energy images that
are visually similar to the reference images from full-scan
data and also obtain estimated values of the effective atomic
numbers that are comparable to those from the reference
images.
Some beam-hardening artifacts can be observed in the DTV
images from the 90-plus-90-scan data, as well as the refer-
ence images, since they are not accounted for in the data
model used in the reconstruction in this work. Such incon-
sistency is likely the source of discrepancies between the
standard and estimated values of the effective atomic num-
ber. Further investigation will be focused on correcting for
the beam-hardening effect in the image reconstruction, e.g.,
using the data-domain decomposition or the one-step recon-
struction method.
In this work, as the reconstructions are performed separately
and directly from the limited-angular-range data from either
low- or high-kVp scan, the two scanning arcs for the low-
and high-kVp spectra do not need to be next to each other
or within a gap, as demonstrated in the 90-plus-90 scanning
configurations. We have carried out additional studies with
other scanning configurations for DECT with limited-angular-
range data, e.g., two overlapping arcs, and also studies with
more angular ranges, especially those considerably smaller
than 90◦, and will report these results in the conference.
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Abstract With linearly distributed sources and detectors in a stationary
configuration, the symmetric-geometry computed tomography (SGCT)
has great potential for fast CT imaging. In this work, we propose a
projection completion approach to suppress the truncation artifacts
and expand the reconstruction region of interest (ROI) for both filtered
backprojection (FBP) and Linogram reconstruction methods in a dual-
SGCT scan mode. The preliminary results of numerical simulations
and physical experiments validated the effectiveness and feasibility of
our proposed methods. For the Catphan phantom reconstruction with
a truncation problem, our proposed completion method can decrease
the relative standard deviation of uniform regions by 40.4% for the
FBP algorithm, and by 38.3% for the Linogram algorithm.

1 Introduction

The concept of multi X-ray sources is being investigated in
computed tomography (CT) system to accelerate data ac-
quisition [1]. Recently, a symmetric-geometry computed
tomography (SGCT) has been presented, where the X-ray
sources and detectors are both linearly distributed [2, 3]. In
the object scanning of SGCT, the X-ray sources distributed
equally along a straight-line will sequentially fire in one side,
and the detectors continuously collect data in the opposite
side. As a result, no spinning of X-ray source or detector is
involved in the data acquisition of SGCT, which simplifies
the system design and equipment manufacturing. In addi-
tion, with such a stationary configuration, SGCT has great
potential for fast CT imaging.
In practical applications, with finite length of source and
detector arrays, only one SGCT scan segment is not enough.
Therefore, dual-SGCT scan mode was introduced to supply
sufficient projection data. As illustrated in Fig. 1, there
are two SGCT scan segments (i.e., SGCT scan I and SGCT
scan II) in the dual-SGCT scan mode. Each SGCT scan
segment contains a linearly distributed source array and a
linear detector array parallel to it. And the source array of
the SGCT scan I is perpendicular to that of the SGCT scan
II. A filtered backprojection (FBP) reconstruction method
[2] and a Linogram reconstruction method [3] were both
derived to achieve image reconstruction from the scanning
data of SGCT. The fourier transform of the projection along
the detector direction is needed for both FBP and Linogram

∗Author to whom correspondence should be addressed. E-mail ad-
dress: hwgao@tsinghua.edu.cn.
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Source Detector
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   (b)    (c)
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Figure 1: The diagram of the daul-SGCT scan mode. The arrow
indicates the direction of the patient table movement.

methods. Thus, the constrain that the projection data is not
truncated along the detector direction should be satisfied to
obtain accurate reconstructed images, which limits the size
and location of the reconstruction region of interest (ROI) of
dual-SGCT scan mode.
In this work, we propose a projection completion approach
to suppress the truncation artifacts and expand reconstruction
ROI for both FBP and Linogram methods in dual-SGCT scan
mode. The preliminary results of numerical simulations and
physical experiments validate the effectiveness and feasibility
of our proposed methods.

2 Methods

When using FBP or Linogram methods for reconstruction
from CT projection data, to obtain accurate reconstructed
image, the size and location of reconstruction ROI is usually
limited by the following two constrains:

• CONS-I: The passing rays cover at least 180 degrees
for each and every points of the scanned object;

• CONS-II: No truncation occurs along the filtering di-
rection of the projection data.

The CONS-I is the data sufficiency constrain. With the
lengths of the source and detector array being finite in real
applications, only one SGCT scan segment cannot satisfy the
CONS-I as expected. Fortunately, the CONS-I can be met in
the introduced dual-SGCT scan mode if carefully designed.
Specifically, the SGCT scan I is responsible for supplying
−450 ∼ 450 projection data, and the SGCT scan II is for
−1350 ∼−450. The CONS-II is to avoid truncation artifacts,
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which will further reduce the size of the reconstruction ROI
after meeting the CONS-I.
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Figure 2: Reconstruction ROI analysis for the dual-SGCT scan
mode. (a) The maximal circular reconstruction ROI meeting both
the CONS-I and CONS-II, denoted as ROIori; (b) the maximal
circular reconstruction ROI only meeting the CONS-I, denoted as
ROIexp.

In Fig. 2 (a), we demonstrate the maximal circular recon-
struction ROI for dual-SGCT scan mode when using FBP or
Linogram algorithms. The reconstruction ROI should locate
in the quadrilateral region AHBG for meeting the CONS-I
and in the triangle region ESF for the CONS-II. Thus the
maximal circular reconstruction ROI is identically the largest
inscibed circular of the intersection between the quadrilateral
region AHBG and the triangle region ESF , which is denoted
as ROIori.
However, when only taking the CONS-I into consideration
but ignoring the CONS-II, the maximal circular reconstruc-
tion ROI can be expanded to ROIexp as shown in Fig. 2(b).
The ROIexp is the largest inscibed circular of the quadrilat-
eral region AHBG, of which the size greatly exceeds that
of ROIori. It is worth noting that the centers of ROIori and
ROIexp are different. Thus the relative spatial position of
SGCT scan I and SGCT scan II should be adjusted according
to the reconstruction ROI center in real implementation of
the dual-SGCT scan. A projection completion method was
proposed in this work to obtain accurate reconstructed image
for ROIexp through FBP or Linogram methods while avoiding
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Figure 3: Imaging geometry a SGCT scan segment. The β is the
overall scanning angle, which is different for different SGCT scan
segments.

truncation artifacts.
The imaging geometry of a SGCT scan is defined in Fig. 3.
The center of the object coordinates (X,Y) is denoted as O.
An equivalent detector array parallel to the real one is in-
troduced, which passes through the object center O. The
element on the equivalent detector is indexed by t, its offset
from O. The projection of the object center O on the source
array is O′, and we use the offset from O′ (i.e., denoted as
l) to represent the element of the source array. And D is the
distance from the source array to the equivalent detector array.
β is the overall scanning angle of a SGCT scan, which is the
angle between the line OO′ and the axis Y. Thus, the projec-
tion from a SGCT scan of the overall scanning angle being
β is defined as qβ (l, t), with the corresponding elements on
the source array and equivalent detector array being l and t,
respectively. According to the geometry relation, projection
qβ (l, t) can be written from the object function f (x,y) [3],

qβ (l, t) =
∫ +∞

−∞

∫ +∞

−∞
dxdy

√
(l− t)2 +D2

xsinβ + ycosβ +D
f (x,y)

×δ
(
(xcosβ − ysinβ )D+(xsinβ + ycosβ )l

xsinβ + ycosβ +D
− t
)
.

(1)

In the dual-SGCT scan mode, the overall scanning angle β
is set to 0 and π

2 for the SGCT scan I and II, respectively.
Therefore, according to Eq. (1), the two projection segments
in dual-SGCT scan mode be written as, respectively,

qI(l1, t1) =
∫ +∞

−∞

∫ +∞

−∞
dxdy

√
(l1− t1)2 +D2

y+D
f (x,y)

×δ
(

xD+ yl1
y+D

− t1

)
. (2)

qII(l2, t2) =
∫ +∞

−∞

∫ +∞

−∞
dxdy

√
(l2− t2)2 +D2

x+D
f (x,y)

×δ
(

xl2− yD
x+D

− t2

)
. (3)

Here, qI(l1, t1) and qII(l2, t2) are the projection from SGCT
scan I and II. The combined projection of SGCT scan I and
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Figure 4: Projection of Shepp-Logan head phantom from dual-
SGCT scan mode. (a) and (b) are the projection data obtained from
SGCT scan I and II respectively, where truncation occurs along
the detector direction; (c) and (d) are the completed projection for
SGCT scan I and II using our proposed method.

II is sufficient for every points in ROIexp due to the CONS-I.
Thus, for the ROIexp in the dual-SGCT scan mode, the pro-
jection ray truncated in a SGCT scan can be completed using
the complementary one in another SGCT scan. According
to the Eqs. (2) and (3), the projection completion method for
ROIexp in dual-SGCT scan mode can be described as follows,

1) When the projection is truncated in SGCT scan I, com-
pletion is done using the complementary one in SGCT
II through Eq. (4);

qI(l1, t1) = qII(l2, t2)

{
l2 =

−(D+t1)D
l1−t1

t2 = −t1D
l1−t1

(4)

2) When the projection is truncated in SGCT scan II, com-
pletion is done using the complementary one in SGCT I
through Eq. (5);

qII(l2, t2) = qI(l1, t1)

{
l1 =

(t2−D)D
l2−t2

t1 = t2D
l2−t2

(5)

For example, as shown in Fig. 2(b), one can utilize the
existing projection ray R1’ in SGCT scan II to complete the
truncated projection ray R1 in SGCT scan I, and use the
existing projection ray R2’ in SGCT scan I to complete the
truncated projection ray R2 in SGCT scan II.

3 Results

3.1 Simulation study

The dual-SGCT scan mode was simulated with the parame-
ters listed in Table 1. With the same length of source array
and detector array, and the same distance from source ar-
ray to detector array, the ROIori has a radius of 98.73 mm

 (a)     (b)

 (c)     (d)

0 100 200 300 400 500

像素位置

0.9

0.95

1

1.05

1.1

Phantom
FBP
Linogram
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 (e)  

Figure 5: Reconstructed images of the Shepp-Logan head phan-
tom. Reconstruction size: 512 x 512 pixels with 0.625 x 0.625
mm2 for a pixel. Display window: [1, 1.04]. (a) and (b) are the FBP
and Linorgam reconstruction from dual-SGCT scan, respectively,
with no projection completion techniques applied; (c) and (d) are
the FBP* and Linorgam* reconstruction from dual-SGCT scan,
respectively, where our proposed projection completion method
were used.

which satisfies the CONS-I and CONS-II as analyzed in
Ref. [2]. However, when only satisfying the CONS-I, the
reconstruction ROI can be expanded to ROIexp with a radius
of 176.78 mm. To simulate such expanded ROI, the distance
from source to isocenter need to be 250 mm. The 2D Shepp-
Logan head phantom was used, of which projections from
simulated SGCT scan I and II was demonstrated in Fig. 4
(a) and (b), respectively. The truncation occurs along the
detector direction of the projection, which can be completed
using our proposed method. And the projection after com-
pletion are shown in Fig. 4 (c) and (d). The original FBP
method in Ref. [2] and Linogram method in Ref. [3] were

Table 1: Simulation Experiments parameters for the dual-SGCT
scan mode

Parameters Values

Geometry

Distance from source to detector 500mm
Distance from source to isocenter 250mm

Interval of source array 0.5mm
Length of source array 1000mm

Interval of detector array 0.5mm
Length of detector array 1000mm

Oveall scan angle
SGCT scan I 0
SGCT scan II π

2
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Figure 6: 1D profiles of of Fig. 5(a), (b), (c), (d) and the digital-
ized Shepp-Logan head phantom along the vertical line indicated
in Fig. 5(a).

both implemented to reconstruct images from dual-SGCT
scan. Also the above two methods were combined with our
proposed projection completion method, denoted as FBP*
and Linogram*, respectively. It is seen form the results in
Fig. 5 and profiles in Fig. 6 that, there are severe truncation
artifacts in the reconstructed images without projection com-
pletion techniques, while our proposed projection completion
method can greatly improve the image quality for both FBP
and Linogram reconstructions.

3.2 Real experiments

To further demonstrate the effectiveness of the projection
completion method, a dual-SGCT scan was performed for
the Catphan phantom on a SGCT prototype, where the trun-
cation occurs in the reconstruction area where the phantom
located. Fig. 7 are the reconstruction results of FBP and
Linogram methods without and with the proposed projection
completion. The FBP* and Linogram* methods can suppress
truncation artifacts, surpassing the original FBP and Lino-
gram methods. For a quantitative comparison, we selected
six uniform regions indicated in Fig. 7(a), and calculated the
relative standard deviation (RSD) of every regions for the re-
constructed images in Table 2. In addition, a factor was used
to quantitatively measure the improvement by our proposed
projection completion approach, which is defined as follows,

fimp =
1
N

N

∑
i=0

RSDi−RSD∗i
RSDi

×100% (6)

here, i is the index of the selected regions. RSDi represents
the relative standard deviation of the region i in the recon-
structed images by the analytic method (i.e., FBP or Lino-
gram) without the projection completion, while RSD∗i is that
with the projection completion. The results in Table 2 in-
dicate that our proposed completion method can decrease
the relative standard deviation of uniform regions by 40.4%
for the FBP algorithm, and by 38.3% for the Linogram algo-
rithm.

1
2

3
4
5
6

(a)            (b)

(c)            (d)

Figure 7: Reconstructed images of the Catphan phantom scanned
on an SGCT prototype. Reconstruction size: 350 x 350 pixels
with 0.5 x 0.5 mm2 for a pixel. Display window: [0.05, 0.3]/cm.
(a) and (b) are the FBP and Linorgam reconstruction from dual-
SGCT scan, respectively, with no projection completion techniques
applied; (c) and (d) are the FBP* and Linorgam* reconstruction
from dual-SGCT scan, respectively, where our proposed projection
completion method were used. Dotted rectangle in (a) indicates
the region of zoomed-in displays.

Table 2: Relative standard deviation of selected uniform regions
of the Catphan phantom in Fig. 7.

Regions 1 2 3 4 5 6 fimp

FBP 0.030 0.023 0.039 0.044 0.059 0.051 \
FBP* 0.021 0.015 0.023 0.023 0.032 0.029 40.4%

Linogram 0.037 0.030 0.048 0.054 0.070 0.064 \
Linogram* 0.025 0.022 0.028 0.031 0.039 0.037 38.3%

4 Discussion and Conclusion

In this work, a projection completion method is proposed for
both FBP and Linogram methods in the dual-SGCT scan to
suppress the truncation artifacts and expand the reconstruc-
tion ROI. The preliminary results of numerical simulations
and physical experiments validate the effectiveness and feasi-
bility of our proposed methods.
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Abstract In X-ray Computed Tomography (XCT), the Discrete Al-
gebraic Reconstruction Technique (DART) has been proposed as a
practical method for reconstructing images measured of an object that
is composed of only a small number of different materials. For such
objects, DART has shown the potential to reconstruct high quality
images even in the case of a low number of radiographs or a limited
angular range. To this end, DART follows a set of rules to enforce
the material discreteness prior knowledge. However, these rules are
static in that they remain unchanged throughout the entire reconstruc-
tion process, which limits the full potential of the DART concept. To
increase flexibility during the reconstruction process, we introduce an
update framework that dynamically adjusts update rules throughout
the iterations. Our experiments show that such dynamic update strat-
egy leads to increased reconstruction quality and lower computational
burden.

1 Introduction

In X-ray Computed Tomography (XCT), prior knowledge
about the object to be reconstructed is often exploited to im-
prove the quality of images reconstructed from limited data.
A specific class of prior knowledge is the assumption that the
object consists of only a small number of different materials.
The domain of Discrete Tomography (DT) studies algorithms
that reconstruct objects adhering to this assumption. In 2011,
the Discrete Algebraic Reconstruction Technique (DART)
was proposed as a practical algorithm that provides high re-
construction quality in tomographic reconstruction problems
with limited X-ray projection data [1]. Since then, many
variations of the DART algorithm have been reported [2–7].

The DART algorithm iteratively interchanges a reconstruc-
tion step, where the image is updated by minimizing the
projection distance, and a segmentation step, where the im-
age pixels are classified into the few different material classes.
However, the rules used by DART to attribute labels to the
pixels to be updated, are rigid in the sense that they do not ex-
ploit knowledge gained about the intermediate reconstructed
images throughout the iterations. This slows down the algo-
rithm or causes it to converge to a local minimum [8].

To improve upon the rigid DART update rules, we propose a
generalization of the DART update strategy by introducing
a dynamic update probability map of the image throughout
the reconstruction. We express update strategies as changes
to the update probability map and we exploit the probability
map sequence by using a tabu-search framework. We show
that this approach improves both convergence speed and
reconstruction quality.

2 Materials and Methods

2.1 The DART algorithm

DART assumes that the object to be scanned consists of a
small number (typically k < 5) of different materials. Let
{ρ1 < ... < ρk} be the gray values representing the different
materials present in the object and x ∈ Rn the representation
of the pixel grid of attenuation values of the object. Given the
measured projection data p ∈Rm and the system matrix W ∈
Rm×n, the reconstruction problem comes down to solving the
linear system

Wx = p, such that x ∈ {ρ1, ..,ρk}n. (1)

To this end, the following steps are performed in the DART
algorithm: First, an initial reconstruction is calculated with
the use of an Algebraic Reconstruction Method (ARM), such
as ART, SART or SIRT [9]. Without loss of generality, we
will use the SIRT algorithm as the ARM. The output vector
is denoted as x(0). Since the output of an ARM has continu-
ous gray values, which violates the discreteness assumption,
a segmentation step is performed to enforce discreteness.
Similar to [1], we use a global thresholding step with the
following mapping function:

S(x,ρ) : Rn −→ {ρ1,ρ2, ...,ρk}n x→ s,

si =





ρ1, xi < τ1

ρ2, τ1 ≤ xi < τ2
...
ρk, τk−1 ≤ xi,

i = 1, ...,n,

where the thresholds τ j are calculated as

τ j =
ρ j +ρ j+1

2
, j = 1, ...,k−1. (2)

The resulting discrete image is denoted as s(0) = S(x(0)).
Let s(`) be the segmentation from the `-th iteration of DART.
First, all pixels in s(`) classified either as boundary or interior
pixels. A pixel is considered interior when it belongs to the
same material class as its neighbours. All other pixels are
considered boundary pixels. Only the boundary pixels are
updated in the next ARM iteration while interior regions are
kept fixed. Let (w1, ...,wn) be the columns of the system
matrix W. The boundary pixels are reconstructed on the
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residual data:

W(`)x(`) = p−wis
(`)
i , (3)

W(`) = (w1, ...,wi−1,wi+1, ...,wn), (4)

x(`) = (x1, ..xi−1,xi+1, ..,xn)
T (5)

To minimize the risk of local minima, each interior pixel
also has a probability p of being included in the next recon-
struction step. Solving the reduced system (3) yields a new
vector containing updated values for the boundary pixels and
the fixed pixels that were randomly selected. Along with
the fixed pixels, a new image x(`+1) is computed. Finally, a
smoothing operation is performed by convolving the image
with a 3×3 mean kernel.

The above process is repeated until a convergence criterion is
met or a predetermined maximum number of DART iterations
is reached.

2.2 The Tabu-search concept

Tabu-search is a mathematical optimization method that em-
ploys a memory structure to improve local search methods.
By manipulating adaptive memory structures, Tabu-search
methods can reach parts of the solution space that would oth-
erwise have been left unexplored by more traditional methods.
There exist many variations that characterize the memory
structure in Tabu-search [10]. However, one of specific inter-
est for the DART update rules is frequency based memory.
This variant contains and uses information on the amount
of times a certain attribute has appeared in recent solutions.
If the presence of a property is correlated to good solutions,
then remembering search directions where many solutions
with this property exist increases the probability of finding an
optimal solution. There are various metrics that we can track
about a reconstruction that change once the DART algorithm
nears convergence. An example of that would be how many
pixels still change their material class. By measuring the
class change for each pixel individually, we essentially create
a frequency based memory structure related to the material
labeling of the image. We can exploit changes in this struc-
ture to adapt the DART algorithm update step. In this way,
the solution guiding process becomes more refined over time.

In the next section, we will generalize the DART update step
as a framework which uses a probability map to function as a
frequency based memory structure for the update step inside
the algorithm as shown in Figure 1. We will also describe an
algorithm called Tabu-DART, which uses a dynamic set of
rules to update the probability map. By changing the values
of the probability map, we directly influence the frequency
with which individual pixels are updated in the following
iterations.

2.3 Tabu-DART: using a probability map to function
as memory for DART

Tabu-search is a heuristic technique which uses the concept
of memory to increase control of the solution space. We
implemented this concept in the DART update step because it
directly relates to both convergence speed and reconstruction
quality of the DART algorithm. In [1], this step is based on
a boundary criterion and a probability parameter p for each
pixel. Instead of one parameter p describing the probability
that an interior pixel is updated in the next iteration, Tabu-
DART uses a map:

P : Rn −→ [0,1]n,x−→ px (6)

As such, each pixel in the image has its own unique proba-
bility and for each pixel it is individually decided whether or
not it is updated in the next iteration. The Tabu-DART can
be summarized as follows:

1. After an initial segmentation, the probability map p(`)
x

is initialized.

2. During the partitioning step, a random value r(`)i be-
tween 0 and 1 is generated for each pixel x(`)i . If
r(`)i ≤ p(`)xi , then the pixel is selected for update.

3. At the end of every DART iteration, a feedback step is
added that updates the probability map based on changes
between the new segmented image and the one found in
the previous DART iteration. In this way, the probabil-
ity map adapts quickly to changes in the reconstructed
image.

Figure 1: A flowchart of the Tabu-DART algorithm.

Note that this framework encloses the original DART algo-
rithm [1] with random parameter p and segmentation s(`) as
follows:

p(`)xi =

{
1, if s(`)i is boundary

p, if s(`)i otherwise
i = 1, ...,n. (7)

We decided on a different approach in Tabu-DART. Each
pixel x j is linked to a probability vector of length k represent-
ing the probabilities that xi belongs to each material class.
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We denote this vector by vx j . By using the entropy

H (x j) =−vT
x j

log2(vx j), (8)

a single value representing uncertainty of the pixel xi can be
calculated. Varga et al. [11] described a method to calculate
the entropy for binary images. Let y j be the value of pixel x j

as a result of the initial ARM iterations. Then, the probability
vector vx j for a pixel x j is defined

vx j = [y j,1− y j],

and this becomes the input into (8). However, this approach is
applicable only to binary images. As to generalize it to more
than two classes, we suggest the following for the output y
from the ARM. Let

dxi =

[
1

|yi−ρ0|
, ...,

1
|yi−ρk|

]

vxi =
dxi

‖dxi‖1

The resulting vector vxi is input into (8) to yield a single
value H (xi) measuring uncertainty for the pixel xi. These
uncertainty values are used to initialize the probability map.
The probability map update step is also different and based
on three rules:

1. A pixel changing class during the last DART iteration,
indicates that the uncertainty of which class it belongs
to is still high. To ensure that the pixel will be updated
again in the next iteration, its update probability is set
to 1.

2. When a pixel did not change material classes compared
to the last DART iteration, its corresponding update
probability is halved instead. In this way, stable regions
are iteratively removed from the reconstruction problem.

3. As was pointed out in [1], the boundary plays a key role
as it holds the most uncertainty in the image. the update
probability of each boundary pixel is set to 1 as in [1].

3 Experiments and Results

3.1 Simulation experiments

To evaluate the effect of the proposed dynamic update strat-
egy on the reconstruction quality, we simulated projection
datasets of a laminate profile phantom (Figure 2) with de-
creasing angular range with a geometry that represents the
one used when scanning objects in the UAntwerp FlexCT
scanner [12]. We assumed a monochromatic beam with
fan-beam geometry with a phantom size of 200× 400, a
Source-Object-Distance (SOD) of 360 mm and a Source-
Detector-Distance (SDD) of 90 mm. The voxel size was
set to 0.120 mm. We varied the angular range from 40 to
140 degrees, with the number of projections taken varying

from 20 up to 70. The simulation was performed with the
ASTRA toolbox [13]. Simulated Poisson noise with an aver-
age photon count of 25000 was added to the projection data.
The reconstruction was performed using both the DART and
Tabu-DART algorithms described in Section 2. In addition,
we implemented the ADART algorithm [2] and a variant of
it employing the Tabu-DART based map update. The update
step for ADART is given by:

Pk(xi,s) =

{
1 if i ∈ Bk

s

p if i /∈ Bk
s ,

where the boundary set B(k)
s changes over time. A total of

50 initial SIRT iterations were run, followed by 95 DART
iterations. Following the original paper [1], each DART
iteration contained a subroutine of 10 masked SIRT iterations,
the value for p for DART and ADART was set to 0.15, and
the smoothing factor was set to 0.1. This amounts to 1000
SIRT iterations for each method. To counteract the effects of
noisy data, a relaxation factor λ was introduced to the SIRT
algorithm in the following way:

x(k+1) = x(k)+λCW>R(p−Wx(k)), (9)

where each DART iteration λ was set to the number of free
pixels divided by the total number of pixels. To measure
the performance of the methods, we calculate the number of
misclassified pixels, denoted as the pixel error.

Figure 2: The Laminate phantom used in the experiment

3.2 Simulation results

Figure 3 shows the pixel error as a function of the angular
range for the four DART methods described in the previous
section and the average relaxation factor λ . These errors
have been averaged over 50 repetitions with different seeds
for the generation of the Poisson noise. We observe a lower
pixel error for the algorithms based on Tabu-search compared
to the original methods (DART and ADART) for each choice
of angular range. The reconstructions are shown in Figure 4.
The visual difference, however, is negligible. The relaxation
factor in this experiment was set to reflect the number of
freed pixels. These directly influence the computational cost
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Figure 3: The pixel error as a function of the angular range for the laminate phantom (left) and the average relaxation factor (right).
Tabu-DART and Tabu-DART start outperforming DART and ADART once the missing wedge becomes large. The relaxation factor
represents the system size and indicates where the algorithm performance starts deteriorating.

(a) DART (b) Tabu-DART (c) ADART (d) Tabu-ADART

(e) DART (f) Tabu-DART (g) ADART (h) Tabu-ADART

Figure 4: Reconstruction for a 100 ◦ angular range. The first
row (a-d) shows the laminate image resulting from the methods.
The second (e-h) row shows difference images with the phantom.
While there is a difference in pixel error, the visual difference is
negligible.

of performing the DART iterations, and are lowest for Tabu-
DART and Tabu-ADART. Our approach allows for a lower
pixel error and similar visual quality at a lower computational
cost. A sudden increase of λ can be observed for all methods
once the removed wedge increases past 110◦. This indicates
the breaking point of the DART algorithm, reconstruction
becoming more and more unreliable past this point.

4 Conclusion

We have introduced a new update strategy which generalizes
the rigid update rules that DART and some of its variants use
in subsequent iterations. By representing the update strategy
with a probability map we yield more dynamic control of the

reconstruction regions and even singular pixels. The specific
example of the framework that we presented is however far
from optimal. Because of the flexibility of the framework it
is possible to introduce complex selection methods that are
based on priors already used in other methods such as Total
Variation minimization (TV) algorithms, statistical recon-
struction methods, or even learned priors. This is a subject
of our further work.
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Abstract Cone-beam CT images are mostly used today in proton
therapy to improve patient positioning, which only requires sufficient
high-contrast resolution between bones and soft-tissues. However,
adaptive therapy requires much higher image quality, with reduced
noise and exceptional soft-tissue contrast.
Random noise, residual scatter, or beam hardening artifacts deservedly
receives particular attention for improving image quality. An additional
challenge in proton therapy systems is the couch induced artifacts, the
most notable of which being truncation. All these errors manifest to
some extend as low-frequency variations impacting the contrast. This
study aims at addressing it.
We first introduce a new model for generating many contrast-impaired
CBCT scans from a single CT and demonstrate how a deep-learning
network can efficiently be trained based on it. A 5-layers UNet has
then been used following this method to correct clinical pelvis and
head-and-neck CBCT images. The results show substantial contrast
improvements.

1 Introduction

Today in proton therapy, cone-beam CT (CBCT) images are
mostly used for accurate patient positioning through rigid
registration with the planning CT. As it primarily relies on
high contrast regions such as soft-tissues-bones interfaces,
this processing neither requires accurate CT numbers nor a
good soft-tissue contrast. However, the lack of soft-tissue
contrast is a significant impediment to detecting anatomical
changes between the planning CT and the CBCT of the day.
It also limits its use for monitoring target motion, delineating
anatomical structures, and computing dose, the latter two
being prerequisites for online adaptive proton therapy [1–4].
Several synthetic CT methods have been proposed to enhance
CBCT quality and enable daily adaptive proton therapy [5].
The most common method to generate a synthetic CT from a
CBCT is through deformable image registration [6–9]. Al-
though the obtained result is less noisy and with much better
contrast, there is little guarantee that the resulting soft-tissue
structures and contours are accurately matching those of the
CBCT, which are usually drowned in noise.
In CBCT reconstruction, the most common sources of low-
spatial-frequency contrast loss are residual patient scatter,
inaccurate beam hardening correction (water equivalence as-
sumption), data incompleteness, or patient truncation. More-
over, proton therapy systems include couches, which are
typically more rigid and more attenuating than those used in
CT scanners to limit the impact of couch deflection on the
treatment delivery accuracy. Couch truncation in addition to
couch-induced scatter and beam hardening have shown to
be pretty difficult artifacts to correct with enough accuracy.
Fully mitigating some of these sources has shown to be very

expensive in modeling, system characterization, and/or algo-
rithm development. Without removing the need for a com-
plete system understanding, deep-learning strategies allow
for more straightforward image quality improvements [10–
12].
We propose a deep convolution neural network based on
the UNet architecture [13] for contrast improvement and
CT number offsets correction of a CBCT image. We also
developed a noise model to generate a large number CBCT-
like images from planning CT, used for the network training
and validation. The network has been successfully tested on
real CBCT from pelvis and head-and-neck.
Section 2 describes the network architecture and the CBCT
image generator used for its training. The results obtained
on clinical CBCT images are presented in Section 3. The
paper ends with a discussion on the potential improvements
in Section 4.

2 Materials and Methods

The soft-tissue contrast of a typical medium-dose CBCT is
mostly impacted by smooth spatial variations. In this work,
we designed and trained a network to accurately estimate
them without the need for CBCT and synthetic CT pairs to
be used respectively as noisy inputs and ground truth outputs.
One common alternative to these pairs is to generate realistic
CBCTs from a number of planning CT by simulating the
various physical sources of contrast-loss involved. However,
to reduce the simulation cost and drastically speed up the
training time, we decided to develop a generator that applies
random low-spatial frequency perturbations to planning CTs.
The necessary assumption for this is that such a random
distribution can draw realistic CBCT variations.

2.1 Contrast-loss and HU deviation model

A CBCT slice is modelled by a pixel-wise linear transforma-
tion of a CT slice f (x) by a scalar low-spatial frequency map
M(x), such that

g(x) = f (x) M(x)+n(x), (1)

where x is the pixel position and n(x) is a stationary zero-
mean random Gaussian noise with variance σ2

n . The map
M(x) is generated randomly so to create an almost infinite
number of CBCTs from a single CT. This can efficiently
be done through spectral factorization in which a particular
power spectral density is defined. We naturally chose a 2D
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Figure 1: Generation of a CBCT slice g(x) (right) from a
CT image f (x) (left) with map M(x) (center), using σx=22mm,
σy=58mm, θ=0.65π , a=0.3, b=0.95, and σn=30 HU.

Gaussian density G(k) defined in the frequency domain k =
{kx,ky} by its standard deviations, σkx and σky, and a rotation
angle θ . The spatial correlation lengths of M(x) are therefore
given by σx = 1/σkx and σy = 1/σky.
The factorization of a complex spatial map S(x|σx,σy,θ) is
obtained by

S(x|σx,σy,θ) = F−1{r(k) G(k|σkx,σky,θ)}, (2)

where r(k) is a sequence of random complex numbers drawn
from a Gaussian distribution N(0,1) and F−1 is the inverse
discrete Fourier transform. This process allows to create
simultaneously two orthogonal maps in the real and imagi-
nary parts of S(x). These maps are further normalized in the
[−1,1] range. We then compute the scaled map M from, e.g.,
the real part, with

M(x|σx,σy,θ ,a,b) = a Re(S(x|σx,σy,θ))+b, (3)

where the parameters a and b are respectively the map scaling
factor, representing the dynamic of the map, and the CT
numbers constant deviation factor.
All the six model parameters (σx,σy,θ , a, b, σn) are sampled
randomly in their typical range, i.e. σx,y in [10, 500] mm, θ
in [0, 2π], a in [0, 0.4], b in [0.7,1.1] and σn in [0, 20] HU.
These values have been determined by analyzing the available
CBCT data set. An illustration of the CBCT generation
process is given in Fig. 1.

2.2 Noise estimation and network architecture

The network architecture is the commonly used UNet [13].
This is a convolution-based multiresolution network com-
posed of an encoding and a decoding branch, as illustrated
in Fig. 2. It takes the noisy image g(x) as input and esti-
mates the noise map M(x). The corrected image f̂ (x) can be
obtained from the estimated noise map M̂(x) with

f̂ (x) = g(x)/M̂(x). (4)

The number of kernels Nl at a given layer l is Nl = 2l N0 with
l = 0 . . .L−1, L is the number of layers and N0 the number
of kernels at the first and last layers (excluding the 1x1 convo-
lution layer). Zero padding is done before each convolution
step, and batch normalization is applied before changing the
layer on both the encoding and decoding branch. The ac-
tivation function is a rectified linear one known as ReLU.

Figure 2: Example of a UNet with 3 layers processing the noisy
input g(x) to estimate the noise map M(x). The gray box widths
are proportional to Nl .

The network exhibiting the best performance is a 6-layers
UNet, with N0=32 and a 5x5 kernel size. The mini-batches
contains 16 slices downsampled to 2562 pixels. The maps
are upsampled to the CBCT original size before correction.

2.3 Data set and network training

As much as 71 planning CT scans of all available anatomical
regions are used as training and development data sets. About
two-thirds of the data were used for training, the other third
for testing. The network architecture and parameters tuning
were done on CT images exclusively and the validation on
clinical CBCT images. As the CT scans already contain
random noise, the maximum variance σ2

n of the additive noise
has been computed downwards accordingly. Moreover, we
checked that these scans do not contain any strong streaking
artifacts that could impair the network training.
The loss function is the addition of a L2 norm between M̂(x)
and M(x), and a regularization term, proposed in [14], which
measures the edge coherence between them, i.e.

Ls = ‖SF(M̂(x))−SF(M(x))‖2, (5)

where SF is an operator summing the absolute values of the
Sobel filtering about the two directions. The loss function
to be minimized is therefore L = L2 +λsLs, where λs was
tuned to 0.5. The network was optimized with the Adam
optimization method with 32 mini-batches of 16 slices per
epoch and over 20k epochs. The learning rate was constant
and set to 0.001. The network was implemented with the
TensorFlow Library.

3 Results on real CBCT data

The network performance was mainly evaluated on real
CBCT images of pelvis and head-and-neck scans obtained
from the IBA compact gantry system and exhibiting severe
contrast reduction. The corrected images are compared with
synthetic CT images obtained after deformable registration
of the planning CT onto the acquired CBCT before contrast
correction. The entire 3D image is processed so to target
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(a) Original CBCT (b) (c) Corrected CBCT (d) Estimated mapSynthetic CT

Figure 3: Results for a real pelvis CBCT (a) and comparison with the synthetic CT (b). The corrected image (c) is obtained by dividing
the original image (a) by the estimated map (d) using Eq. 4. The W/L=400/0 HU for the CTs and 0.5/0.85 for the map.

potential inter-slices inconsistencies in the correction and to
assess the performance for slices at high cone angles.

The results for a pelvis scan are plotted in Fig. 3. The original
CBCT shows substantial contrast reduction in the prostate
as well as in posterior regions. The impact of the couch has
been demonstrated to be dominant there and can hardly be
corrected upstream in the processing pipeline. Horizontal
streaking artifact through the hip bones can also be observed,
mainly due to photon starvation. The corrected image shows
an evident improvement over the original one, both in terms
of contrast and CT numbers offset correction, with minimal
impact on resolution. The coronal views also demonstrate
image restoration at higher cone angles, especially at the
tights level. This has for advantage to increase the effective
scan length of the system. The SSIM metric has been com-
puted relatively to the synthetic CT and improved from 0.4
to 0.75 for the central slice. These numerical results must be
weighted by the fact that the CBCT image has a much higher
noise and that, due to the model used, the network is not
meant to accurately correct bony regions. As required by the
model, the estimated correction map is globally at low-spatial
frequencies in the axial plane. However, it shows inter-slice
variations in the coronal view, which has to be expected due
to the slice-by-slice processing. Nevertheless, the impact of
those variations on the corrected images looks rather limited
compared to the noise. The correction of the skin-line is glob-
ally insufficient, probably because of the high gradients to be
corrected. Despite the global contrast improvement between,
e.g., muscles and fat, their relative CT number distance varies
locally. This issue is caused by the linearity assumption used
in our model, which does not allow for non-linear artifacts,
such as those linked to the poly-energetic nature of the beam,
to be corrected.

Fig. 4 depicts the results for a head-and-neck scan. The main
difference with the pelvis one is the predominance of bones
and, therefore, bone-soft-tissues interfaces, insufficiently cor-
rected bone beam hardening, and metal artifact. The contrast
is again well improved, especially inside the skull, with no

impact on resolution. The streaks caused by beam hardening
at the base of the skull are removed as can be seen in the
coronal and sagittal views. The jaw region is also given a
low-frequency correction despite the severe streaks due to
metal artifacts. This indicates a relatively good tolerance to
strong inconsistencies. The last observation is that a partial
or inaccurate correction of some streaking artifacts may still
produce small structures in the corrected images as we can
see for instance in the axial plane. The computed SSIM met-
ric improved from 0.35 to 0.65 at the base of the skull and
from 0.5 to 0.8 for a slice at the middle of the skull.

4 Discussion and conclusions

The good results obtained on real CBCT images demonstrate
the overall adequacy of the CBCT generator for the task as
no CBCT image has been used during the training. The
risk of overfitting is therefore almost non-existent. However,
its main limitation is to only partially correct for non-linear
effects. This fact was actually predictable as our main require-
ment was to be able to provide a scalar low-spatial frequency
correction map for inspection. We therefore naturally chose a
linear model. This point will need to be reevaluated depend-
ing on the new developments made to improve the network.
A question that arises is whether separate training should
be done for each anatomical region. Even if the correction
accuracy would most probably be improved, it would make
the correction practically more complex as usual scan lengths
are such that multiple regions are covered.
In addition to further improving the results, our future work
will focus on evaluating how much this CBCT image qual-
ity enhancement makes any subsequent processing, such as
contouring or deformable registration, more accurate.
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Figure 4: Results for a real head-and-neck CBCT (a) and comparison with the synthetic CT (b). The corrected image (c) is obtained by
dividing the original image (a) by the estimated map (d) using Eq. 4. The W/L=400/0 HU for the CTs and 0.5/0.85 for the map.
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Abstract For ion therapy, an accurate estimate of the ion energy depo-
sition per path length (stopping power) in the patient is essential. Ion
computed tomography (iCT) allows to directly measure this quantity.
However, as a result of multiple Coulomb scattering, ions pass through
the patient on a curved trajectory. Considering each ion path separately
in the reconstruction process adds complexity to the problem and often
results in long reconstruction times. In this work, a simple and fast
approach for iCT reconstruction with the GPU-based open-source soft-
ware toolkit TIGRE is presented. Since the framework was initially
intended for x-ray CT, a straight line approach is used to approximate
ion paths to use the framework without modification.
With this simplified approach, imaging data obtained from Monte
Carlo simulations and measurement data from an ion CT demonstra-
tor are reconstructed in TIGRE. The accuracy of the demonstrated
reconstruction approach is limited by the straight line approximation
of the ion path. However, reconstruction results could be improved
with additional data cuts. The structure of TIGRE and possibilities for
its improvement for iCT reconstruction are discussed.

1 Introduction

Proton computed tomography (pCT) was already discussed
by Cormack [1] in the 1960ies. Since protons and other
ions are affected by multiple Coulomb scattering, they do
not pass through a material on a straight line which leads to
reduced image quality. An accurate path estimate is therefore
necessary in the reconstruction process. Here, most likely
path [2, 3] and cubic spline [4] have been shown to achieve
better results than a straight line approach [5]. Although the
reconstruction problem is more complex than conventional
CT, ion CT (iCT) gained interest in the context of ion therapy
for cancer treatment [6, 7] where treatment planning is based
on the relative stopping power (RSP) values within a patient.
So far, a treatment plan is based on conventional CT, where
Hounsfield units (HU) have to be converted to RSP via a
calibration curve [8] which is the main source of range un-
certainties [9]. In iCT, the RSP can be directly obtained from
the measurement, thus offering the potential for improved
treatment planning in ion therapy.
A typical iCT setup, as it is displayed in Figure 1, was in-
troduced by Schulte, Bashkirov, Li, et al. [10] and consists
of a particle tracker and a device to measure the residual en-
ergy of each particle (calorimeter). The information from the
tracking system is used to reconstruct the ion’s path through
the medium, while the residual energy is used to calculate

the projection value, which is then back projected along the
path estimate in the reconstruction.

Method

Method
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∆E

E

ionscalorimeter

rear tracker front tracker

Fully3D 2021 Image reconstruction for ion imaging with the TIGRE software framework 1/1

Figure 1: iCT setup consisting of two trackers, to measure the
ion’s position and direction and a calorimeter to measure the ion’s
residual energy.

Although there have already been promising ion CT recon-
struction approaches [11, 12] and frameworks [13, 14], iCT
reconstruction often faces problems such as long reconstruc-
tion times. The aim of the present study is to demonstrate
iCT image reconstruction with the open-source framework
TIGRE [15] (Tomographic Iterative GPU-based REconstruc-
tion toolbox). The layered structure of the framework allows
for an iCT reconstruction approach which is fast (GPU-based
reconstruction) and easy to apply for the user (Matlab user
layer). Although the framework was originally intended for
X-ray CT reconstruction, iCT reconstruction along straight
ion paths was demonstrated to be possible.

2 Materials and Methods

2.1 TIGRE reconstruction toolkit

TIGRE is an open source cone beam CT reconstruction frame-
work. It introduces a large set of iterative reconstruction
methods, mainly algorithms using total variation (TV) regu-
larization, which allow efficient reconstruction from sparse
view and limited angle projection data. While the forward
and backward projectors are fully implemented in CUDA
(hence run on one or multiple GPUs), the reconstruction al-
gorithms and user layer are written in Matlab. These layers
are communicating via C++ scripts.
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2.2 Ion CT demonstrator and Monte Carlo simula-
tions

An ion CT demonstrator, consisting of four 300 µm silicon
strip tracking detectors and a range telescope, has been tested
at MedAustron and yielded first RSP images of a phantom
[16, 17]. Due to the limited size of the tracking detectors,
only small phantoms can be imaged. 80 non-equidistant
projections of an aluminum cube with a side length of 1 cm
and a stair profile were measured over a range of 360 degrees
using protons with an initial energy of 100.4 MeV.

For larger phantoms, imaging data were generated from
Monte Carlo simulations with Geant4 [18] and GATE [19]
using the physics list QGSP_BIC. To analyze line pair reso-
lution and RSP accuracy of the investigated reconstruction
method, two Catphan modules (CTP528 and CTP404 [20])
were used as phantoms. They are made of a cylindrical
acrylic body with a diameter of 15 cm and specific inserts.
While the CTP528 module contains aluminum strip inserts
to determine the spatial resolution of a reconstruction, the
CTP404 module contains different cylindrical inserts that
can be used to determine the RSP accuracy of the reconstruc-
tion (the central slice was analyzed for 200 MeV protons in
[21]). In this work, reconstruction results with helium ions
(200 MeV/u) are presented. Furthermore, to investigate bio-
logical materials, a CT image of the CIRS head phantom [22]
was imported to a GATE simulation and a reconstruction was
performed using 200 MeV protons.

Beam
Phantom

Trackers

D1 D2
D3 D4

Figure 2: Monte Carlo simulation setup.

The Monte Carlo simulation setup for all simulations per-
formed in the scope of this work (see Figure 2) contained
two trackers, each consisting of two 300 µm silicon detectors.
One tracker was located upstream (detector D1 and detector
D2) and one downstream (detector D3 and detector D4) the
phantom to measure entry and exit position and direction of
ions to the phantom. Between the two detectors of a tracker,
a 10 cm distance was set while the distance between tracker
and phantom was always kept greater than 10 cm. The resid-
ual energy of the ions was determined at detector D4 in this
idealized setup (no additional calorimeter). The setup was
located within an air volume and a fluence of 800 ions/mm2

(Catphan modules) and 200 ions/mm2 (CIRS head) was used
in the simulations. In each simulation, 90 projections were
generated over an angular span of 178°.

2.3 iCT projection definition and reconstruction

To use the framework TIGRE without modification, a straight
line approach was used for the ion path. In order to remove
ion paths with a strong curvature, position cuts were intro-
duced in addition to the standard 3σ cuts [3]: The difference
of proton hit positions in x- and y-direction between detec-
tor D2 and detector D3 was calculated and, if it exceeded
a certain threshold, the track was rejected (this method was
adapted from Cirrone, Bucciolini, Bruzzi, et al. [23]). The op-
timal position cut threshold hereby depended on the phantom
thickness and material. It was set to 0.5 mm for the mea-
surement data, 2 mm for the simulation of Catphan modules
and 4 mm for the simulation of the CIRS head since this was
found to be the ideal compromise between optimized spacial
resolution, RSP accuracy and amount of rejected ion paths.
If a track passed the cut condition, the ion was assigned to
the pixel corresponding to the average of the hit positions on
detectors D2 and D3.
To obtain the RSP in the reconstructed image, the water
equivalent path length (WEPL) had to be calculated for each
ion and further used as projection value. While for the mea-
surements from the iCT demonstrator, the range telescope
measurement was directly converted to the WEPL, the Don-
ahue [24] definition of the ion range R,

R =
1
κ
[βEq

in +αE p
in +

h
g
(exp(−gEin)+gEin−1)]u, (1)

was used for simulated data. Here, the stopping power S
depends on the material’s ionization potential Imaterial and
the ion energy E. Ein is the initial ion energy and u is the
atomic mass number of the ion. α , β , g, h, p, and q are
material-dependent parameters, which were already defined
for protons in water in Donahue, Newhauser, and Ziegler
[24]. For helium ions, the material parameters for the Don-
ahue model were calibrated with NIST data [25] between
5 MeV to 250 MeV using a least squares algorithm provided
by Python’s scipy module [26]. To obtain the WEPL for each
ion, the range at the initial and residual ion energy Ein and
Eout are subtracted [21]

WEPL = Rwater(Ein)−Rwater(Eout). (2)

In the projection, the average WEPL per pixel was calculated
for all ions assigned to the pixel.
Adaptive-Steepest-Descent Projection Onto Convex Sets
(ASD-POCS) [27] of the Total Variation (TV) algorithm
family was selected as the main reconstruction method in
this study due to its highly demonstrated performance under
limited angle scanning trajectories. Algorithms of this family
have also shown promising results for iCT reconstruction
problems [28, 29]. In [21] it was shown that especially for
limited data, ASD-POCS outperforms other algorithms im-
plemented in TIGRE, such as Ordered-Subset Simultaneous
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Algebraic Reconstruction Technique (OS-SART) [30]. How-
ever, OS-SART was used to reconstruct the measurement
data from the iCT demonstrator at MedAustron. Due to the
phantom size, the data cuts did not have such a strong influ-
ence and the better statistics per pixel allowed for the faster
reconstruction with OS-SART.

3 Results

3.1 Measurement data from the iCT demonstrator

In the reconstructed 3D view of the phantom (Figure 3, right),
the stair profile is clearly visible. Furthermore, the recon-
structed RSP was analyzed within each stair (see Figure 4).
Edge voxels have been excluded from this analysis. The rela-
tive error of the median RSP within each step was ranging
from 1.4% to 11% (thinnest stair), while the relative error of
the average values was ranging from 2.7% to 11.6%.

Figure 3: Photo of aluminum phantom (left) and 3D view of its
reconstruction (right). 3D view was created with Slicer [31].

In Ulrich-Pur, Bergauer, Burker, et al. [17], the RSP values
within the phantom stairs (again, after using position cuts
of 0.5 mm) were analyzed while including edge voxels. It
could be seen that the relative error of the most probable
value (MPV) within a stair could be lowered to 0.28 - 1.56%
with these position cuts. The reason for the smaller errors
compared to the values stated before lies in the shape of the
RSP distribution observed within a stair: Rather than being
Gaussian-shaped, the distribution showed a significant tail
towards lower values. While this influences the average and
median value within a stair and shifts it to a lower value, the
MPV could still be found closer to the expected reference
value.
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Figure 4: Reconstructed RSP values within the stairs.

3.2 Monte Carlo simulations – Catphan modules

Based on the work in Kaser, Bergauer, Birkfellner, et al. [21]
reconstruction results using helium ions are summarized in
Figure 5 for the central slices of the CTP528 and CTP404
modules.
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Figure 5: Reconstructed central slices of CTP528 (left) and
CTP404 (right) using 200 MeV/u helium ions.

The contrast – corresponding to the value of the modulation
transfer function as defined as in Volz, Piersimoni, Bashkirov,
et al. [32] – of the first three line pair inserts within the
CTP528 from a reconstruction using protons or helium ions
and a 2 mm position cut is shown in Figure 6. While the
3 lp/cm insert could be distinguished with a contrast of 26%
for protons, the contrast of higher line pair inserts was below
10%. Using helium ions, the contrast for the first three line
pair inserts was higher than for protons, for example, 40%
for the 3 lp/cm insert.
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Figure 6: Contrast values in the line pair inserts of the CTP528.

For the CTP404, RSP values of three from the outer in-
serts, namely LDPE (Low Density Polyethylen), PMP (Poly-
methylpentene) and Delrin, can be found in Figure 7 for
protons and helium ions. Edge pixels have been excluded
from the analysis.
For helium ions, the spread of values was smaller than for
protons within a region of interest. Furthermore, the aver-
age RSP did correspond very well to the the reference RSP,
which was defined using an R80 calibration as described in
Kaser, Bergauer, Birkfellner, et al. [21]. For example, the
reconstructed average RSP for the Delrin insert yielded 1.369
which is 0.2% above the reference value of 1.366. For pro-
tons, the average RSP value of 1.357 was approximately 1%
below the reference value (1.371).
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Figure 7: Reconstructed RSP values in the LDPE, PMP and Delrin
insert.

3.3 Monte Carlo simulations – CIRS head phantom

To visually demonstrate the effect of position cuts on the
reconstruction result, a CT image of the CIRS head phantom
was inserted as phantom to a GATE simulation. Figure 8
shows the reconstruction result from 90 projections using
200 MeV protons.
The effect of the position cuts can be visually observed re-
garding the transition between bone and tissue within the
phantom.

Figure 8: Reconstructed slices of CIRS head phantom without
(left) and with (right) position cuts.

4 Discussion

To apply the OS-SART and the ASD-POCS algorithm (based
on total variation) to the iCT reconstruction problem, no mod-
ification of the TIGRE software framework was necessary
(only a redefinition of projection values).
Measurement data from an ion CT demonstrator could be
successfully reconstructed and position cuts could be used
to increase RSP accuracy. The reconstruction time for a
volume of 256×256×128 voxels was smaller than 10 s on
a standard GPU using OS-SART.
For larger phantoms, Monte Carlo simulations were used to
generate projection data. The reconstruction of the CTP528
using protons showed the expected limitations in spatial res-
olution due to the straight line approximation of the proton
path. Nevertheless, inserts with 1 to 3 lp/cm could be dis-
tinguished using the additional position cut. Comparing
reconstruction results to other straight line reconstructions
using protons, a similar spatial resolution can be found (for
example approx. 2 lp/cm for 180 projections and using ART

with 120 iterations and 200 protons mm−2 in Li, Liang, Sin-
ganallur, et al. [5]). Using helium ions instead of protons did
increase the contrast of the reconstruction result.
For the CTP404, RSP values within inserts were analyzed
(transitions between materials were neglected in the analysis
for this phantom). Regarding the average RSP values ob-
tained in the inserts, the Donahue approximation seems to
be an adequate option for the projection definition since only
minor deviations from the literature values [33] were found.
For helium ions, reconstructed RSP values were closer to the
reference value than for proton ions.
For the CIRS head phantom, the effect of position cuts could
be well observed regarding the transitions between phan-
tom/air and bone/tissue in Figure 8.
To further test the applicability of TIGRE for limited projec-
tion data, the number of projections or the particle fluence
used in this study have to be further reduced. However, the
800 protons/mm2 that were used in the present work lie in
the typical range for iCT: For example, Rit, Dedes, Freud,
et al. [11] used 900 protons per mm2 to investigate a 3 lp/cm
insert (720 projections) while Giacometti, Bashkirov, Piersi-
moni, et al. [34] reported a contrast above 10 % for 3 lp/cm
for 100 protons per mm2 and 90 projections.
The main limitations of the presented method arise from
the effect of multiple Coulomb scattering, which leads to
decreased spatial resolution and RSP inaccuracies if a straight
ion path is assumed. The position cut used in the present
study allowed to compensate for this effect to some part,
however, a large number of primary particles were filtered.
For the Catphan modules, 70-90% of primary protons were
rejected by the 2 mm position cut, depending on the phantom
thickness (lower data rejection at the edges than in the central
region of the cylindrical phantom). Using helium ions, 34-
75% of primary ions were rejected by the same position cut.
To optimize TIGRE for iCT, two main requirements have to
be addressed: The already binned projection data have to be
replaced by list-mode data. This step is crucial to treat each
ion path separately in the reconstruction process. Here, the
straight line approximation has to be replaced by cubic spline
or most likely path estimation.
The structure of TIGRE allows to keep a Matlab header for
the user while changes in the projection and back projec-
tion operators have to be done in CUDA. Such changes in
the CUDA implementations have already been proposed in
Hatamikia, Biguri, Kronreif, et al. [35], where reconstruc-
tion from arbitrary rotation scan trajectories were added to
the framework. In addition, the CUDA layer was modified
to speed up the implementation of the total-variation based
algorithms. The TIGRE toolbox offers multiple incentives
to perform the proposed adaptions for iCT: It offers a wide
range of algorithms which have already been shown to gener-
ate promising results with low input data [15, 35], the use of
multi-GPUs is possible and the layered structure makes the
framework a promising candidate for a user-friendly iCT re-
construction framework. This layer structure already allows
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the use of multi-GPUs in the reconstruction, further speeding
up the reconstruction time.

5 Conclusion

The applicability of the TIGRE reconstruction framework to
the ion CT reconstruction problem was shown using simu-
lated and measured projection data. Further improvements
needed to optimize ion CT reconstruction were discussed.
Most importantly, a sophisticated path estimate has to be
implemented to the framework.
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Abstract Beam-hardening is the increase of the mean energy of an X-ray 

beam as it traverses a material. This effect produces two artifacts in the 

reconstructed image: cupping in homogeneous regions and dark bands 

among dense areas in heterogeneous regions. The correction methods 

proposed in the literature can be divided into post-processing and 

iterative methods. The former methods usually need a bone 

segmentation, which can fail in low-dose acquisitions, while the latter 

methods need several projections and reconstructions, increasing the 

computation time. 

In this work, we propose a new method for correcting the beam-

hardening artifacts in CT based on deep learning. A U-Net network was 

trained with rodent data for two scenarios: standard and low-dose. 

Results in an independent rodent study showed an optimum correction 

for both scenarios, similar to that of iterative approaches, but with a 

reduction of computational time of two orders of magnitude. 

1 Introduction 

The origin of the beam-hardening effect lies in the 

polychromatic nature of the X-ray sources. It is defined as 

the process whereby the mean energy increases its value 

when traversing a material. This energy shift is due to the 

fact that low-energy photons are more easily absorbed than 

high-energy photons. The beam-hardening effect produces 

two artifacts on the reconstructed image: cupping in 

homogeneous regions and dark bands among dense areas in 

heterogeneous regions [1]. 

We can find multiple correction schemes in the literature. It 

is common to pre-harden the beam by using a physical filter 

that eliminates most of the low-energy photons [1]. 

However, this is not enough to completely eliminate the 

artifacts, making it necessary to use image processing 

methods. The method implemented in most of the scanners 

is the water linearization. It assumes that the sample is 

homogeneous, correcting only the cupping artifacts [2]. To 

correct both cupping and dark bands, the beam-hardening 

effect can be modeled using the spectra knowledge and an 

estimation of the tissue thicknesses [3, 4]. The spectra 

knowledge was substituted with a beam-hardening model 

using information either from a calibration phantom [5] or 

the sample itself [6]. Other works avoid the characterization 

of the beam-hardening model by maximizing the flatness 

[7] or the entropy [8] of the reconstructed image. However, 

all the previous methods need a segmentation that can fail 

in low-dose acquisitions. In these scenarios, the use of 

iterative algorithms allows for the improvement of the 

segmented masks with successive iterations. The work 

proposed by Elbakri et al. [9] included a polychromatic 

model of the source, but required the spectra knowledge to 

incorporate the energy effect into the projection matrix. 

This requirement was eliminated in the method proposed by 

Abella et al. [10], called bhSIR, with a simplification of the 

polychromatic model based on two parameters and the same 

calibration step of the water-linearization method. 

However, the use of iterative methods leads to an increase 

in the execution time. 

Over recent years, deep learning has been widely used in 

CT images for segmentation and classification [11, 12] or 

to improve the quality of low-dose acquisitions [13, 14]. U-

net [15], originally used for image segmentation and one of 

the most known architectures, has already been used to 

reduce the sparse-view artifacts in CT images [16],  metal 

artifacts [17] or ring artifacts [18]. To the best of our 

knowledge, there are no deep learning approaches to reduce 

the beam-hardening artifacts on CT images.  

In this work, we proposed a new method to obtain images 

free of beam-hardening artifacts in CT. We compensate the 

artifacts by using deep-learning techniques based on a U-

net architecture in low and standard-dose scenarios. 

2 Materials and Methods 

The proposed method uses a modification of the original U-

net architecture [15], eliminating the sigmoid layer that 

normalizes the resulting image to allow the restoration of 

the monochromatic values. We use the mean squared error 

(MSE) as the cost function. Figure 1 shows the network 

architecture.  

The training was performed during 100 epochs using the 

Adam optimizer [19] with axial slices of four rodent studies 

acquired with the micro-CT scanner ARGUS/CT 

(SEDECAL) [20]. Two scenarios, standard dose (360 

projections covering 360 degrees) and low dose (180 

projections covering 360 degrees), were acquired and 
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reconstructed with the software FUX-SIM [21], obtaining 

projections of 512×375 pixels and 0.2×0.2 mm of pixel size. 

Reconstruction was performed with the FDK algorithm 

[22], resulting in volumes of 512×512×375 voxels and 

0.121×0.121×0.121 mm of voxel size. In both scenarios, 

images obtained with bhSIR [10] from standard dose data 

were used as reference (Figure 2). 

 

Figure 1: Modified Architecture of the U-net 

 

Figure 2: Axial slice of the rodent study for the low (left) and 

standard-dose (right) scenario and the reference obtained with 

the iterative method (right) 

Images obtained with bhSIR [10] were used as reference. 

To select the appropriate learning rate, we used the Leslie 

N. Smith test [23], resulting in 10-5 (Figure 3). 

 

Figure 3: Results of the Leslie N. Smith test to determine the 

optimum learning rate. 

3 Evaluation and results 

The network was applied to a fifth rodent study, also 

acquired in standard- and low-dose scenarios. We compared 

the proposed method with the FDK, FDK+2DLinBH [5] 

and bhSIR [10] visually and in terms of execution time. 

Figure 4 shows the two axial slices of the standard dose 

scenario obtained with the different methods. We can 

observe a reduction of the dark bands with all the methods 

but with a slight noise increase with the analytical approach 

FDK+2DLinBH. The image corrected with the proposed 

method is very similar to the one obtained with the iterative 

algorithm bhSIR, with higher SNR and a complete 

reduction of the beam-hardening artifacts. 

 

Figure 4: Standard-dose scenario for two different axial slices 1 

(top) and 2 (bottom) obtained with the FDK (A), 

FDK+2DLinBH (B), bhSIR (C) and the proposed method (D) 

189



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 

  

Figure 5 shows the results for the low-dose scenario. 

FDK+2DLinBH shows streak artifacts because of the low 

angular sampling. The proposed method reduces these low-

sampling artifacts and compensates the beam-hardening 

artifacts similar to that in the reference. 

 

Figure 5: Low-dose scenario for the slices 1 (top) and 2 

(bottom) obtained with FDK (A), FDK+2DLinBH (B), bhSIR 

(C) and the proposed method (D) 

Table I shows the computational time of the complete 

volume for the different methods. We can observe that the 

lowest time corresponds to the proposed method. 

TABLE I 

EXECUTION TIME OF EACH METHOD (SECONDS) 

4 Discussion 

We have proposed a new method to compensate the beam-

hardening artifacts on CT images based on the combination 

of conventional reconstruction and deep learning. Our 

method outperforms classical post-processing methods in 

low-dose data, showing a similar performance to a 

polychromatic iterative method (bhSIR) but with a 

considerable reduction of computational time. 

Evaluation performed on real data showed a good correction 

of the beam-hardening artifact but a slight loss of spatial 

resolution. The selection of the simple cost function MSE 

for these preliminary results may be responsible for this loss 

of spatial resolution. Future work will evaluate the use of 

more sophisticated cost functions, such as SSIM or 

perceptual loss, or architectures like GAN (Generative 

Adversarial Networks). 

Due to the impossibility of acquiring the rodent studies with 

a monochromatic source, an iterative method was used as 

the gold standard.  

We focused on head studies, creating a different model 

depending on the number of projections. Further work will 

evaluate the performance of the method when other 

anatomical parts, such as the abdomen or thorax, are 

included in the dataset. We also expect that this increase in 

the amount of training data would enable a single model to 

work independently of the number of acquired projections. 

5 Conclusion 

The proposed method based on deep learning corrects the 

beam-hardening artifacts in CT images with a reduction of 

noise and low-sampling streaks similar to iterative methods 

but with a significant reduction of computational time. This 

reduction allows the method to be used in real-time 

applications like intraoperative imaging. The method can be 

easily implemented in real systems, since it involves only 

an extra processing step right after a conventional 

reconstruction.  
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Abstract We have earlier demonstrated the feasibility of realizing low-

dose dual-energy imaging on top of an existing single-energy fast-

rotating gantry-type CT scanner by use of a multi-slit beam-filter placed 

between the x-ray source and the patient. By sliding a beam filter with its 

slits being at a slanted angle and exploiting associated image processing 

and reconstruction algorithm, we have overcome hardware- and 

software- challenges. However, our previous method has limitations of 

not zero-loss of structural information due to notch-filtering and image 

domain-denoising, and not short-computation time in iterative image 

reconstruction framework. In this work, we propose a CNN-based dual-

energy imaging method to overcome these challenges. We firstly 

deployed a residual U-Net neural network to make fully restored low- 

and high-energy sinogram out of original streaky sinogram, followed by 

filtered-backprojection (FBP) of two output sinograms. Using these two 

images as a prior and initial guess, we have processed 5 steps of the 

compressed-sensing-inspired iterative reconstruction (CS-inspired IR) 

algorithm to improve the fidelity of the reconstructed image value. We 

conducted a simulation study using the anthropomorphic digital phantom, 

and showed its successful results in image reconstruction and material 

decomposition. 

 

1 Introduction 

 

Spectral CT imaging techniques can provide material 

decomposed images or variable contrast images for better 

diagnosis or distinction of lesions, reducing the burden of 

uptake of contrast agents of patients. High-end gantry-type 

CT systems are equipped with these dual-energy techniques 

such as dual-source technology [1,2], fast kV-switching [3], 

and detector-based spectral CT [4,5]. Very high-end CT 

systems are equipped with deep-learning-based dual-energy 

imaging technology enabling better material decomposition 

performance in a short computation time [6]. 

 We have earlier shown a many-view under-sampling 

(MVUS) technique that uses a multi-slit beam filter [7-10]. 

It enables dual-energy imaging in a low-dose manner [9-10]. 

Recently, we proposed to use a linear motion of a beam-

filter with its slits being at a slanted angle with the rotation 

axis to implement the MVUS technique on top of existing 

single energy fast-rotating gantry-type CT scanner [10]. Out 

of streaky sinogram, a notch-filter was applied to come up 

with restored sinogram. By filtered-backprojection (FBP) 

and image-based smoothing, an initial image without a 

streaky pattern was made.  In turn, compressed-sensing 

inspired image reconstruction (CS-inspired IR) was 

processed by selectively using specific energy data out of 

the original streaky sinogram and by exploiting the 

structural information of the initial image as a prior [10,11]. 

 Despite its successful demonstration, it takes not short-

computation time having a difficulty in clinical use. In 

addition, the conventional notch-filtering process and 

image-based denoising can lead to not zero loss of structural 

information. 

In this work, we propose a convolutional neural network 

(CNN) based low- and high-energy sinogram restoration 

method out of the original streaky sinogram to overcome 

these challenges. After FBP of two output sinograms, 5 

steps of CS-inspired IR are processed to improve the fidelity 

of the reconstructed image. To test the feasibility, a 

simulation study has been conducted using 

anthropomorphic digital phantom.  

 

2 Materials and Methods 

 

A. MVUS scanning and CNN-based dual-energy imaging 

 

 As shown in Fig. 1, a multi-slit beam filter slides along 

the rotation axis while CT scanning so that one can acquire 

sparsely sampled data. Photons through the filter attenuate 

leading to x-ray mean-energy shift to a higher level, 

enabling dual-energy imaging, and it leads to dose 

reduction to the patient as well. As shown in Fig.2, in step 

1, sparsely sampled sinogram data go through the neural 

network, resulting in fully recovered low- and high-energy 

sinograms, and both sinograms are fed into the FBP 

framework. In step 2, both images go through a CS-

inspired IR process by selectively using specific energy 

data regions in the original streaky sinogram to improve 

the fidelity of the reconstructed image value, followed by 

image-based material decomposition. 

 

 
Figure 1. Schematic of MVUS scanning 
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Figure 2. Proposed imaging algorithm flowchart. 

 

A1. Step 1: CNN based sinogram restoration and image 

reconstruction 

 

We propose a sinogram domain-based deep learning 

framework to generate fully restored low- and high-energy 

sinograms. Figure 3 shows the input and output of the 

proposed deep learning network. Input data is composed of 

3 channels sinogram patches which are the original 

sinogram patch in channel 1, the binary mask patch of the 

low-energy sinogram in channel 2, and that of the high-

energy sinogram in channel 3. Please note that penumbra 

was considered in sinogram and masks. Output data is 

composed of 2 channles which are fully restored low-

energy sinogram and high-energy sinogram. Residual U-

Net network was exploited as shown in Fig. 4, where the 

residual of the network is difference of label and input 

streaky sinogram [12]. In turn, output sinograms are fed 

into FBP framework.  In this study, all the source codes 

were programmed in Python and the Pytorch library on an 

RTX 2080-ti GPU. The Adam method was employed to 

optimize the network. The learning rate starts from 1e-4 

and is multiplied by 0.99 times every epoch. For the loss, 

MSELoss was used and a total of 15 epochs were trained. 

 

A2. Step 2: CS-inspired IR & Dual-energy imaging 

 

5 steps of CS-inspired IR are processed for each energy 

image by selectively using low- and high-energy data 

regions in the original sinogram. Each initial guess of IR is 

FBP of low- and high-energy output sinogram in Step 1. A 

constrained total-variation minimization algorithm was 

exploited where it minimizes the l2 norm of the difference 

between gradient magnitude image (GMI) of the 

reconstructed image in Step 1 and the image to be 

reconstructed as following equations:  

 
Figure 3. Input and output of our proposed deep-learning 

framework. 

 

 
Figure 4. Proposed residual U-Net backbone. 

 

𝑓𝑙𝑜𝑤 = argmin
𝑓∗

(‖𝑓𝑙𝑜𝑤‖
𝑇𝑉

+ 𝛽‖𝐺𝑀𝐼𝑙𝑜𝑤 𝑝𝑟𝑖𝑜𝑟 − 𝑤1𝐺𝑀𝐼𝑙𝑜𝑤‖
2

) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝐴𝑓𝑙𝑜𝑤 − �⃗�𝑙𝑜𝑤‖ < 𝜀1 and 𝑓𝑙𝑜𝑤 ≥ 0 ⋯ (1) 

 

𝑓ℎ𝑖𝑔ℎ = argmin
𝑓∗

(‖𝑓ℎ𝑖𝑔ℎ‖
𝑇𝑉

+ 𝛽‖𝐺𝑀𝐼ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟 − 𝑤1𝐺𝑀𝐼ℎ𝑖𝑔ℎ‖
2

) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝐴𝑓ℎ𝑖𝑔ℎ − �⃗�ℎ𝑖𝑔ℎ‖ < 𝜀1 and 𝑓ℎ𝑖𝑔ℎ ≥ 0 ⋯ (2) 

 

, where �⃗�𝑙𝑜𝑤 and �⃗�ℎ𝑖𝑔ℎ correspond to the low- and high-

energy projection data. 𝐺𝑀𝐼𝑙𝑜𝑤 𝑝𝑟𝑖𝑜𝑟 and 𝐺𝑀𝐼ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟 

are GMI of FBP images of low- and high-energy output 

sinograms in Step 1, respectively. 𝑤1 and 𝑤2 correspond 

to the ratio of l1 norm of 𝐺𝑀𝐼𝑙𝑜𝑤 𝑝𝑟𝑖𝑜𝑟 to that of  𝐺𝑀𝐼𝑙𝑜𝑤 

and the ratio of l1 norm of 𝐺𝑀𝐼ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟 to that of  

𝐺𝑀𝐼ℎ𝑖𝑔ℎ, respectively, to normalize GMI scales between 

them [13]. In last, image-based material decomposition is 

then followed [14]. 
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B. Beam-filter parameters optimization 

 

Optimization of beam-filter parameters such as the number 

of slits and the cycle number of the streaks in the sinogram 

domain is important in image quality and also in the 

accuracy of material decomposition. We have calculated 

sampling density (SD) of reconstruction image domain for 

the optimization considering penumbra region [15], and  4 

strips and 4 cycles were found to be optimum as shown in 

Fig 5, which were used in the simulation. 

 

 
Figure 5. RMSE of SD from the ideal uniform case for each 

streak pattern. 

 

C. Simulation study 

 

A simulation study was conducted using the 3D digital 

anthropomorphic phantom. Acquired projection data were 

composed of 80 kVp and 140 kVp energy spectrum 

information, for the unfiltered and filtered regions, 

respectively. 67,500 data set was used for the training, and 

fan-beam circular scanning geometry was used for the 

feasibility study. Detailed simulation parameters are 

summarized in Table 1. 

 
Table 1. Simulation & Deep learning parameters. 

Parameters Values 

Views per rotation 720 

Detector pixel number 512 × 1  

Detector pixel pitch 0.8 mm 

Distance of source to detector 1300 mm 

Distance of source to object 1100 mm 

X-ray source 140 kVp / 80 kVp 

Beam-filtered region ratio 50 % 

Beam-filter shape 4 strips / 4cycles 

Patch size 256 × 256 

Patch stride 58(view), 64(detector) 

Training data number 

  (Patch number) 

1,500 case 

(67,500 patches) 

Learning rate 1e-04 

Optimizer ADAM 

Loss function MSELoss 

Library Pytorch  

3 Results 

 

Figure 6 shows (a) original, (b) low-energy label, (c) high-

energy label, (d) low-energy output, and (e) high-energy 

output sinogram. In turn, the figure shows (f) difference of 

(b) and (d), and (g) difference of (c) and (e). Overall 

structural and energy information is well recovered as seen 

in Fig. (d) and (e), however, the error remains in counterpart 

energy region in output sinograms as shown in Fig. (f) and 

(g). To handle this issue, after FBP of (d) and (e), 5 steps of 

CS-inspired IR using the original sinogram are processed to 

improve the fidelity of the reconstructed image value. 

 

 
Figure 6. (a) original, (b) low-energy label, (c) high-energy 

label, (d) low-energy output, and (e) high-energy output 

sinogram. (f) difference of (b) and (d), and (g) difference of 

(c) and (e). 

 

Figure 7 shows FBP of the label (a) low- and (b) high-

energy data, FBP of output (c) low- and (d) high-energy 

data, and FBP + 5 steps of CS-inspired IR of output (e) low- 

and (f) high-energy data. Structural similarity (SSIM) was 

evaluated for the cases of Fig. 7 (c) and (e) from (a) for low-

energy cases, and (d) and (f) from (b) for the high-energy 

cases. As result, SSIM value has been improved in (e) and 

(f) as summarized in Table 2. Figure 8 shows corresponding 

material decomposed images of (a) soft tissue, (b) bone, and 

(c) air. The results show that the proposed method can 

successfully provide the reconstruction image for both 

energies and decompose an image into the specific-material 

map in a shorter computation time than our previous method. 
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Figure 7. FBP of label (a) low- and (b) high-energy data. 

FBP of output (c) low- and (d) high-energy data. FBP and 5 

CS-inspired IR of output (a) low- and (b) high-energy data. 

 

Table 2. Calculated SSIM values for the cases of (c) and (e) 

for (a) in low-energy case, and SSIM values for the cases of (d) 

and (f) for (b) in high-energy case.  

SSIM FBP FBP + 5 CS-inspired IR 

Low-energy 0.9918 0.9970 

High-energy 0.9949 0.9986 

 

 
Figure 8. Material decomposed images of (a) soft tissue, (b) 

bone, and (c) air. 

4 Conclusion 

 

In this preliminary simulation study, we extended our 

previous MVUS method of using sliding multi-slit beam-

filter for low-dose dual-energy imaging to a deep learning-

based imaging method. We exploited the residual U-Net 

network to make fully restored low- and high-energy 

sinograms out of the original streaky sinogram. 5 steps of 

CS-inspired IR were then followed to improve the fidelity 

of the reconstructed image value. Through a simulation 

study, we have successfully demonstrated the feasibility of 

our proposed method. 
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Abstract: Low-dose computed tomography (LDCT) has emerged as 

a powerful tool for clinical diagnosis. However, the reduction of 

radiation dose severely degrades the reconstructed CT image quality 

with noise and artifacts. In the past decade, deep learning (DL) based 

methods have made rapid progress for CT image denoising driven 

by convolution neural networks (CNNs). Nevertheless, the 

contextual feature representation for LDCT denoising has not been 

fully investigated. In this paper, we proposed a novel multi-scale 

residual attention network (MSRANet) for LDCT denoising. To 

enrich the contextual information, a dilated convolution is 

introduced. To incorporate different scales of spatial features and 

enhance spatial feature dependencies, a multi-scale attention 

mechanism is designed. The proposed MSRANet is evaluated on the 

AAPM-Mayo Clinic Low Dose CT Grand Challenge dataset, and it 

outperforms the state-of-art competing methods. 

1 Introduction 

Low-dose X-ray Computed tomography (CT) is of great 

significance for high resolution imaging that is increasingly 

applied in clinical diagnosis such as lung cancer screening. 

Many algorithms for low-dose CT (LDCT) denoising are 

proposed to improve the image quality and avoid the abuse 

of radiation dose. Considering the fact that the utilization of 

inaccurate prior knowledge and low-level handcrafted 

features may limit the robustness, supervised deep learning 

based methods were developed to learn hierarchical and 

complicated representation of data features for LDCT 

denoising [1, 2]. Existing deep learning-based methods 

contain two strategies for CT denoising: encoder-decoder 

and high-resolution feature processing. 

Encoder-decoder: The encoder-decoder based 

models extract the hierarchical LDCT features to low-

dimension representation and back to the original 

dimension using gradual reverse mapping. Hu et al. 

proposed to combine the auto-encoder, deconvolution 

network, and shortcut connections into a residual encoder-

decoder CNN for LDCT denoising [3]. Mao et al. combined 

symmetrically convolutional and deconvolutional layers 

with skip-layer connections for much faster training 

convergence and attained a higher-quality local optimum 

[4]. Even so, this strategy cannot focus on the detailed 

artifacts and noise when complicated and hierarchical 

features are learned via dimension downsampling. This 

tends to produce false positive samples and cause clinical 

misdiagnosis [5].  

High-resolution feature processing: The high-

resolution feature processing based strategy keeps pixel-to-

pixel correspondence with the input LDCT images and do 

not employ any downsampling units [6-8]. Yi et al. 

combined an adversarially trained network and a sharpness 

detection network for LDCT denoising. They obtained 

small resolution loss and excellent denoising performance 

[6]. Yang et al. introduced a generative adversarial network 

(GAN) with Wasserstein distance and perceptual similarity 

for LDCT denoising. They effectively reduced the image 

noise level and kept the critical information. 

All the aforementioned methods show great potentials 

for LDCT image denoising. However, these methods do not 

sufficiently capture comprehensive and enriched 

information and make full use of contextual features 

including low- and high-dimension features. It causes 

ineffective feature representation for LDCT image 

denoising. In this paper, we propose a multi-scale residual 

attention network (MSRANet) based on the deep 

convolution neural networks (DCNNs) for LDCT image 

denoising. A dilated convolution is introduced in the 

proposed MSRANet to enlarge the receptive fields. By 

explicitly using multi-layer dilated convolution operations, 

wider contextual information are captured for feature 

representation with no extra computation cost. Besides, 

multi-scale attention mechanism is designed to generate 

low- and high- dimension feature representations for multi-

scale spatial information integration and suppress irrelevant 

information. It effectively increases model representation 

power and improves the performance of LDCT image 

denoising. 

2 Materials and Methods 

The LDCT denoising task can be described as a noise 

reduction model in the image domain. Let N Nx   

denotes an input LDCT image and 
* N Ny  denotes the 

corresponding NDCT image. The target of this model is to 

find a function G( ) that can synthesize a new output image 

y  close to the NDCT image 
*y  from the LDCT image x: 

This work was supported in part by the State’s Key Project of Research and 

Development Plan under Grant 2017YFA0104302, Grant 2017YFC0109202 and 

2017YFC0107900, in part by the National Natural Science Foundation under 
Grant 61801003, 61871117and 81471752, in part by the China Scholarship 

Council under NO. 201906090145. 
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*G( )y x y  .                    (1) 

The LDCT denoising task can be transformed to build a 

function G( )  for optimal approximation: 

2
*

2
( )

G

argmin G x y .                              (2) 

In this paper, we propose a multi-scale residual 

attention network (MSRANet) for LDCT denoising. It is 

composed of three interactional functional components: 

Base module (BM), Multi-scale attention module 

(MSAM), and Feature enhancement module (FEM). The 

overall framework of the proposed network architecture is 

illustrated in Fig. 1. 

2.1 Base module (BM) 

Serving as the base of the proposed MSRANet, the base 

module (BM) consists of 12 convolution layers and 

performs contextual feature representation. Four dilated 

convolution layers and eight standard convolution layers 

are alternately utilized in the BM. 

Inspired by the work [9], the dilated convolution 

operation is utilized. Different from standard convolution 

operation, it is a convolution applied to input with defined 

gaps in the kernels, which can effectively increases 

receptive fields and linear parameter accretion of the 

convolution layer to integrate wider context information 

with less cost for LDCT image denoising. Compared with 

standard convolution operation, the size of receptive field F 

can be expressed as: 

1F (2 1) (2 1)i+r i+r

i+ =    ,                               (3) 

where i is the kernel size of the dilated convolution and r is 

the dilated convolution rate. The dilated convolution 

operation can be transformed into standard convolution 

operation when r  is 1. Fig. 2 demonstrates the difference 

between the dilated and corresponding standard 

convolution layers. In this paper, the dilated convolution 

layer denotes that a dilated convolution with dilated factor 

of 2 and kernel size of 3 3 , batch normalization (BN), and 

Rectified Linear Unit (ReLU) activation function are 

connected. The standard convolution layer denotes that a 

standard convolution with kernel size of 3 3 , BN and 

ReLU are connected. 

2.2 Multi-scale attention module (MSAM) 

The multi-scale attention module (MSAM) generates 

spatially-precise multi-scale feature representation, which 

effectively maintains high-resolution representations and 

receives rich contextual information from low-resolution 

noisy LDCT feature maps. This module consists of selective 

kernel feature fusion unit (SKFFU), dual attention unit 

(DAU), which is illuminated in Fig. 3. 

Dual attention unit (DAU) extracts the attention-

guided feature representation to refine the denosed LDCT 

image, which includes the channel and spatial attention 

operations. The channel attention operation focuses on 

identifying channel information to represent meaningful 

channel features. The spatial attention operation figures out 

where should be paid attention to and provides inter-spatial 

information for a given feature map. The outputs of two 

attention operations are combined via concatenation layer 

and recovered via the convolution layer into the feature map 

same with original channel to extract enriched features. 

Selective kernel feature fusion unit (SKFFU) 

nonlinearly fuses the multiple scale features to capture more 

robust features. First, two scales of feature maps ( 1 2,L L ) 

from DAUs are aggregated via element-wise summation to 

form one feature map C H WL   : 
2

1

i

i

L L


 .                                     (4) 

The combined feature map L is fed into global average 

pooling (GAP) to compute channel-wise features 
C 1 1L    for dimension reduction. One convolution layer 

is utilized for channel-wise feature extraction. The extracted 

channel-wise feature vector L̂  is employed to form the 

feature map C 1 1ˆ , {1,2}nL  n    with channel number of 

C=2, and these two scales of feature maps are normalized 

 
Fig. 2. The representative types of (a) dilated convolution layer with kernel 

size of 3 3 and dilated factor of 2, and (b) standard convolution layer with 

kernel size of 3 3 . 

  

Dilated Convolution

BN

ReLU

Stantard Convolution

BN

ReLU

(a) (b)

 
Fig. 1. Overview of the proposed MSRANet for LDCT image denoising. BM 

alternately utilizes the dilated and standard convolution layers for feature 

representation. MSAM employs the attention mechanism and multi-scale feature 

fusion for comprehensive contextual aggregation. FEM effectively combines 

original input LDCT image and feature maps in deeper layer for feature 

enhancement. The final denoised CT images are obtained by combining the 

original noisy LDCT images and predicted residual images. 
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Fig. 3. The architecture of multi-scale attention module (MSAM) 
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using Softmax function into 
C 1 1

ny    with the range of 

 0, 1 . 

Finally, these two scales of normalized features are 

combined with the original three feature maps by element-

wise product: 
3

1

n n

n

y= y L


 ,                                   (5) 

where ‘  ’ stands for element-wise product and y is the 

combined feature maps with multiply scales of information. 

For these two different scales of feature maps, the 

dimension unification of feature maps between layers is 

performed by down-sampling and up-sampling operations. 

When the size of upper feature map is greater than that of 

latter layer, the upper feature map is down-sampled. When 

the size of upper feature map is less than that of latter layer, 

the upper feature map is up-sampled. 

2.3 Feature enhancement module (FEM) 

Feature enhancement module (FEM) highlights the features 

in the deep layers. It is known that the deep networks are 

more vulnerable to weaken influences in feature 

representation compared with shallow networks for LDCT 

image denoising [10]. The FEM effectively extracts the 

global and local features through combination between 

original images and deep feature maps for more robust 

residual features. 

In this paper, we choose L1 loss as objective function 

for our network to accelerate training [11]. The utilized L1 

loss function is given by: 

ŷ yloss   ,                                         (6) 

where y is the labeled vector and ŷ  is the predicted 

probability vector. 

3 Experiment and Results 

In this section, the public dataset is employed to train and 

evaluate the proposed method. The related data 

preprocessing, implementation details, and evaluation 

criteria are discussed. The ablation experiments are carried 

out, and quantitative and qualitative results of the proposed 

network for LDCT image denoising are presented. 

Furthermore, the proposed method is compared with the 

state-of-the-art methods. Our experiments show that the 

proposed MSRANet network outperforms other state-of-

the-art methods, which indicates its effectiveness for LDCT 

image denoising. 

3.1 Data Sources 

The evaluation is performed on a publicly available dataset 

that was authorized by Mayo Clinics for “the 2016 NIH-

AAPM-Mayo Clinic Low Dose CT Grand Challenge”. This 

dataset contains 2378 pairs of CT image slices from 10 

anonymous patients, each pair includes 3mm thickness 

normal dose CT (NDCT) and quarter dose CT (LDCT) 

512 512 images [12]. For fairness, nine patients including 

LDCT scans and the corresponding NDCT scans are 

employed for training, and the rest of patient L506 is used 

for testing the proposed MSRANet network. It is noted that 

there is no data overlapping between the training images 

and testing images. 

3.2 Data preprocessing 

At the training stage, to effectively increase the sample 

number and reduce the computation complexity, the small 

patches are extracted to serve as the training dataset. In this 

paper, we randomly extracted eight patches with size of 

64 64  pixels in each pair of LDCT and NDCT images, 

and they are fed into the proposed MSRANet. In the testing 

stage, the whole CT images are used. Two metrics, 

including the root mean square error (RMSE) and structural 

similarity index measure (SSIM), were chosen for 

quantitative assessment of image quality. 

3.3 Ablation Study of Proposed Methods 

In this section, we perform model ablation studies on 

different neural networks with different settings (see Table 

1) to validate the effectiveness of the employed dilated 

convolution and multi-scale attention module (MSAM), 

respectively. The evaluation results with the metrics of 

SSIM and RMSE values are summarized in Tables 2 for all 

the slices in case L506. In our experiments, the normal dose 

CT images are used as the reference. 

As shown in Table 2, the performances of different 

networks are computed on the testing case L506, including 

the CNN-Normal, CNN-Dilated, and MSRANet networks. 

It can be found that CNN-Dilated network outperforms the 

CNN-Normal network in SSIM of 0.0268 and RMSE of 

2.3385. MSRANet can obtain the best denoising 

performance in these two metrics. 

3.4 Comparison with the state-of-the-art methods 

To visualize the denoising performance, we carried out 

experiments to test the case L506. We depict the results of 

CNN-Normal, the proposed CNN-Dilated and MSRANet 

networks. For comparison, we also show the results of 

several state-of-the-art methods, including RED-CNN [3], 

WGAN-VGG [7], and MAP-NN [13]. Fig. 4 shows the 

visualization results on the representative slice for case 

L506. Our proposed MASNet is effective in removing noise 

and produces perceptually-pleasing and sharp images. 

Furthermore, it is capable of maintaining the spatial 

smoothness without introducing artifacts. 

Table 1. List of all trained networks for ablation study. 

Experiments Descriptions 

LDCT 
The images reconstructed by FBP from 

quarter-dose CT projection data. 

CNN-Normal 
No Dilated Convolution and no Multi-scale 

Attention Module 

CNN-Dilated 
With Dilated Convolution, no Multi-scale 

Attention Module 

MSRANet 
With Dilated Convolution and Multi-scale 

Attention Module 
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For the quantitative comparison with respect to NDCT, 

we used all slices of case L506 as testing dataset to compare 

the denoising performance in the terms of SSIM and RMSE. 

As shown in Table 2, our proposed MSRANet achieved the 

most excellent performance, which indicates the advantage 

of the proposed network architecture. 

4 Discussion 

In this paper, for the first time, we proposed a novel 

multi-scale residual attention network (MSRANet) for 

LDCT denoising. The motivation for this paper includes 

two parts: 1) the traditional convolution operations do not 

sufficiently capture the contextual information across the 

whole CT images; 2) most of methods do not make full use 

of different scales of spatial features, which can neglect 

some key features hidden in the complex background. The 

contributions of this work are as follows: 1) multilayer 

dilated convolution operation in the proposed MSRANet to 

enlarge the receptive fields for capturing wider contextual 

information; 2) multi-scale attention mechanism is designed 

to generate different dimensions of features for multi-scale 

spatial information integration. The proposed MSRANet is 

trained and evaluated on a publicly available dataset 

released as the 2016 NIH-AAPM-Mayo Clinic Low Dose 

CT Grand Challenge and achieves an excellent CT 

denoising performance. 
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Table 2. Quantitative comparison results with the state-of-the-art methods for 

case L506.  

Method SSIM RMSE 

LDCT 0.8759 14.2416 

RED-CNN 0.8952 11.5926 

WGAN-VGG 0.9008 11.6370 

MAP-NN 0.8941 11.5848 

CNN-Normal 0.8908 10.9982 

CNN-Dilated 0.9176 8.6597 

MSRANet 0.9187 8.6722 

  

 
(a) LDCT 

 
(b) RED-CNN 

 
(c) WGAN-VGG 

 
(d) MAP-NN 

 
(e) CNN-Normal 

 
(f) CNN-Dilated 

 
(j) MSRANet 

 
(h) NDCT 

Fig. 4. Comparison study for case L506 with lesion 575. (a) and (h) are the LDCT and corresponding ground-truth NDCT image; (b) - (j) are the denoised images 

generated by different networks. The display window is [-160, 240] HU. 
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Abstract Low-dose computed tomography (LDCT) scans, which can 

effectively alleviate the radiation problem, will degrade the imaging 

quality. In this paper, we propose a novel LDCT reconstruction network 

that unrolls the iterative scheme and performs in both image and manifold 

spaces. Because patch manifolds of medical images have low-

dimensional structures, we can build graphs from the manifolds. Then, 

we simultaneously leverage the spatial convolution to extract the local 

pixel-level features from the images and incorporate the graph 

convolution to analyze the nonlocal topological features in manifold 

space. The experiments show that our proposed method outperforms both 

the quantitative and qualitative aspects of state-of-the-art methods. In 

addition, aided by a projection loss component, our proposed method also 

demonstrates superior performance for semi-supervised learning. The 

network can remove most noise while maintaining the details of only 10% 

(40 slices) of the training data labeled. 

1 Introduction 

 

Low-dose X-ray computed tomography (LDCT) can 

effectively reduce the risk of radiation exposure and thus 

plays an important role in radiology. However, a lower-dose 

scan will degrade the signal-to-noise ratio (SNR) of the 

reconstructed images and compromise the diagnosis 

accuracy. It is very difficult to meet the diagnostic demands 

with LDCT images reconstructed via the classic analytical 

method, i.e., filtered back-projection (FBP). To balance the 

radiation dose and imaging quality, a number of algorithms 

have been developed for LDCT reconstruction. With the 

very recent technological innovations, these algorithms can 

generally be divided into two categories: 1) regularization-

based methods and 2) learning-based methods. 

The regularization-based methods formulate the prior 

knowledge into a reconstruction model. Appropriate prior 

information, such as total generalized variation (TGV) [1], 

which efficiently characterizes the target image, can 

maintain the critical details of the reconstructed result while 

eliminating unexpected noise and artifacts. However, the 

regularization-based methods are difficult to be applied to 

clinic because of the expensive time consumption.  

Inspired by the success of deep learning in many related 

fields, learning-based methods have become the 

mainstream of medical imaging. By using skip connections, 

Chen et al. developed a residual encoder-decoder 

convolutional neural network (RED-CNN) for LDCT 

denoising [2]. Chen et al. unrolled the steepest gradient 

descent algorithm and proposed the learned experts’ 

assessment-based reconstruction network (LEARN) for 

sparse-view CT [3]. Adler and Öktem generalized the 

primal-dual hybrid gradient (PDHG) algorithm by replacing 

both the primal and dual proximal operators with learned 

operators, which were implemented by a trained CNN [4]. 

However, spatial convolution is a local operator only 

focused on adjacent pixels, ignoring the fact that CT image 

data are located on a low-dimensional manifold, which 

accommodates rich topological structure information. 

In this paper, to simultaneously extract the pixel-level and 

topological features of LDCT data, we propose a manifold 

and graph integrative convolutional (MAGIC) network that 

performs in both image and manifold spaces for LDCT 

reconstruction. First, we unroll the gradient descent 

algorithm into a neural network and use a CNN module to 

replace the handcrafted regularization terms. Then, to 

introduce the low-dimensional manifold features, 

overlapped patches with a small size are extracted from the 

image to form a patch set. This operation is based on a well-

accepted assumption that the patch set is located on a low-

dimensional smooth manifold referred to as a patch 

manifold [5]. Since spatial convolution cannot process such 

data, inspired by the success of a graph convolution [6], we 

construct a graph using the points sampled from the patch 

manifold, and a graph convolution is applied to extract the 

topological features from the graph. In addition, since it is 

difficult to obtain a large amount of paired low-dose and 

normal-dose data in clinical practice, our proposed method 

alleviates this drawback by introducing a projection loss, 

which enables our semi-supervised learning model. 

 

2 Methods 

 

A general model for regularized reconstruction is as follows: 

min
𝒙

1

2
‖𝐴𝒙 − 𝒚‖2

2 + 𝜆𝑅(𝒙) , (1) 

where 𝒙 ∈ 𝐑𝑀2  denotes the vectorization of image 𝑓 ∈
𝐑𝑚×𝑛  ( 𝑀2 = 𝑚 × 𝑛 ), 𝒚 ∈ 𝐑𝑀1  represents the measured 

projection data, and 𝐴 ∈ 𝐑𝑀1×𝑀2  is the system matrix. 

𝑅(𝒙) denotes the regularization term reflecting the prior 

knowledge of the image to reconstruct, and 𝜆 is a weight to 

balance the measurement and regularization term. 

A simple gradient descent algorithm can be used to solve 

the model, and a classic method to unroll the iterative 

algorithm into CNN model can be formulated as: 
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𝒙𝑡+1 = 𝒙𝑡 − 𝛼𝑡𝐴𝑇(𝐴𝒙𝑡 − 𝒚) + 𝚽(𝒙𝑡), (2) 

in which 

𝚽(𝒙𝑡) = 𝑤3
𝑡 ∗ 𝜎(𝑤2

𝑡 ∗ 𝜎(𝑤1
𝑡 ∗ 𝒙𝑡)), (3) 

where 𝑤  is the trained kernel, ∗ denotes the convolution 

operator and 𝜎(∙) is the activation function. 

In our method, we attempt to simultaneously extract the 

pixel-level and topological features by incorporating both 

spatial and graph convolutions. In Eq. (2), a three-layer 

CNN module is used to extract the local pixel-level features 

of 𝒙t. To impose the nonlocal topological features from the 

low-dimensional manifold space, we modified Eq. (2) and 

added a graph convolutional network (GCN) term. First, a 

patch set 𝑃(𝑓𝑡) is built, we extract a small rectangular patch 

𝑝𝑖𝑗(𝑓𝑡), which has pixel 𝑓𝑡(𝑖, 𝑗) as the top-left corner and a 

size of s1 × 𝑠2. P(𝑓𝑡) can be seen as a point cloud sampled 

from a low-dimensional manifold M(𝑓𝑡) embedded in 𝐑𝑑, 

referred to as the patch manifold associated with 𝑓𝑡. Then 

we construct a graph G𝑡(V, E) with 𝑁 nodes, each of which 

corresponds to a certain element of P(𝑓𝑡). The adjacency 

matrix 𝑊 ∈ 𝐑𝑁×𝑁  of the graph can be calculated with a 

Gaussian function [6]: 

𝑊𝑖𝑗 = exp (−
‖𝑣𝑖 − 𝑣𝑗‖

2

2

𝜎(V)2
) , (4) 

where 𝑣𝑖 , 𝑣𝑗 ∈ V are the two nodes in the graph and 𝜎(V) is 

the standard deviation of the nodes. The diagonal degree 

matrix 𝐷  is defined as 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗 . Considering the 

autocorrelation, we can obtain �̃� = 𝐼 + 𝑊  and �̃�𝑖𝑖 =

∑ �̃�𝑖𝑗𝑗 .  Then, the nodes are stacked to obtain the matrix 

signal 𝑋t ∈ 𝐑𝑁×𝑑, and two successive graph convolutions 

are applied on it. Fig. 1 illustrates the main steps to obtain 

𝑋 from 𝑓. Our model is modified from Eq. (2) to: 

𝒙𝑡+1 = 𝒙𝑡 − 𝛼𝑡𝐴𝑇(𝐴𝒙𝑡 − 𝒚) + 𝚽(𝒙𝑡) + 𝚿(𝑋𝑡) (5) 

where 𝚿(𝑋𝑡) = �̃�−
1

2�̃��̃�−
1

2 𝜎 (�̃�−
1

2�̃��̃�−
1

2𝑋𝑡Θ1
𝑡 ) Θ2

𝑡 , Θ1 ∈

𝐑𝑑×𝐹 and Θ2 ∈ 𝐑𝐹×𝑑 are the graph convolutional kernels.  

Notably, the computation of the adjacency matrix is time-

consuming if we update it in each iteration. Based on this 

consideration, we divide the whole iteration procedure into 

two stages: coarse and fine stages. Fig. 2 shows the 

flowchart of our proposed unrolled iteration network 

MAGIC. In the coarse stage, 𝒙0 (initial reconstruction with 

FBP) and projection data 𝒚  are fed into the network. 

Compared with LEARN, one parallel path, which performs 

graph convolution, is added into each iteration block. The 

adjacency matrix of coarse stage 𝑊𝐶 is calculated based on 

𝒙0 and kept fixed in each iteration block during the entire 

coarse stage. The graph transform in Fig. 2 is the linear 

transform to obtain 𝑋  from 𝑓 , and the inverse graph 

transform denotes the inverse operator. In the coarse stage, 

the result of FBP usually suffers from heavy noise, which 

makes 𝑊𝐶  inaccurate. After the 𝑡 + 1  iteration, once the 

noise of 𝒙𝑡+1  has been basically removed, the network 

enters the fine stage. We recalculate the adjacency matrix 

𝑊𝐹 based on 𝒙𝑡+1 and leave it unchanged during the entire 

fine stage. 

Mean square error (MSE) is adopted as the loss function: 

𝐿𝑀𝑆𝐸 =
1

𝑁𝑠
∑‖𝒙𝑖 − �̂�𝑖‖2

2

𝑁𝑠

𝑖=1

, (6) 

where 𝒙𝑖 is the predicted reconstruction result and �̂�𝑖 is the 

corresponding label. 𝑁𝑠 is the total number of samples. In  

addition, we apply our proposed MAGIC to only part of the 

labeled samples. The projection loss is proposed as: 

 
Fig. 1. Diagram of the linear transform to obtain 𝑋 from 𝑓. Each vectorized patch corresponds to (blue arrows) a black point on the patch manifold. 

The patch set P (black points) has a trivial 2D parameterization (red curve) on the patch manifold M. 

 
Fig. 2. Illustration of our proposed MAGIC. 
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𝐿𝑃𝑟𝑜 =
1

𝑁𝑠
∑‖𝐴𝒙𝑖 − 𝒚𝑖‖2

2

𝑁𝑠

𝑖=1

, (7) 

where 𝒚𝑖 is the corresponding measured projection data. In 

the case of semi-supervised learning, the loss function can 

be formulated as: 

𝐿 =
1

|𝑆1|
∑ ‖𝒙𝑖 − �̂�𝑖‖2

2

𝑖∈𝑆1

+
1

|𝑆2|
∑ ‖𝐴𝒙𝑖 − 𝒚𝑖‖2

2

𝑖∈𝑆2

(8) 

where 𝑆1  and 𝑆2  are the sets of labeled and unlabeled 

samples, respectively. |𝑆1| and |𝑆2| denote the numbers of 

elements in 𝑆1 and 𝑆2, respectively, and |𝑆1| + |𝑆2| = 𝑁𝑠 . 

While dealing with the unlabeled data in the training set, the 

projection loss can be leveraged to avoid overfitting.  

3 Results 

 

To evaluate the performance of our MAGIC, the dataset 

“the 2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand 

Challenge” was used in our experiments. In our 

experiments, 400 images were randomly selected from 8 

patients as the training set, and 100 images were chosen 

from the remaining 2 patients as the test set. The size of the 

image was 256 × 256. The distances of the X-ray source 

and detector to the rotation center were both 25 cm. The 

physical height and width of a pixel were both 0.6641 mm. 

The detector had 512 elements, each of which had a length 

of 0.72 mm. On average, 1024 projection views were 

sampled in the 360 degree range. To simulate a realistic 

clinical environment, Poisson noise and electronic noise 

were added into the measured projection data as: 

𝒚 = ln
𝐼0

Poisson(𝐼0 exp(−�̂�)) + Normal(0, 𝜎𝑒
2)

, (9) 

where 𝐼0  is the number of photons before the X-rays 

penetrate the object, 𝜎𝑒
2 is the variance of electronic noise, 

and �̂�  represents the noise-free projection. In our 

experiments, the X-ray intensity of a normal dose was set to 

𝐼0 = 106 . Three different dose levels were simulated as 

low-dose cases, including 10%, 5% and 2.5%, i.e., 𝐼0 =

105, 5 × 104 , and 2.5 × 104, respectively. We fixed the 

electronic noise variance at 𝜎𝑒
2 = 10. 

The size of the spatial convolution kernels was set to 3 × 3. 

When building the graph, the extracted patch size was set to 

6 × 6. While calculating the adjacency matrix, 8 nearest 

neighbors of each node were included to make the 

adjacency matrix sparse and reduce the computational 

complexity. The sizes of the graph convolution parameters 

Θ1  and Θ2  were 36 × 64  and 64 × 36 , respectively. The 

number of iterative blocks was fixed to 50. The coarse and 

find stages had 25 blocks. In the semi-supervised learning 

experiments, only 10% of the training data, which means 

only 40 images have labels. Four state-of-the-art methods 

were involved for comparison, including TGV [1], RED-

CNN [2], learned primal-dual (LPD) [4] and LEARN [3]. 

The semi-supervised learning version of MAGIC is referred 

to as MAGIC-Semi.  

 
Fig. 4. Thoracic reconstruction with 10% dose data by various methods. (a) Ground truth, (b) FBP (27.93/0.7762), (c) TGV (31.49/0.9299), (d) RED-

CNN (32.98/0.9423), (e) LPD (33.24/0.9521), (f) LEARN (33.74/0.9517), (g) MAGIC (36.26/0.9696) and (h) MAGIC-Semi (35.58/0.9692). The 

display window is [-1000, 200] HU. 

 

 
Fig. 3. Abdominal reconstruction with 10% dose data by different methods. (a) Ground truth, (b) FBP (25.02/0.7084), (c) TGV (30.84/0.8925), (d) 

RED-CNN (31.20/0.8955), (e) LPD (31.38/0.9040), (f) LEARN (31.80/0.9078), (g) MAGIC (34.00/0.9356) and (h) MAGIC-Semi (33.55/0.9360). 

The display window is [-160, 240] HU. 
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Fig. 3 shows the results of an abdominal image 

reconstructed by different methods with a 10% dose. The 

TGV method removes most of the noise while preserving 

the details. Two possible metastases, which are indicated by 

the blue arrows, are apparent in all the results of Fig. 3. 

Without the help of the measured data, the detailed 

distortion in the result of the RED-CNN is obvious. LEARN 

and LPD achieved similar performance. The proposed 

MAGIC and MAGIC-Semi obtained the best visual result 

and preserved most details. In the region indicated by the 

red arrow, the vascular structures in our results are more 

complete and have a higher contrast than the other methods. 

To better visualize the performance of different methods, 

we magnify the region indicated by the red rectangle in Fig. 

3 (a). Two purple arrows indicate two minute vessels, and 

only TGV and our methods recovered them well. All the 

other methods blurred these details to varying degrees. In 

the area indicated by the yellow arrow, TGV result 

produced piecewise smooth result. Although the result of 

MAGIC-Semi has more mottle-like noise than that of 

MAGIC, the visual effect is more similar to the ground truth. 

Fig. 4 demonstrates the reconstructions of a thoracic slice 

using different methods. Two red arrows indicate that two 

edges can visually differentiate the performance of different 

methods. Only MAGIC preserved these structures well, and 

other methods smoothed them to varying degrees. To better 

visualize the denoising performance of different methods, 

we show the absolute difference images associated with the 

ground truth in Fig. 5. It is clear that our proposed methods 

yielded the smallest difference from the ground truth, 

eliminating most noise and maintaining more details.  

The statistical quantitative results of the whole testing set 

using different learning-based methods are shown in Table 

I, which gives the means and standard deviations (SDs) of 

PSNR and SSIM. It is clear that our methods obtained 

higher scores than all the other methods.  

 

4 Conclusion 

 

In this paper, we propose a novel manifold and graph 

integrative convolutional network for LDCT reconstruction. 

This method not only uses spatial convolution to extract 

local pixel-level features in image space but also utilizes 

graph convolution to analyze the nonlocal topological 

features in manifold space. Compared with other methods, 

our method can capture the self-similarity during local 

pixels and nonlocal patches simultaneously. The 

experimental results prove that our method outperforms 

other methods in both visual and quantitative aspects.  
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Table I Quantitative results (Mean±SD) using different methods. The best scores are marked in red, and the second best scores are marked in blue. 

dose 
10% 5% 2.5% 

PSNR SSIM PSNR SSIM PSNR SSIM 

FBP 26.35±0.68 0.6969±0.0321 23.56±0.74 0.6160±0.0363 20.67±0.77 0.5381±0.0374 

TGV 31.91±0.50 0.9210±0.0097 31.12±0.52 0.9103±0.0119 29.41±0.62 0.8721±0.0207 

RED-CNN 32.89±0.58 0.9251±0.0124 31.57±0.60 0.9123±0.0144 29.93±0.63 0.8911±0.0169 

LPD 33.12±0.59 0.9356±0.0117 31.59±0.61 0.9194±0.0140 30.05±0.62 0.8981±0.0165 

LEARN 33.51±0.60 0.9363±0.0112 32.18±0.61 0.9299±0.0116 30.38±0.61 0.9090±0.0142 

MAGIC 35.89±0.66 0.9587±0.0092 34.18±0.64 0.9460±0.0107 32.72±0.64 0.9335±0.0120 

MAGIC-Semi 35.18±0.59 0.9548±0.0092 33.70±0.59 0.9425±0.0111 32.16±0.57 0.9275±0.0133 

 

 
Fig. 5. Absolute difference images associated to the ground truth (a) FBP, (b) TGV, (c) RED-CNN, (d) LPD, (e) LEARN, (f) MAGIC and (g) MAGIC-

Semi. 
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Abstract Achieving high-quality reconstructions from low-dose com-
puted tomography (LDCT) measurements is of much importance in
clinical settings. Model-based image reconstruction methods have
been proven to be effective in removing artifacts in LDCT. In this
work, we propose an approach to learn a rich two-layer clustering-
based sparsifying transform model (MCST2), where image patches
and their subsequent feature maps (filter residuals) are clustered into
groups with different learned sparsifying filters per group. We investi-
gate a penalized weighted least squares (PWLS) approach for LDCT
reconstruction incorporating learned MCST2 priors. Experimental
results show the superior performance of the proposed PWLS-MCST2
approach compared to other related recent schemes.

1 Introduction

Low-dose computed tomography (LDCT) has received much
interest in clinical and other settings. A predominant chal-
lenge in LDCT is to obtain high-quality reconstructions de-
spite the reduced intensity of radiation. Traditional methods
such as analytical filtered back-projection (FBP) perform
poorly for LDCT reconstruction, and produce substantial
streak artifacts. Model-based image reconstruction [1] meth-
ods have been especially popular for LDCT. In particular,
penalized weighted least squares (PWLS) approaches incor-
porating the edge-preserving (EP) regularizer [2] significantly
reduce the artifacts present in FBP images.
Other works have proposed an adaptive regularization term
for statistical iterative reconstruction. In particular, there has
been growing interest in designing data-driven regularizers
that capture complex sparse representations of signals from
training datasets [3]. Sparsifying transform learning [4] is
a generalization of analysis dictionary learning and is an
approach for learning models that when applied to images
approximately sparsify them. Compared to conventional
synthesis dictionary learning methods [3] that are often NP-
Hard and involve expensive algorithms, sparsifying transform
learning methods are computationally very efficient due to
closed-form sparse code and transform updates. In particular,
the optimal sparse coefficients in the transform model are
typically found by thresholding operations.
Due to their low computational cost, several transform
learning-based methods have been studied for image recon-
struction in recent years including the union of transforms
approach based on data clustering (ULTRA) [5] and multi-
layer sparsifying transform (MRST) models [6], where the
transform domain feature maps (filter sparsification residu-
als) are sequentially sparsified over layers. Although, both
ULTRA and learned MRST models offer benefits for LDCT

reconstruction, the MRST model tends to oversmooth image
details [6]. On the other hand, the union of transforms (UL-
TRA) model can flexibly capture a diversity of image edges
and subtle details and contrast by learning a transform for
each class of features, which motivates combining its benefits
with the richness of deep transform models.
In this paper, we propose unsupervised learning of a two-
layer clustering-based sparsifying transform model (referred
to as MCST2) for images, where image patches and their
feature maps (filtering residuals) in the transform domain are
clustered into different groups, with a different learned trans-
form per group. The image patches or features in each group
are assumed sparse under a common transform. We derive an
exact block coordinate descent algorithm for both transform
learning and for image reconstruction with a learned MCST2
regularizer. We investigate the performance of PWLS with
MCST2 regularization for LDCT reconstruction. Our experi-
mental results show that MCST2 achieves improved image
reconstruction quality compared to several recent learned
sparsity-based approaches. PWLS-MCST2 also significantly
outperforms conventional methods such as FBP and PWLS-
EP.

2 Algorithm for Model Training
2.1 Problem formulation
Our proposed method is patch-based. The underlying clus-
ter optimization over two layers groups the training patches
and their corresponding filter residuals (feature maps) into
different classes. The transform domain residuals in the
second layer contain finer structures that are sparsified
with a union (collection) of transforms. Our formulation
for training the MCST2 model is as follows, with H0 =
{ΩΩΩ1,k,ΩΩΩ2,l,Z1,i,Z2, j,C1,k,C2,l} denoting the set of all opti-
mized variables:

min
H0

K

∑
k=1

∑
i∈C1,k

‖ΩΩΩ1,kR1,i−Z1,i‖2
2+η2

1‖Z1,i‖0

+
L

∑
l=1

∑
j∈C2,l

‖ΩΩΩ2,lR2, j−Z2, j‖2
2 +η2

2‖Z2, j‖0,

s.t. R2,i= ΩΩΩ1,kR1,i−Z1,i,∀i ∈C1,k,∀k, {C1,k}∈ G1,

{C2,l}∈ G2, ΩΩΩ1,kΩΩΩT
1,k = ΩΩΩ2,lΩΩΩT

2,l = I, ∀k, l,

(P0)

where R1 ∈ Rp×N′ denotes the training matrix, whose
columns R1,i represent vectorized patches extracted from
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images, and R2 denotes the residual map obtained by sub-
tracting the transformed patches and their sparse approxima-
tions. In particular, Z1 and Z2 denote the sparse coefficient
maps for the two layers, with η1 and η2 denoting sparsity
controlling parameters. We assume that the image patches
and residual matrix columns can be grouped into K and L
disjoint classes, respectively, with {ΩΩΩ1,k} and {ΩΩΩ2,l} denot-
ing the learned sparsifying transforms in the first and the
second layer, respectively. We let C1,k and C2,l denote the
sets containing the indices of the columns of R1 and R2 that
belong to the kth class in the first layer and the lth class in
the second layer, respectively. The sets G1 and G2 include all
the possible disjoint partitions of [1 : N′] into K and L sets,
respectively.

2.2 Transform Learning Algorithm

We propose an exact block coordinate descent (BCD) algo-
rithm to optimize (P0) by alternatively updating {Z1,i,C1,k},
{Z2, j,C2,l}, and the transforms ΩΩΩ1,k and ΩΩΩ2,l . When updat-
ing each set of variables, the other variables are kept fixed.
Since the solutions to the subproblems are computed exactly,
the objective function in (P0) converges over the BCD itera-
tions.

2.2.1 Update Coefficients and Clusters in the First
Layer

Here, we solve (P0) with respect to the coefficients and clus-
ter memberships in the first layer ({Z1,i,C1,k}), with the other
variables fixed. This leads to the following subproblem (1),
whose exact solution is shown in (2) and (3) (can be derived
similar to [5]), with Hη(·) denoting the hard-thresholding
operator that sets vector elements with magnitude less than
η to zero.

min{Z1,i,
C1,k

}
K

∑
k=1

∑
i∈C1,k

‖ΩΩΩ1,kR1,i−Z1,i‖2
2 +η2

1‖Z1,i‖0

+
L

∑
l=1

∑
j∈C2,l

‖ΩΩΩ2,lR2, j−Z2, j‖2
2.

(1)

k̂i = arg min
1≤k≤K

‖ΩΩΩ1,kR1,i− Z̃1,i‖2
2 +η2

1‖Z̃1,i‖0

+‖ΩΩΩ2,l̂i(ΩΩΩ1,kR1,i− Z̃1,i)−Z2,i‖2
2

(2)

where Z̃1,i = Hη1/
√

2(ΩΩΩ1,kR1,i−0.5ΩΩΩT
2,l̂i

Z2,i) and l̂i denotes
the fixed cluster membership in the second layer. The optimal
Z1,i is then given as follows:

Ẑ1,i = Hη1/
√

2(ΩΩΩ1,k̂i
R1,i−0.5ΩΩΩT

2,l̂i
Z2,i), ∀i. (3)

2.2.2 Update of Transforms in the First Layer

In this step, we solve subproblem (4) for the transforms
{Ω1,k} with the other variables fixed.

min
{ΩΩΩ1,k}

K

∑
k=1

∑
i∈C1,k

‖ΩΩΩ1,kR1,i−Z1,i‖2
2

+
K

∑
k=1

L

∑
l=1

∑
j∈C2,l∩C1,k

‖ΩΩΩ2,l(ΩΩΩ1,kR1, j−Z1, j)−Z2, j‖2
2.

(4)

The problem decouples into K parallel updates, one for
each ΩΩΩ1,k. Let R1,C1,k and Z1,C1,k , be matrices with columns
R1,i, Z1,i, i ∈ C1,k, respectively, and let Z2,C2,l∩C1,k be ma-
trix defined similarly. Then, denoting the full singular
value decomposition (SVD) of R1,C1,k(ZT

1,C1,k
+ 0.5QT

k ) as
U1,kΣΣΣ1,kVT

1,k, where Qk is defined in (5), the optimal solution
is Ω̂ΩΩ1,k = V1,kUT

1,k [4].

Qk = [ΩΩΩT
2,1Z2,C2,1∩C1,k ,ΩΩΩ

T
2,2Z2,C2,2∩C1,k , · · · ,ΩΩΩT

2,LZ2,C2,L∩C1,k ]
(5)

2.2.3 Update Coefficients and Clusters in the Sec-
ond Layer

Next, we solve subproblem (6) with {Z1,i,C1,k, ΩΩΩ1,k, ΩΩΩ2,l}
fixed. The (joint) optimal solution for {Z2, j,C2,l} can be
exactly computed as shown in (7) and (8).

min{Z2, j,
C2,l

}
L

∑
l=1

∑
j∈C2,l

‖ΩΩΩ2,lR2, j−Z2, j‖2
2 +η2

2‖Z2, j‖0. (6)

l̂ j=arg min
1≤l≤L

‖ΩΩΩ2,lR2, j− Z̃2, j‖2
2 +η2

2‖Z̃2, j‖0, ∀ j ∈C2,l, (7)

where Z̃2, j = Hη2(ΩΩΩ2,lR2, j). Then the optimal solution to
Z2, j is as follows:

Ẑ2, j = Hη2(ΩΩΩ2,l̂ j
R2, j), ∀ j. (8)

2.2.4 Update of Transforms in the Second Layer

In this step, we solve the following subproblem for ΩΩΩ2,l , with
the other variables kept fixed:

min
{ΩΩΩ2,l}

L

∑
l=1

∑
j∈C2,l

‖ΩΩΩ2,lR2, j−Z2, j‖2
2 (9)

Problem (9) decouples into L different updates, one for each
transform. Let R2,C2,l and Z2,C2,l be matrices with columns
R2, j and Z2, j, j ∈ C2,l , respectively. Then, denoting the
full SVD of R2,C2,l ZT

2,C2,l
as U2,lΣΣΣ2,lVT

2,l , the optimal Ω̂ΩΩ2,l =

V2,lUT
2,l .

3 Approach for Image Reconstruction

3.1 CT Reconstruction Formulation

After learning the collections of transforms {ΩΩΩ1,k} and
{ΩΩΩ2,l}, the learned MCST2 model is incorporated into the
reconstruction problem via a data-driven regularizer. We
then reconstruct the (vectorized) image x ∈ RNp from noisy
sinogram measurements y ∈ RNd by solving the following
problem:

min
x�0

1
2
‖y−Ax‖2

W +βS(x), (P1)

where the regularizer S(x) is defined as follows, with H1 =
{Z1,i,Z2, j,C1,k,C2,l} again denoting the set of all optimized
variables:

min
H1

K

∑
k=1

∑
i∈C1,k

‖ΩΩΩ1,kR1,i−Z1,i‖2
2+γ2

1‖Z1,i‖0

+
L

∑
l=1

∑
j∈C2,l

‖ΩΩΩ2,lR2, j−Z2, j‖2
2 + γ2

2‖Z2, j‖0,

s.t. R1,i = Pix, R2,i = ΩΩΩ1,kR1,i−Z1,i, ∀i ∈C1,k,∀k.

(10)
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In problem (P1), A ∈ RNd×Np denotes the CT measurement
matrix, and W ∈ RNd×Nd is a diagonal weighting matrix,
whose diagonal elements are the estimated inverse variances
of elements of y. The operator Pi extracts the ith vectorized
patch of x as Pix. The parameter β denotes the regularizer
weighting, and γ1 and γ2 are non-negative parameters that
control the sparsity levels of the sparse coefficients.

3.2 Image Reconstruction Algorithm
Similar to the learning algorithm, we use an exact block
coordinate descent (BCD) algorithm to optimize (P1). The
algorithm cycles over updates of the image x, sparse coef-
ficients Z1 and Z2, and cluster memberships {C1,k}, {C2,l}.
The algorithm enforces monotone decrease of the underlying
objective.

3.2.1 Image Update Step
In this step, we update x in (P1) with the other variables fixed,
which leads to the subproblem (11). We use the efficient
relaxed LALM (rLALM) algorithm [7] to solve (11). The
detailed description of this algorithm can be found in [6].

min
x�0

1
2
‖y−Ax‖2

W +βS1(x), (11)

where S1(x) , ∑K
k=1 ∑i∈C1,k

‖ΩΩΩ1,kPix − Z1,i‖2
2 +

∑L
l=1 ∑ j∈C2,l

‖ΩΩΩ2,l(ΩΩΩ1,kP jx−Z1, j)−Z2, j‖2
2.

3.2.2 Sparse Coding and Clustering Step

With x fixed, (P1) is reduced to the same subproblems as (1)
and (6). Then {Z1,i,C1,k} and {Z2, j,C2,l} are updated in the
same manner as in (2), (3), (7), and (8).

4 Experiments

4.1 Experiment Setup
We study the performance of MCST2 for the XCAT phantom
and Mayo Clinic data. For XCAT phantom case, the low-
dose measurements are simulated from the groundtruth image
with GE 2D LightSpeed fan-beam geometry corresponding
to a monoenergetic source. For Mayo Clinic data case, we
simulated the low-dose measurements from the regular-dose
images with a fan-beam CT geometry corresponding to a
monoenergetic source. The width of each detector column
is 1.2858 mm, the distances from source to detector, source
to rotation center are 1085.6 mm and 595 mm, respectively.
We set the incident photon intensity I0 = 1× 104 per ray
and with no scatter. The “Possion + Gaussian” noisy model
is used to generate synthesized low-dose measurements of
size 888× 984 for the XCAT phantom and 736× 1152 for
Mayo Clinic data, respectively. Two types of metrics (RMSE
and SSIM) are applied for evaluating image reconstruction
quality. We compute the root mean square error (RMSE) and
the structural similarity index measure (SSIM) in a circular
central region of the images, which includes all the tissues.

4.2 Transform Learning
For the learning stage, we used five 420×420 XCAT phan-
tom slices to train the MCST2 model. We also used seven

slices of size 512× 512 from the Mayo Clinic data set to
learn transforms. We ran 1000 iterations of the BCD al-
gorithm to ensure convergence. The number of clusters in
the two layers were 5 and 2, respectively. We set (η1,η2)
= (125,70) and (60,10) for the XCAT phantom and Mayo
Clinic data, respectively. Fig. 1 shows the transforms in the
MCST2 model that were learned from the XCAT phantom
data. Each row of the transform matrices is displayed as an
8× 8 square patch. The pre-learned transforms in the first
layer (blue box) show oriented and gradient-like features that
sparsify the training image patches. For the second layer, the
pre-learned transforms (red box) capture finer level features
that further sparsify the filtering residuals.

ΩΩΩ1 ΩΩΩ2 ΩΩΩ3 ΩΩΩ4

ΩΩΩ5 ΩΩΩ1 ΩΩΩ2

Figure 1: Pre-learned transforms from XCAT phantom for the
MCST2 model with 5 clusters in the first layer (shown in the blue
box) and 2 clusters in the second layer (shown in the red box).
Each row of the transform matrices is displayed as a square 8×8
patch.

4.3 Reconstruction Results

We compare our method with the conventional FBP and
PWLS-EP algorithms. PWLS-MRST2 [6] and PWLS-
ULTRA [5] are also included to verify the usefulness of
the proposed MCST2 model. We fine-tuned the hyperpa-
rameter β = 215.5 for PWLS-EP and ran 1000 iterations of
the algorithm to ensure convergence. We ran 1500 itera-
tions for the other iterative algorithms. The parameters for
the three transform learning-based were tuned to achieve
the best reconstruction quality (i.e., RMSE and SSIM) in the
XCAT phantom and Mayo Clinic data experiments, and are as
(β ,γ1,γ2) = (7×104,30,10) and (2×104,30,12) for PWLS-
MRST2; (β ,γ) = (2×105,20) and (5×104,20) for PWLS-
ULTRA; (β ,γ1,γ2) = (1.5×105,20,5) and (4.5×104,25,5)
for PWLS-MCST2. Fig. 2 and 3 show the reconstructions
of slices of the XCAT phantom and Mayo Clinic data, re-
spectively. We use modified Hounsfield units, where air is
0 HU and water is 1000 HU. Apart from significantly out-
performing the traditional FBP and PWLS-EP methods, the
proposed PWLS-MCST2 method performs the best in terms
of both RMSE and SSIM compared to the recent MRST2 and
ULTRA schemes. Furthermore, PWLS-MCST2 improves
the image reconstruction quality by removing more notorious
artifacts in the margin regions and preserving critical details
in the central region.
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RMSE:0.00
SSIM:1.000

Reference

RMSE:72.0
SSIM:0.552
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RMSE:39.2
SSIM:0.892

EP

RMSE:34.6
SSIM:0.970

MRST2

RMSE:34.0
SSIM:0.968

ULTRA

RMSE:33.5
SSIM:0.973

MCST2

Figure 2: Comparison of reconstructions of one slice of the
XCAT phantom with the FBP, PWLS-EP, PWLS-MRST2, PWLS-
ULTRA, and PWLS-MCST2 methods, respectively, at incident
photon intensity I0 = 1×104. The display window is [800, 1200]
HU.

5 Conclusion

This paper proposes learning a two-layer clustering-based
sparsifying transform model (MCST2) for CT images,
wherein both the image data and feature (transform resid-
ual) maps are divided into multiple classes, with sparsifying
filters learned for each class. We present an exact block co-
ordinate descent algorithm to train the MCST2 model from
limited unpaired (clean) training data. Our experimental re-
sults with simulated XCAT phantom and Mayo Clinic data
illustrate that the PWLS approach incorporating the learned
MCST2 regularizer outperforms recently proposed MRST2
and ULTRA models. It also provides a significant improve-
ment compared to conventional FBP and PWLS-EP methods.
Future work will incorporate and explore deeper MCST mod-
els as well as other imaging applications.
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Abstract Deep learning-based denoising/reconstruction algorithms
have been widely studied for low-dose CT imaging. However, the
trained neural networks tend to have deteriorated performance on noise
levels that are different from the training noise level. In this work,
we propose to tackle this problem by ensembling different pretrained
denoisers at testing time. The ensemble is done by linear combination
of denoisers trained for different doses. The combining coefficients are
calculated to reduce the noise to the level of a normal-dose scan. The
proposed method was validated by training on the Mayo Clinic Low-
dose CT Challenge dataset, and testing on the Mayo dataset as well
as low-dose dual-energy CTs from our institution. It demonstrated
improved robustness to noise levels compared to single networks
trained using multiple dose levels. Better texture preservation was also
achieved than the comparing deep-learning methods.

1 Introduction

Low-dose CT (LDCT) imaging is often accompanied with in-
creased noise in the images, which needs to be compensated
by denoising and reconstruction algorithms. In recent years,
deep learning-based denoising and reconstruction algorithms
have attracted a lot of attention because of their simplicity
and good performance. However, most deep neural networks
are designed to work under one noise level, and their perfor-
mance will be deteriorated when applied under a different
noise level than the training noise level. Although training
data can include multiple noise levels, it cannot eliminate the
noise-dependency performance of the trained network. In
practice, the noise in the image is associated with various
factors such as kVp, tube current, patient size, etc. For exam-
ple, in dual energy CT, the noise in the low energy images
changes drastically with the patient size [1]. Hence, it is de-
sirable to have a denoiser that could robustly work for a wide
range of noise levels. Most existing solutions are based on
combining deep learning with iterative reconstruction, where
the data fidelity could compensate for under/over-smoothing
of the network [2]. A recurrent network, MAP-NN, was
proposed where each module progressively denoise the im-
age, so the user could manually choose from outputs with
different denoising strength [3].
In this work, we propose an automatic and non-iterative
methods to adapt deep learning-based denoisers to different
noise levels. The proposed approach is based on ensemble
of multiple denoisers which are pretrained under different
noise levels. We used a simple linear combination of the
denoisers for each slice, where the combining coefficients are
calculated to reduce the noise to a given level, such as normal-

dose level. To validate the proposed method, we trained 5
denoisers at 5 different simulated dose levels on the Mayo
Clinic Low-dose CT Challenge dataset and tested on various
dose levels without changing any hyperparameters. The
method was further tested on another dataset which consists
of low-dose dual-energy CT (DECT) scans at Massachusetts
General Hospital (MGH). The performance was compared
to denoising networks trained on each specific dose level as
well as on all the dose levels.

2 Materials and Methods

An overview of the proposed testing-time algorithm is given
in figure 1. It consists of two major parts: noise estima-
tion (blue), which estimates noise in the LDCT and the cor-
responding normal-dose CT (NDCT) noise level; network
ensemble (orange), which calculate the linear combination
coefficients based on an LDCT-NDCT pair generated by the
noise estimation algorithm.

2.1 Noise Estimation

The projection data p is separated to odd and even projections
podd and peven, which leads to two filtered backprojection
(FBP) reconstructions xodd and xeven [4]. xodd and xeven have
almost identical underlying structures but independent noises.
Subtracting them will eliminate the common structures and
leave the noises only. Since both xodd and xeven take half
the projections, their noise level is

√
2 of the original noise.

Subtracting will further increase the noise by a factor of
√

2.
Hence, the final noise estimation of the FBP image x is:

ns = (xodd−xeven)/2. (1)

Note that ns shares the same distribution with the original
noise, but they are not identical.
To estimate the noise level of an NDCT, we first denoisd x
with a relatively strong denoiser to acquire a smooth image
xest. In this work we used the network trained under 16x dose
reduction as the smoothing denoiser.
Then Poisson noise was added in the forward projection of
xest to simulate a normal-dose scan. To make it adaptive
across patients, the initial photon number per ray, N0, was
determined by fixing the average number of photons received
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Figure 1: Testing-time workflow of the proposed method. Blue lines are noise estimation and orange lines are network ensemble.

by the detectors, Nref. The added noise is then reconstructed
via FBP to get the noise estimation of NDCT nr.
With the help of nr, we could shrink ns to the level of NDCT
with a scalar:

α = ‖nr‖/‖ns‖. (2)

If we "train" a model to denoise xest +ns:

f ∗ = argmin
f
‖ f (xest +ns)− (xest +αns)‖, (3)

because xest +ns shares similar structure and noise pattern
with the original LDCT x, f ∗(x) is expected to bring x to the
NDCT level.
Note that we cannot use nr instead of αns in the target image,
otherwise the independent noises will lead to smoothing
images due to the "Noise2Noise" effect [5].

2.2 Network Ensemble

We use simple linear combination of pretrained denoisers.
Denote pretrained denoisers as f1(x), f2(x), . . . , fK(x), the
linear combination coefficients are optimized via (3) as:

w = argmin
w1,w2,...,wK

‖∑
k

wk fk(xest +ns)− (xest +αns)‖2
2, (4)

which can be solved by taking derivative with respect to w
and set it to zero:

Aw = b,A ∈ RK×K ,b ∈ RK (5)

where
Ai j = fi(xest +ns)

T f j(xest +ns), (6)

and
bi = fi(xest +ns)

T (xest +αns). (7)

After w is solved, the final denoised image can be obtained
by combining denoising results on x:

y = ∑
k

wk fk(x) (8)

3 Experimental Setups

The denoisers fk were trained on the Mayo Clinic Low-dose
CT Challenge dataset [6]. We rebinned the projection data to
multi-slice fanbeam with 3mm slice thickness and used FBP
with Hann window to reconstruct images to 0.75 mm pixel
size. 7 patients were used as the training dataset, where 100
slices randomly extracted from each patients for the training.
We injected noises equivalent to 2, 4, 8, 12, 16 times dose
reduction to construct 5 levels of noises. A denoiser fk was
trained for each dose level using L2 loss.
During testing, the rest 3 patients in the Mayo dataset were
used. We estimated the performance on dose reduction rates
of 2, 4, 6, 8. SSIMs inside liver window [-160, 240] HU were
computed against the original NDCT. To estimate the noise
level difference between the denoised images and NDCT, we
further extracted 100 flat patches of 32×32 pixels inside the
liver for each patient. For each patch the standard deviation
(std) was calculated, and the absolute difference between
the stds of corresponding denoised and NDCT patches were
further calculated to estimate the noise level difference.
The trained networks were further tested on 6 low-dose
DECT images acquired at MGH. The patients had a nor-
mal DECT scan followed by a low-dose scan with at least
50% dose reduction. Multiple 32×32 patches were selected
inside flat liver regions for each patient, in order to calculate
and compare the noise power spectrum (NPS) between the
LDCT and NDCT. The NPS was normalized by the mean
intensity within the patches to compensate for the change of
iodine concentration between the two scans. We only calcu-
lated the NPS for the 140kVp images due to the excessive
inference from vessels and contrast changes in the 80kVp
images.
A target noise level of Nref = 7.5×104 was used for the Mayo
dataset and Nref = 3.75×104 was used for the DECT dataset.
For comparing methods, we trained denoising networks using
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Figure 2: The reference image and the zoom-in region correspond-
ing to figure 3. The display window is 40±350 HU.

L2-loss and WGAN [3] using data from all the 5 dose levels
(L2 (all) and WGAN (all)). We also trained dose-specific
networks using L2-losses (L2 (matched). All the networks
have the same structure of REDCNN [7], with 3 encoders
and 3 decoders, and 2 convolution layers within each en-
coder/decoder. All the convolutional layers has 3×3 kernels,
64 featuremaps and leaky ReLU activation (α = 0.2) except
for the last one. Adam algorithm with step size of 10−4 was
used for all the training. We followed [3] for the WGAN
training setup, with an additional 0.5-dropout layer in the dis-
criminator to stabilize the training. The single-dose networks
were trained for 25 epochs and the multi-dose networks were
trained for 5 epochs.

4 Results

4.1 Mayo dataset results

Figure 2 shows an NDCT slice where the denoising results
under different dose levels are given in figure 3. It can be
observed that as the dose reduction rate increases, the noise
level also increases for the denoising results of L2(all) and
WGAN(all), which indicates that the they cannot well adapt
to different noise levels despite being trained using multiple
dose levels. Furthermore, instead of increasing uniformly, the
noise appears as structure-mimicking spikes. On the other
hand, the denoising images from the proposed Ensemble
shared similar textures and noise levels at different dose
levels. There is also little spikes in the Ensemble results. The
L2(matched) results also have similar noise levels because
dose-specific networks were used. But it has more spikes and
less textures compared to the ensemble results.

Figure 4 shows quantitative analysis of the denoising results
compared to the original NDCT. L2(all) and WGAN(all) have
faster drops on SSIM as the dose reduction rate increases,
whereas Ensemble had similar trend with L2(matched),
which requires different configurations under different dose
rates. The mean patch std distance plot demonstrated that En-
semble had consistent and closest noise levels to the NDCT
across all the dose reduction rates.
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Figure 3: The denoising results of a testing ROI under different
dose levels. The display window is 40±350 HU.

Figure 4: SSIMs and mean patch std distances against the NDCT.
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Figure 5: The denoising results of a DECT slice. Reference is FBP from NDCT. The display window is 40±350 HU.

Figure 6: The mean intensity-normalized NPS of 140kVp images.
Reference stands for FBP from NDCT.

4.2 DECT dataset results

Figure 5 shows the denoising results on a DECT slice for
both 80kVp and 140kVp images. The reference images are
FBP results from the normal-dose scan, which happened
before the low-dose scan so there is less iodine take-up in the
liver. It can be observed from the zoom-in that L2(all) and
WGAN(all) have less high-frequency textures compared to
the reference images and Ensemble.
Further NPS analysis verified the observation as shown in
figure 6. The intensity-normalized NPS of Reference and
Ensemble are very close, whereas the NPS of L2(all) and
WGAN(all) shows less high-frequency components.

5 Discussion and Conclusion

We proposed a testing-time ensemble method which adapts
pretrained denoisers to different dose levels. The method
showed improved robustness and texture preservation com-
pared to networks trained on multiple dose levels.
The proposed method has one important hyperparameter Nref
which controls the target noise level. Nref has clear physical
meaning and can be determined empirically and should be

stable across patients. Larger Nref would give less noisy
results at the risk of oversmoothing. More sophisticated
models can be used to more accurately estimate the noise
level of NDCT.
A drawback of the current method is the L2-loss used for the
ensemble (4) may encourage smoothing. A potential solution
is to select different fk based on the noise level indicator α ,
so that strong denoisers will only be used when the noise
level is really high.
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Abstract Denoising is of vital importance for Positron emission to-
mography (PET) imaging to improve its diagnostic merits. Recently
deep neural networks (DNNs) have been successfully applied to PET
image denoising through supervised or unsupervised learning meth-
ods. In this work, considering the advantages of supervised and un-
supervised learning methods, we propose a deep learning framework
jointly employing them together for PET image denoising. Firstly, a
supervised neural network is trained by a group of low-quality and
high-quality training pairs. During the testing phase, the pre-trained
network is finetuned by using the test noisy image itself as the train-
ing label. Though finetuning, the supervised result can be further
optimized according to the inherent information in the testing data,
thus avoiding the pitfall of mismatches between training and testing.
Quantification results based on a clinical PET/CT dataset contain-
ing 47 18F-FDG, 4 18F-Fluciclovine, and 1 68Ga-DOTATATE scans
demonstrated that the proposed framework had better performance
than using the supervised method or single-image-based unsupervised
method alone.

1 Introduction

Positron emission tomography (PET) is a powerful molec-
ular imaging technique that can reveal physiological and
pharmacological processes in vivo. Currently, PET has been
widely applied in oncology due to its sensitivity for early de-
tection of tumor and occult recurrences [1, 2]. However, due
to the dose-safety concerns and the acquisition-time limita-
tion, PET images still suffer from low signal-to-noise ratios
(SNR). Noise in the PET image can seriously compromise
its lesion detectability, especially for small tumors. Develop-
ing effective and efficient denoising methods for PET imag-
ing is of vital importance.
Recently, with the development of deep neural net-
works, deep learning-based methods have made outstand-
ing achievements in natural image denoising and are grad-
ually being applied to medical imaging. For PET denois-
ing, there are two categories of deep learning-based methods.
One is the supervised method [3–5]. Through pre-training
deep neural networks by low-quality and high-quality im-
age pairs, the network can learn latent features and mapping
relations between low-quality and high-quality image pairs.
However, in real clinical practice, it is hard to collect a large
enough number of high-quality images. Once the test image
has different characteristics from the training dataset, the
network performance would drop dramatically. Another cat-
egory is unsupervised learning method[6, 7], particularly the
single-image-based unsupervised learning method [6] which
learns features from the noisy image itself. However, for

*Equal contributions

the single-image-based unsupervised method, the network is
fed with the random initialization, easier to be trapped into
the local optimum. In addition, a new network needs to be
trained for each image to learn its intrinsic features during
denoising, which is time-consuming.
In this paper, we combined the supervised and unsupervised
methods together to leverage their advantages and achieve
optimum performance. The proposed method consists of
two steps: supervised training and unsupervised finetuning.
In the supervised training step, a neural network was trained
by a group of low-quality and high-quality training pairs.
In the unsupervised finetuning step, the pre-trained network
was finetuned by using the specific low-quality test image as
the training label. Through finetuning, the neural network
can optimize the supervised result and output a denoised im-
age with higher quality. The co-registered CT images were
supplied as input to the second channel to provide additional
anatomical information. Contributions of this work include:

• Compared to the supervised method, the proposed
method is more robust for data with different character-
istics. The fine-tuning step can recover denoised image
quality even if the pre-trained supervised network gets
an outlier input.

• Compared to the single-image based unsupervised
method, the proposed method needs less training time.
When the single-image-based unsupervised method[6]
is implemented, for each image, the network usually
needs several hundred epochs’ training. In the pro-
posed method, based on the pre-trained network, fine-
tuning step converges much fast and only needs train-
ing for several additional epochs.

2 Methods and Materials

2.1 Methods

The proposed method includes two steps: supervised train-
ing and unsupervised finetuning. During the supervised
training step, training was performed by a widely used super-
vised denoising framework. In this framework, an Unet was
trained from N low-quality and high-quality training pairs
as

θ̂ = argmin
θ

1
N

N

∑
i=1

∥∥∥Xhigh
i − f

(
θ |X low

i ,αXi

)∥∥∥
2
, (1)
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Full dose Q.Clear Supervised ProposedCDIP¼ dose OSEM

Figure 1: 18F-FDG results of the quarter dose OSEM PET image, the full dose Q.Clear image, the post-filtered image using CDIP
method, the supervised method, and the proposed method. Lesions are pointed out using arrows. The subfigures show the view in the
red box using the Jet colormap.

where f stands for a neural network, θ are the parameters
of the neural network, X low

i and Xhigh
i are the ith low-quality

and high-quality training pair. The network inputs are low-
quality images X low and the training labels are the corre-
sponding high-quality image Xhigh. αXi is the co-registered
anatomical image of the ith patient and serves as the second
channel input to provide additional anatomical information.
Through training, the network can learn the mapping re-
lationship from low-quality images to high-quality images.
Once given a test image Xtest , the well-trained neural net-
work can directly output a corresponding high-quality image
f
(
θ̂ |Xtest ,αXtest

)
. However, in clinical practice, it is hard to

acquire a perfect training dataset that is large enough to in-
clude data with different characteristics. When the charac-
teristics of the test image do not match the training data set,
the network would fail to output a good result.
In this method, we added a unsupervised finetuning step af-
ter the supervised training. The finetuning step can be gen-
eralized as

ϕ̂ = argmin
ϕ

∥∥∥Y low − f
(

ϕ |Y low,αY , θ̂
)∥∥∥

2
, (2)

where f and θ̂ are the pretrained network and its parame-
ters in the first step, respectively. Y low is the low-quality im-
age in test data set Y . In this step, the two-channel network
inputs are the low-quality image Y low and its co-registered
anatomical image αY , respectively. Here, the low-quality
image itself was served as the network training label Y low

to optimize the results of directly supervised output. The
denoising effect of using noisy image itself as the training
label has already been verified in our previous work [6]. Af-
ter finetuning for several epochs, the network can output a
denoised image

Y high = f
(

ϕ̂ |Y low,αY , θ̂
)
. (3)

A modified 3D Unet[8] was utilized in the proposed method.
The detailed structure of the modified 3D Unet is shown in
the reference[6]. The optimization algorithm is ADAM[9]
for both supervised training and unsupervised finetuning.

2.2 Experiment Set Up

The experiment was performed on a PET/CT dataset. The
patient scans were acquired with a single-site Discovery
MI (DMI) PET/CT system (GE Healthcare). Low-dose
CT scans (120 kV; 59 mA; pitch 0.984:1; matrix, 512 ×
512 × 345; voxel size, 1.3672mm × 1.3672mm × 2.8mm;
FOV, 70 cm) were obtained for PET attenuation correc-
tion. PET images were acquired at 60 min post-injection
with a matrix size of 256 × 256 × 345, and a voxel size
of 2.7344mm × 2.7344mm × 2.8mm. Full dose Q.Clear
PET images reconstructed using time-of-flight contrast re-
covery with Bayesian penalized likelihood method (TOF-
Q.Clear, beta=350) [10] were used as the high-quality
image to supervise the training. Low-quality images
are quarter-dose OSEM PET images reconstructed using
the time-of-flight ordered subset expectation maximization
method(TOF-OSEM, 2 iterations, 34 subsets, 25% dura-
tion).
There is a dataset from 47 patients injected with 18F-FDG
for evaluation. We used 35 datasets for training, 6 datasets
for validation, and 6 datasets for testing. To further validate
the performance of the proposed method, 4 18F-Fluciclovine
and 1 68Ga-DOTATATE datasets were additionally tested
by the proposed method to test its robustness regarding dif-
ferent radiotracers. The results of the supervised training
in step one and a single-image-based unsupervised method
(conditional deep image prior, CDIP)[6] were presented for
reference. Epochs of supervised training were 500, cho-
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Figure 2: 68Ga-DOTATATE results of the quarter dose OSEM PET image, the full dose Q.Clear image, the post-filtered image using
CDIP method, the supervised method, and the proposed method. The subfigures show the zoomed view from the red box using the Jet
colormap.

sen based on the validation data. Unsupervised finetuning
epochs were around 5 to 10 epochs. Training epochs of
CDIP were 1400. Quantitative analysis was based on the
peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM), with full dose Q.Clear PET images
as the ground truth.

3 Results

3.1 18F-FDG Results

Figure 1 shows the coronal view of the quarter-dose OSEM
18F-FDG PET images processed using different methods.
Full-dose Q.Clear image is shown as the ground truth. Both
the supervised method and the proposed method preserved
the tumor uptake (pointed out using arrows) in the lung, but
CDIP failed. This is because both the supervised and the
proposed methods had prior information learned from the
full-dose Q.Clear images. CDIP only learned information
from the quarter-dose OSEM image itself. Compared to the
supervised method, the proposed method further improved
the uptake of the tumor and the structure of different organs.
The PSNRs and SSIMs calculated from the results of the dif-
ferent methods shown in Figure 3 (a,b) also verify that the
proposed method has the best performance. One interesting
thing is that for dataset 3, the supervised method’s SSIM is
even worse than the original noisy OSEM. With the help of
unsupervised finetuning, the proposed method got a better
SSIM.

3.2 18F-Fluciclovine and 68Ga-DOTATATE Results

Figure 2 shows the coronal view of the quarter-dose OSEM
68Ga-DOTATATE PET images processed using different
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Figure 3: PSNRs and SSIMs of the test datasets with different
tracers using different methods. Dataset 1-6: 18F-FDG; Dataset
7:10: 18F-Fluciclovine; Dataset 11: 68Ga-DOTATATE.
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Figure 4: 18F-Fluciclovine results of the quarter-dose OSEM PET image and the full-dose Q.Clear image, as well as the post-filtered
image using the CDIP method, the supervised method, and the proposed method. Lesions are pointed out using arrows. The subfigures
show the zoomed view from the red box using the Jet colormap.

methods. Full-dose Q.Clear image is shown as the ground
truth. From the subfigures, we can see that the proposed
method can improve the tumor contrast comparing to su-
pervised results (pointed out using red and white arrows).
CDIP is over-smoothing in some regions (pointed out using
orange arrows). However, in the white arrow position, it
has superior performance than the supervised method and
the proposed method. Figure 4 displays the coronal view of
the quarter-dose OSEM 18F-Fluciclovine PET images pro-
cessed using different methods. All the denoising meth-
ods work well for this tracer. In the subfigure shown using
the Jet colormap, the recovered structures of the proposed
method are the closest to the full-dose Q.Clear image. The
PSNRs and SSIMs are shown in Figure 3(c,d). The proposed
method achieves the highest PSNRs and SSIMs for all the
18F-Fluciclovine datasets. As for the 68Ga-DOTATATE (Pa-
tient 11), the SSIM value of the proposed method is a lit bit
lower than the supervised method but it has a higher PSNR
value.

4 Conclusion

In this work, we proposed a deep learning-based denoising
method, combining both supervised and unsupervised learn-
ing for PET image denoising. A PET/CT 18F-FDG dataset
containing 47 patients were utilized for evaluation. The pro-
posed method was further validated using 68Ga-DOTATATE
and 18F-Fluciclovine datasets. Quantitative results show that
the proposed method outperforms the supervised method
and the single-image-based unsupervised method. Our fu-
ture work will focus on more clinical evaluations for the
proposed method.
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Abstract While long axial field-of-view (FOV) PET scanners provide 
significantly increased true-coincidence sensitivity compared with most 
commercial systems, their greater axial detector coverage can also lead 
to higher random-coincidence rates and randoms fractions.  Because 
these can adversely affect the precision, as well as the accuracy of 
reconstructed PET images, it is important to consider noise-reduction 
techniques for the randoms estimate, e.g., by using detector singles count 
rates to estimate the randoms. We implemented a fast Monte Carlo 
(FMC) program to evaluate expected true (T), scatter (S), and random 
(R) count rates for a scanner similar in design to the PennPET Explorer 
and compared its predictions to those from GATE simulations. Randoms 
computed from delays (RD) and from singles rates (RS) were compared 
over a wide range of singles rates with values simulated for a NEMA 70-
cm line source; accuracy and precision of randoms estimates from low-
count scans were then assessed using a simulated 70-cm IEC phantom 
containing 18F and, separately, 89Zr.  T, S, and R count rates from FMC 
simulations of the NEMA 70-cm line source all agreed to <5% with those 
from GATE over the range of activities; RD and RS from FMC both 
agreed to <0.6% with RD from GATE. FMC-simulated late acquisitions 
of the IEC phantom showed for both 18F and 89Zr that images of the RS 
estimates using most likely positioning from time-of-flight information 
agreed closely with those from the simulated randoms, while reducing 
image noise by a factor > 50. NEMA count-rate physical phantom data 
acquired on the PennPET Explorer system (112-cm axial FOV) also 
confirmed that RS yields accurate and precise estimates of randoms for 
this system; additional validation studies using phantoms and human 
subjects are in progress. 
  

1 Introduction 
	
Long axial field-of-view (FOV) PET scanners [1,2] have 
demonstrated their potential in clinical and research 
applications due to their high sensitivity and long axial 
coverage. Their excellent performance has enabled studies 
over a wide range of count rates and count densities (e.g., 
very fast dynamic studies, delayed imaging of slow biology, 
and imaging with reduced doses to limit radiation burden to 
the subject), allowing studies that would not be possible on 
a standard axial FOV system. However, because of their 
larger acceptance angle, these systems utilize a wider 
coincidence window, t, which leads to more random 
coincidences compared to systems with smaller axial FOV. 
This can be especially challenging under high count-rate 
conditions, such as when imaging the blood input function; 
however, image noise arising from randoms is also 
exacerbated at low count rates that may only be slightly 
above the 176Lu background rate from LYSO detectors, e.g., 
for very delayed imaging of 18F-fluorodeoxyglucose 
(FDG). Radiopharmaceuticals with long half-lives and/or 
low positron yield (e.g., 64Cu-DOTATATE) and/or with 
accompanying gamma photons (e.g., 89Zr-labeled tracers) 
are also often scanned under low count-rate conditions to 

keep the radiation dose to the subject acceptably low.  For 
this reason, conventional randoms-from-delays (RD) 
estimates can be quite noisy, often requiring smoothing or 
other noise-reduction techniques. Also important is that the 
total number of lines-of-response (LOR) in, for example, 
the PennPET Explorer systems, increases from 140-million 
with one detector ring up to 3.5-billion for the 5 detector-
ring system. This implies that the RD sinogram becomes 
even more sparse as the axial field increases, so most LORs 
have just 0 or 1 count; this can introduce bias and noise into 
RD estimates.  Fig. 1 shows images from a research study 
on the prototype PennPET Explorer (64-cm axial FOV) 
following injection of 550 MBq FDG; the total system 
randoms fraction (RF) increased to 75% when imaging ~19 
hours post injection. 
 

 
RF: 0.59 RF: 0.28 RF: 0.75 

Figure 1. Representative 2-mm coronal slices from scans at 
different times post-injection of a subject following a 550 MBq 
injection of FDG on the prototype three-detector-ring 
PennPET Explorer. The total system randoms fraction (RF), 
not restricted to locations only within the body, is also listed. 

 
While the RD approach can provide accurate estimates of 
random-event count rates, there are practical challenges 
dealing with the very large singles list-mode files obtained 
from a long axial FOV system, in addition to the noise-
related issues described above.  Alternatively, the randoms-
from-singles (RS) algorithm used in some early PET 
scanners (e.g., [3]) has been well validated for volume 
imaging on standard axial FOV systems [4,5].  However, 
the wide range of count rates and count densities seen on 
long axial FOV systems makes it important to revisit this 
approach for such scanners. 
 
To test the performance of a RS approach, we have recently 
implemented a fast Monte Carlo (FMC) simulation 
program to evaluate the expected true (T), scatter (S), and 
random (R) coincidence count rates for a geometry similar 
in design to the prototype three-detector-ring (~70-cm-
long) configuration of the PennPET Explorer [1].  To check 
the accuracy of the FMC program over a range of singles 
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rates, we compared FMC count rates to those obtained from 
the detailed and well-known (but significantly slower) 
GATE Monte Carlo software [6,7] when simulating a 
NEMA 70-cm line source [8] (count-rate phantom). After 
validating accuracy with GATE [9], FMC was then used for 
the rest of our simulations because of its faster run-time. 

                          

Figure 2.  Central transverse slice through the NEMA image 
quality (IQ) phantom [8], extended axially for this simulation to 
be 70 cm long. The 'hot' spheres (10, 13, 17, 22-mm in diameter) 
contained activity concentration values 4-times higher than that 
of the uniform background; the 28- and 37-mm-diameter 'cold' 
spheres and the central cylindrical 'lung' contained only water 
with no activity.  Several different total-activity values, yielding 
detector singles rates up to 90 Mcps, were simulated. 

2 Materials and Methods 
 
The FMC program was developed to simulate a continuous 
cylindrical PET scanner to approximate the geometry of the 
PennPET Explorer with 3 rings (~70-cm), containing the 
same number of LYSO crystal elements: 576 (azimuthal) x 
168 (axial). The crystal pitch of the simulated system was 
almost the same as the scanner's (4.1 mm x 4.1 mm); its 
energy resolution was 11% FWHM at 511 keV, and 
changed with incident photon energy, E, according to: 
 
        FWHME = FWHM511 • (511 keV/E)1/2.                         (1) 
 
When processing singles events to form coincidences, the 
"keep all goods" coincidence policy was used for both the 
FMC and GATE simulations. For the NEMA phantom 
simulations with 18F, the lower-level discriminator (LLD) 
was set to 444 keV; for the simulations of the IEC image-
quality phantom, the energy window used to qualify all 
single events was 451 to 649 keV. The simulated time-of-
flight (TOF) resolution was 250 ps;  the detector pulse 
width, t, was 2.01 ns for the 18F NEMA line-source 
simulations and 2.5 ns for most NEMA IQ phantom 
simulations. Because each of the PennPET Explorer's small 
LYSO crystals is coupled 1:1 to its own silicon 
photomultiplier (SiPM) element, we simplified the FMC 
simulation by assuming zero deadtime and no pulse pileup 
in the detectors. The intrinsic 176Lu background count-rate 
was simulated -- based on a measured 'blank' scan -- to be 
1.613 Mcps for the three-detector-ring system. 
 

Compton and coherent photon scatter were simulated within 
the phantom, but not within the detectors, for which the 
probability of photon absorption depended on each photon's 
energy and its angle-of-incidence on the detector. Each 
single qualified detector "hit" was recorded in a singles list-
mode file, which also contained a unique nuclear decay 
number, a detection-time 'stamp', and a code identifying the 
history of the detected photon. The singles list-mode file 
was processed to compute total singles rates in each detector 
element, as well as the numbers of T, S, and R coincidence 
events simulated. The RS event rate for a line-of-response 
(LOR) connecting detectors i and j was computed from the 
following well-known formula, 
 
                   Ri,j = 2 t Si Sj ,             (2) 
 
where Si and Sj are the singles rates of detectors i and j, and 
2t is the full width of the coincidence time window. 
 
RD events were estimated by creating a duplicate copy of a 
singles list-mode file and adding a constant time offset 
(greater than the coincidence time window) to the time 
stamp of every event in the duplicate file, before searching 
for coincidence events between the original and time-
shifted files. 
 
To study the impact of singles rate on the accuracy and 
precision of the RS and RD methods, the NEMA count rate 
performance measurement was simulated using both FMC 
and GATE. The 70-cm-long NEMA line-source was 
positioned 4.5 cm below the center of the scanner within a 
20.3-cm-diameter polyethylene attenuator. Consistent with 
the usual NEMA count-rate data analysis procedure, all 
random coincidences intersecting a centered 24-cm-
diameter cylindrical volume-of-interest were included. We 
then used FMC to compare the performance of RD and RS 
estimates of randoms from a simulated 70-cm-long NEMA 
image quality phantom (Fig. 2) filled with 18F, and then 
(separately) with 89Zr -- both under delayed imaging (low 
activity) conditions. For 89Zr, we also optimized the upper-
level discriminator (ULD) setting by computing noise-
equivalent count-rates (NECR) over a range of ULD values 
in order to minimize the impact of random coincidences 
from scattered high-energy gammas on NECR. 
 
Finally, to assess RS performance under real imaging 
conditions, we compared the RS and RD count rates 
obtained experimentally from the extended 5-detector-ring 
PennPET Explorer system (112-cm axial FOV, [10]) when 
performing the NEMA count rate study using a 70-cm-long 
line source of 18F, located 4.5 cm below the center of the 
scanner within 20- and 35-cm-diameter polyethylene 
attenuators, as well as a single measurement with a 140-cm-
long line source in a 20-cm diameter attenuator. Last, total 
system RD and RS rates were compared for a research study 

220



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
  

of a human subject who had been injected 24 h earlier with 
a new 89Zr-labeled radiopharmaceutical. 

3 Results 
 
For the simulated NEMA count-rate line-source phantom, 
the T, S, and R count rates from the FMC program agreed  
to better than 5% with those from the more detailed GATE 
simulation software over the entire range of activity 
concentration values simulated (Fig. 3). 
 
Comparison of the FMC RS and RD rates and GATE RD 
rates (Table 1) showed that all three agreed within <0.6% 
for all activity conditions. 

          
Figure 3.  True, scatter, and random count rates obtained from the 
FMC simulation program (dashed curves), compared to GATE 
simulations (solid curves) for the same off-center NEMA count-
rate line-source phantom and geometry of the PennPET Explorer. 
 
Table 1. Comparison of randoms rates (kcps) obtained from 
the two programs used to simulate the NEMA line source. 

 
For evaluating RS estimation under very low 18F-activity 
conditions (corresponding to a ~18.5 hour delay after 
injecting a patient with 550 MBq of FDG), we simulated a 
one-hour acquisition of a NEMA image quality phantom 
with the background extended to cover 70 cm axially, 
containing just 165 kBq (4.5 µCi) of 18F.  For this case, 
many of the randoms arose from coincidences involving 
one or two 176Lu photons detected in the LYSO detector 
array. The total singles rate for this activity distribution was 
1.65 Mcps, just above the intrinsic 176Lu background rate 
for the three-ring configuration of the PennPET Explorer. 
29.2-million prompt coincidences were recorded during the 
one-hour simulated scan; of these, 24.3 million were 

randoms, i.e., 83% randoms fraction (RF). When including 
only LORs traversing an elliptical cylinder larger than the 
phantom (Fig. 4), RF was 0.48, 0.53, and 0.60, respectively, 
for simulated 1-, 2,- and 3-detector-ring systems utilizing t 
values of 1.93, 2.16, and 2.5 ns, chosen to allow a fixed 
larger (56-cm-diam.) circular reconstruction FOV for all 
three axial detector coverages. 
   
The singles distribution from the 3-ring simulation was used 
with equation (2) to compute the RS MLP image shown in 
Fig. 4b, and delayed events were used to compute the 
noisier RD MLP image in Fig. 4c. Events were added into 
these images at their most likely positions (MLP) within the 
elliptical cylinder, based on the TOF difference between the 
two detectors defining each coincidence LOR. 

           
Figure 4. (a) MLP image of simulated random-coincidence 
events from very late 18F acquisition of the image-quality 
phantom, (b) distribution calculated using the RS method, and (c) 
noisier MLP image of randoms from delayed events (RD). 
 
Horizontal profiles (Fig. 5) across Figs. 4a and b show that 
the RS approach provided very accurate and precise random 
estimates under these challenging imaging conditions 
characterized by low counts but a very high randoms 
fraction.  

              
Figure 5. Profiles across the randoms images shown in Figs. 4a 
and 4b. Blue squares: simulated randoms; red circles: randoms-
from-singles estimates. 

   
Figure 6. (a) MLP images from all (T, S, and R) coincidence 
events for the simulated late FDG acquisition; (b) after 
subtracting S evants and random events from delays (RD); (c) 
same, but using randoms-from-singles (RS) estimate of randoms. 
Attenuation and sensitivity corrections were used for  b and c. 
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The cold and hot spheres were visualized better with RS 
subtraction (Fig. 6c) than with RD subtraction (Fig. 6b).  
The relative noise in a large volume-of-interest (VOI) 
drawn on a uniform region within 5 coronal slices, away 
from all spheres and phantom boundaries, was 58.3% ± 
1.2% for RD, and less (51.6% ± 1.3%) with RS subtraction. 
 
The results of simulated 1-min acquisitions of the same 
phantom, filled with 750 µCi of 89Zr, showed that despite 
the large abundance of high-energy (>900 keV) decay 
gammas, their overall contribution to the random- 
coincidence rate was relatively small.  The mean ± standard 
deviation of the counts/voxel in a large volume of interest 
on the randoms MLP image (from the simulation) was just 
0.313 ± 0.541, as compared to 0.320 ± 0.010 for the same 
region in the corresponding RS image; the noise of the RS-
estimated randoms was thus reduced by a factor of ~50. 
 
For late acquisitions of 89Zr -- as mentioned earlier for late 
18F studies -- a major source of random events arises from 
intrinsic 176Lu decay photons in the LYSO detectors. Using 
a measured 176Lu energy spectrum from a "blank scan" on 
the PennPET Explorer, we modeled the singles detector 
rates in the FMC program to simulate the extended IQ 
phantom containing low levels of  89Zr activity ranging from 
100 to 1600 µCi. With a fixed lower level discriminator 
(LLD) setting of 451 keV, we varied the upper-level 
discriminator (ULD) and computed the noise-equivalent 
count-rate (NECR) values from the simulated T, S, and R 
rates. The optimal ULD setting for MLP events located 
inside the elliptical cylinder was ~585 keV over most of the 
activity range considered (e.g., Fig. 7). 

            
Figure 7. NECR vs. ULD setting for LORs crossing the elliptical 
cylinder volume containing the IQ phantom (blue curve), and for 
MLP events located inside the same volume (red curve).  
 
Using real data acquired on the 5-ring PennPET Explorer 
from the NEMA count-rate phantom, Fig. 8 shows that the 
total randoms rates estimated by the RS method were within 
10% of the corresponding RD rates at all count rates, and 
for all three activity/attenuator distributions. 

  
Figure 8. Comparison of randoms estimated for the NEMA 
count-rate phantoms measured on the 5-ring PennPET Explorer 
for the RS and RD methods. The dashed line is the line of identity.  
 
These results are for the total system randoms rate, and the 
RS estimate was based on the total singles rate, although the 
singles rate was not constant across the axial FOV for the 
70-cm-long line source; this may account for the deviation 
of the 70-cm RS estimates from the line of identity at the 
highest activity values.  
 
Finally, the total RS rate was also estimated for a one-hour 
scan of a human subject acquired on the PennPET Explorer 
~24 hours following the injection of 22.2 MBq of a new 
89Zr-labeled anti-CD8 minibody and compared with the RD 
approach (Fig. 9). The total RS rate was within 5% of the 
RD rate, even for this low count-rate study (5 Mcps singles 
rate, which was just above the 3.2 Mcps 176Lu singles rate).  

 
Figure 9. (a) Maximum-intensity projection (MIP) image at 0 
degrees acquired for one hour on the 5-detector-ring PennPET 
Explorer (112-cm AFOV) from a human subject, 24 h after 
administration of 22.2 MBq of a new 89Zr-labeled anti-CD8 
minibody.  (b) 4-mm-thick TOF list-mode OSEM-reconstructed 
coronal slice through the same subject, whose knees were 
elevated during the acquisition. 
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Even after full reconstruction using TOF list-mode OSEM, 
the residual image noise seen in, e.g., the thigh and calf 
regions of Fig. 9b suggest that the RD-corrected 
reconstruction could benefit from use of the RS approach 
for randoms correction. 

4 Discussion 
 
The FMC simulation program demonstrated comparable 
delayed randoms rates to the slower GATE simulation for 
both count-rate and image-quality phantom studies. This 
has allowed us to investigate the RS and RD approaches for 
a variety of imaging conditions efficiently. While the FMC 
program does not model the exact geometry or all details 
affecting the spatial-resolution of the PennPET Explorer 
system, nevertheless, the program models the T, S, and R 
count rates quite accurately and is thus useful for 
understanding the count rate behavior of the system. 
 
In this study, we have chosen to use most-likely-position 
(MLP) images, obtained using TOF-weighted 
backprojection of each coincidence event along its LOR.  
MLP images are linear ‘reconstructions’, i.e., they do not 
depend on characteristics such as the number of iterations 
or subsets or the degree of possibly nonstationary 
smoothing used in a full reconstruction; nevertheless, it was 
still straightforward in this study to compare imaging 
performance under different conditions using MLP images. 
 
Oliver and Rafecas have advocated use of the uncorrelated 
singles rates for estimating the randoms [11]; however we 
found that using the uncorrelated singles rates significantly 
underestimated the correct random rates, whereas the total 
(correlated + uncorrelated) detector singles rates provided 
accurate randoms estimates over a wide range of total 
activity (Fig. 10). 

           
 Figure 10. Total randoms rates simulated for 18F in the 70-cm IQ 
phantom (black data points); randoms estimated using all singles 
(RS) in each detector (blue curve), and estimated using only 
uncorrelated singles (red curve) obtained after subtracting 
singles comprising true- and scattered-coincidence events from 
the total singles in each detector. 

 
The PennPET Explorer acquires data as single events and 
stores them in a list for off-line coincidence processing. Up 
to now, a delayed coincidence window has been used to 
estimate the random coincidences. However, because the 
data are acquired as singles, the RS method is a natural 
choice for the PennPET Explorer, and it is currently being 
incorporated into the data processing stream for evaluation 
in future studies. Initial phantom tests (with 18F) have shown 
comparable levels and spatial distributions of randoms 
estimated using the RS method to the measured delayed 
coincidence rate (RD). Planned studies include application 
to dynamic scans with both 18F and 11C-labeled radiotracers, 
and studies with non-standard radionuclides in addition to 
89Zr, including those with prompt gammas. 

5 Conclusion 
 
The randoms-from-singles approach is a practical method 
to provide low-noise, almost unbiased estimates of randoms 
from long axial field-of-view scanners such as the PennPET 
Explorer. It is shown to be capable of accurately and 
precisely measuring randoms arising from a variety of event 
types, including 176Lu background radiation, high-energy 
single photons from radionuclides like 89Zr, and more 
conventional randoms from positron-annihilation events 
within the subject. The RS method works accurately and 
reliably at both high and low count rates. 
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Abstract Scattered events lead to bias in PET images that requires an
accurate estimation of their distribution in order to produce quantita-
tive images. This paper presents a practical energy-based (EB) scatter
estimation method that uses the marked difference between the energy
distributions of the unscattered and scattered events in PET data in
the presence of random events. The method is fast, efficient, robust,
and the scatter estimate is generated in scale with the emission data;
therefore, tail-fitting that is common in single scatter simulation (SSS)
is unnecessary. We evaluated the method using Monte Carlo (MC) sim-
ulations and measured data from a single ring of the PennPET Explorer
(PPEx) scanner, a long axial field-of-view (AFOV) scanner currently
configured with 5 rings with 112 cm AFOV. We show that EB estimate
of the scatter sinogram is in good agreement with the MC ground truth.
Also, compared to correction with Single Scatter Simulation (SSS),
there was a marked improvement in the reconstructed images, both
in the background and cold regions. An ideal reconstructed image
is given for reference. The method is efficient and fast, making it
attractive for use in standard as well as long axial field-of-view (FOV)
scanners.

1 Introduction

Scattered and Random events (background) lead to bias in
the PET images. The contribution of randoms is commonly
estimated using the delayed window method, while scatter
estimation is commonly performed with the Single Scatter
Simulation (SSS) [1, 2]. Extended versions of SSS including
time-of-flight (TOF) [3, 4] information and modeling double
scattering [5, 6] have also been presented. However, while
SSS is generally robust for routine clinical imaging, it under-
performs in certain imaging scenarios. Therefore alternative
methods such as Monte Carlo simulations [7, 8] and, more
recently, deep learning based scatter estimation [9–11] have
been explored.
In this paper, we present an extension to a method initially
proposed by Popescu et al. [12, 13] for estimating the scatter
distribution based on photons’ energy properties (energy-
based, or EB, scatter estimation). The proposed method uti-
lizes difference between the unscattered and scattered events
energy distributions, to obtain a total scatter estimate for each
line-of-response (LOR) [14]. To simplify the extraction of
the energy probability density function (PDF), we consider
the energies of the two coincident photons to be uncorre-
lated, which allows us to avoid fitting a 2D energy plane [15].
In addition to accuracy, our method focuses on algorithm
efficiency, robustness and practicality for routine use. We
evaluated its performance using Monte Carlo simulations of
the PennPET Explorer (PPEx) scanner, comparing the results
to ground truth available in simulations as well SSS estimates.

We also tested our method on NEMA phantom data acquired
on a the PPEx scanner where we compare the estimated EB
scatter sinograms with those generated by the 3D-TOF-SSS
that is routinely used with PPEx.

2 Materials and Methods

Each PET event includes the measurement of two coinci-
dent γ-photons with energies E1, E2 at a line-of-response
(LOR, l) between two detectors. Let T (E) be the distribution
of γ-photons that have not undergone Compton scattering
and S(E) that of scattered photons, then the total energy
histogram is the sum of three types of events; i) with both
photons unscattered, ii&iii) with one of the two photon scat-
tered, and iv) with both photons scattered. The above can be
expressed as:

C(E1,E2) =σ0T (E1)T (E2)+σ1T (E1)S(E2)+ (1)

σ2S(E1)T (E2)+σ3S(E1)S(E2)

with σ0 . . .σ3 their respective weights. Assuming that the
energies of the two coincident photons per event are uncor-
related, in Figure 1 we show the total 1D energy histogram
for all events, and categorized as the prompt (or total), un-
scattered, and scattered events (simulation data). The sum of
the unscattered events curve is the σ0 from 1. Likewise, the
scattered events curve sum equals to σT = σ1 +σ2 +σ3 and
can be decomposed as:

σ0 = kT (E) (2)

σT = p0T (E)+ p1S(E) (3)

where σT is illustrated in the bottom row of Fig. 1.
Our hypothesis is that if we are able to extract the energy
distribution of scattered photons (red curve in Fig. 1(bottom))
then we will be able to solve for σ1 . . .σ3 by appropriately
scaling a Gaussian function by σ0. Since the prompt data
also include random events, we also estimate and subtract
the contribution of random events in the energy spectrum by
using the data collected in the delayed coincidence window.

2.1 Estimation of models for scattered and unscat-
tered photons energy distributions

The unscattered photons global energy spectrum, T(E), has
a peak at 511 keV, broadened by the detector energy resolu-
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Figure 1: (top) Prompt minus delays energy histogram (C), and
(bottom) decomposed energy distributions of scattered and unscat-
tered photons in the scattered events.

tion, while the scattered photons have a continuous energy
spectrum with energies lower than 511 keV. The detector’s
has an energy response, in principle, can be modeled as a
Gaussian distribution scaled to the total integrated counts col-
lected within a high energy window (HEW). In the HEW, the
number of scattered photons would be negligible to the total
number of unscattered events. However, due to inter-crystal
scattering, partial energy deposition, 176Lu background activ-
ity, coarse bin size of energy in the collected data, and statis-
tical noise etc., the shape of T(E) is not a perfect Gaussian
distribution. This discrepancy of the unscattered photon’s
peak from a Gaussian can lead to an underestimation of the
model’s scaling factor, resulting in an influx of unscattered
events in the scatter estimated sinogram (overestimation of
scatter). Or in overestimation of the scaling factor, result-
ing in a reduction in the number of high energy scattered
photons.
In order to work around this limitation we designed an al-
gorithm that scans several lower bounds for the HEW and
checks which of the estimated scatter photon energy distribu-
tion shapes meet the following three conditions: i) it does not
have negative values, ii) it should not present a photopeak
at 511 keV, and iii) above, 570 keV, for the current detector
energy resolution, they do not assign higher probabilities for
delayed events than prompts. This creates a small pool of
scattered photon energy distribution shapes and applies them
on a row-by-row basis in the sinogram, choosing the one that

minimizes the root square mean error (RMSE) between the
estimated scatter profile and the tails of the emission data.

2.2 Fitting of the energy distribution models to the
data to estimate scatter

The energy distribution models for scattered and unscattered
events as obtained from the global energy spectrum are fitted
to the measured data in an LOR or a group of LORs, using
the method of moments. The moments of order (m,n) of the
energy distribution can be calculated from the listmode events
in each LOR as q̂mn = ∑M

i Em
1,iE

n
2,i with M being the number

of events in the LOR and should match the theoretical value:

qmn =
∫

ε
Em

1 En
2C(E1,E2)dE1dE2 (4)

= σ0αmαn +σ1αmβn +σ2βmαn +σ3βmβn (5)

where am =
∫

ε EmT (E)dE, βm =
∫

ε EmS(E)dE and likewise
for the n moment. Solving for σ0 . . .σ3 was done with the
Cramer method. In order to remove the random events we
subtract from q̂mn a term ŵmn calculated using the same for-
mula, but with the delayed events.

2.3 Data generation and image reconstruction

2.3.1 Simulations

For the generation of the simulated data we used the GATE
Monte Carlo simulation toolbox(v.8.1.p01) [16]. We simu-
lated the geometry of a single ring of the PPEx scanner [17].
In brief, the geometry consists of 3.86×19mm3 LYSO crys-
tals arranged in an 8×8 to form a detector tile. Each scanner
module is composed of a 4(radial)×7(axial) array of these
detector tiles with 18 such modules arranged to form a single
scanner ring. In total, the scanner ring has 56 crystal rings
and 576 crystal per crystal ring. We set the energy resolution
to 11% and the timing resolution to 250 ps, binning in 161
TOF bins of 25 ps.
We simulated the NEMA phantom (Fig. 2) (hot sphere ac-
tivity ratio of 4:1 with respect to the background) for a 150
s acquisition with total activity 43.1 MBq in the phantom.
We collected 79.3× 106 prompt events with a randoms ra-
tio (delayed / prompts events) of 13%. We also simulated
a cold slab phantom 35 cm diameter x 30 cm long cylinder
with 1 inch thick polyethylene slab placed centrally in the
phantom (Fig. 2), for a 500 s acquisition with 60 MBq, and
we recorded 7.6×107 prompts with a randoms ratio of 46%.
For scatter estimation, the aforementioned scanner geom-
etry was downsampled to 36 (.d1) and 72 (.d2) detectors
per ring, over 7 rings and 17 TOF bins (272 ps). For the
simulated data, all image reconstruction and various data
space operations were performed using the STIR image re-
construction toolkit (v.4) [18–21]. Image reconstruction was
performed using ordered subsets, expectation maximization
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Figure 2: Illustrations of the NEMA and cold slab phantoms used
in this study.

(OSEM) with 11 subsets and 20 full iterations in the projec-
tion space. The voxel size of the reconstructed images was
1.93×1.93×1.98mm3. In order to reduce the noise of the
NEMA phantom, Gaussian post-filtering (1× 1× 1 mm3),
was applied.

2.3.2 Measurements

We collected data on a single ring of the PPEx scanner using
the NEMA phantom with hot sphere activity uptake ratio of
9.4:1. The total activity in the phantom was 59.2 MBq and
data were collected for 1800 s. Scatter was estimated using
our EB scatter estimation method as well as the standard
3D-TOF-SSS algorithm as implemented on this scanner.

3 Results

3.1 Data-space

3.1.1 Simulated data

In Figure 3.A we show sinograms followed by relevant pro-
files from the MC simulated data (Figures 3.B and 3.C). In
Figures 3.D and 3.E we compare sinogram profiles from 2D-
SSS and EB scatter estimates to the MC ground truth for
the NEMA and cold slab phantoms. As we can see in Fig-
ures 3.B and 3.C, in the downsampled sinogram space the EB
estimated scatter profiles are in very good agreement with the
ground truth profiles, which are created by directly selecting
the appropriate events in the simulated datasets. Especially in
the tails of the emission data, the agreement is excellent. The
good performance also extends to the estimated unscattered
events. When we use the less coarse down-sampling (d2), the
estimation follows more closely the phantom’s higher spatial
frequency structures. However we also see increased noise,
possibly due to the smaller number of events per bin.

Figure 3: A. (left) Ground truth scatter sinogram from the MC
simulated NEMA phantom and the sinogram from EB scatter
estimate using d1 down-sampling (right). B. Profiles drawn across
sinograms shown in (A) and (B) above for the fourth view. The MC
values are marked with "x" and the EB estimates are shown with
solid lines. C. Same profiles as in (B) but with less coarse down-
sampling (d2). D. Profiles across the prompts, 2D_SSS estimated
scatter sinogram and the EB scatter estimate sinograms for the
simulated NEMA phantom, all after up-sampling to the original
scanner geometry. E. Same as in (D) but for the simulated cold
slab phantom.

In Figures 3.D and 3.E we demonstrate how the EB method
compares with 2D-SSS and the ground truth for the NEMA
and the cold slab phantoms, respectively. From the NEMA
MC simulations we know that the scatter fraction (SF) should
be 28.2%. The 2D-SSS gave 25.3% and the EB 26.5% -
27.8% depending on the down-sampling and usage of TOF.
These differences are reflected in Figures 3.D and 3.E where
we see an underestimation of scatter with SSS near the center
of the phantoms. However, it should be noted that both scatter
estimation methods are in good agreement with tails of the
phantom emission data.

3.1.2 Measured data

In Fig. 4 we show sinograms from the measured NEMA IQ
phantom and scatter estimations using 3D-TOF-SSS algo-
rithm as implemented on PPEx and the proposed EB method.
In addition, we also show two radial profiles. In general, we
can see that for most part the SSS and EB methods are in
good agreement. However, as the measured sinogram shows
there was a deactivated detector tile (empty diagonal) and
the EB scatter sinogram reflects that. In addition, in the EB
sinogram we can see a second diagonal with higher values.
The acquisition of this dataset was performed while the ring
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was being calibrated prior to integration with the PPEx scan-
ner. In this situation one detector tile presented increased
operating temperature at the time of data acquisition, leading
to a change in local energy resolution that affects the EB
scatter estimation. Under normal operating conditions this
calibration issue will not be present.

3.2 Image-space

Quantitative analysis of the reconstructed images for the sim-
ulated NEMA phantom showed that the ideal (no scattered
events) ∆lung residual was 6.2%, while those corrected with
2D-SSS had 10.0% and those with EB 6.6% and 6.2%, for
down-samplings d1 and d2, respectively. We can see that
the results from EB scatter estimation are much closer to the
ideal results. In addition, using a less coarse down-sampling
(d2) we show a 2− 2.5% improvement in the cold sphere
contrast recovery coefficient (CRC), possibly a result of the
reduced interpolation between the cold and background re-
gions. However, we also saw an equivalent reduction in the
CRC of the smallest (10 mm) hot sphere, possibly due to
noise introduced by the additive correction. Optimization
of the level of downsampling should account for statistics
and will depend on the type of imaging protocol (dynamic or
static).
NonTOF reconstructed images and profiles of the challeng-
ing cylindrical phantom with the cold slab are illustrated in
Fig. 5. One can see that the scatter correction in the cold slab
region is excellent with the EB method. It is also clear that
SSS under corrects for scatter in the cold region that is also
confirmed by the sinogram profiles as shown in Figure 3. In
addition, we cannot observe any effect from the out-of-FOV
activity.

4 Discussion

This paper describes the implementation, validation, and ini-
tial evaluation of an energy-based scatter estimation method.
The method was evaluated both in data-space and image-
space, using Monte Carlo generated data of a standard NEMA
phantom and a challenging cylinder with a cold slab. The
evaluation was against the MC ground truth and the 2D-
SSS, as implemented in STIR. In addition, we compared the
energy-based estimated sinogram generated from measured
data acquired on a single ring of the PPEx scanner.
This method’s accuracy depends on the accuracy in estimat-
ing the energy distribution functions of the scattered and
unscattered events for the scanned object and the effective-
ness in rejecting the randoms from the estimation of the
scattered. As the detector is downsampled, the energy re-
sponse of the individual crystals and other effects from the
obliqueness of the LORs are not significant. However, it is
critical for our method to have the correct energy resolution
for each downsampled group of detectors. As Fig 4 demon-
strates, in the case that this does not hold, then the estimated

scatter will not be accurate. Ideally, all individually read-out
crystals should also have approximately similar energy reso-
lution. This suggests that in older PET scanners built with
light-sharing detectors that lead to some spatial variability in
energy resolution as well as pulse pile-up effects at higher
count-rates, the proposed EB method may be limited in its
accuracy. However, this method should be more effective
in the latest generation of scanners using SiPMs that have
minimal to no light sharing.

In addition, although the method of moments is a swift and
efficient way to fit data when the moments of the two mod-
els offer good separation, an inappropriate selection of the
used moments can affect the results. However, as we have
seen with the first two moments, we get good discrimina-
tion between the scattered and unscattered distributions. The
excellent performance of all the above points has been suc-
cessfully demonstrated as shown by our results in this paper
(Figure 5).

We have shown that the EB estimation is very close to the
MC ground truth. In nonTOF reconstructed images, the
∆lung residual values are closer to the ideal (without scat-
tered events) than those corrected with 2D-SSS. In addition,
there might be some benefits in using a less coarse scanner
downsampling for the scatter estimation as it can improve
the convergence of cold regions. However, this will reduce
the number of events per bin, and the effect of noise in the
additive reconstruction term has to be considered.

The cold slab phantom presented several challenges as higher
attenuation, out-of-FOV activity, and high SF, especially due
to multiple scatter. The EB method performed well in this
situation, and the reconstructed images closely matched the
ideal image (with a rejection of scattered events from the
data). The excellent performance of the EB-based correc-
tion was demonstrated by the horizontal and vertical profiles
selected through the center of the cylinder’s image.

An additional advantage of the EB method is the total exe-
cution time of the algorithm. On an i7 6700HQ processor,
the EB-based method finished in 8 s the nonTOF, fully 3D,
scatter estimation, and 35 s the TOF case. In addition, we
did not see any significant impact (change) in performance
with the number of events present in the data set all the way
up to 500× 106 prompts. For comparison, the 2D-SSS, as
implemented in STIR, needs approximately 12 min for four
scatter estimation iterations.

4.1 Future work

In the future, we plan to use this energy-based scatter es-
timation method with additional measured data, including
phantom and human studies from the PennPET Explorer
scanner.
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Figure 4: (top) NEMA-IQ sinograms from (left to right): i) Prompts-delays ii) 3D-TOF-SSS scatter estimation iii) EB scatter estimation.
(bottom) Profiles across the sinograms of the top row.

Figure 5: NonTOF reconstructed images of the cylindrical phan-
tom with a cold slab. The ideal dataset does not include scattered
events. In all cases the randoms correction is the same. In addition,
horizontal profiles and vertical, are illustrated.

5 Conclusion

We demonstrated through realistic studies of a typical NEMA
phantom and a challenging cylindrical phantom with a cold
slab that our energy-based scatter estimation method provides
accurate scatter estimation, leading to quantitatively accurate
images. Additionally, using measured data for a NEMA
phantom we showed good agreement with 3D-TOF-SSS in
most regions of the scatter sinogram. Overall, the method is
much faster than SSS and MC based methods, does not need
prior training data sets, and does not rely on a transmission
image.
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Abstract Molecular breast imaging (MBI) can be a useful complement 

to conventional X-ray mammography. Currently, planar imaging is 

normally used for this purpose. We are developing a stationary 

tomosynthesis system for MBI, based on CZT detectors with depth-of-

interaction (DOI) capability, and multi-pinhole collimation, which 

could offer significantly improved contrast compared to planar imaging. 

A large number of pinholes are used in order to obtain high sensitivity 

and also improved sampling to compensate for the lack of detector 

motion. This results in multiplexing (MX), which leads to ambiguity 

regarding the direction of incidence of the detected -photons. We have 

developed various novel approaches to address this problem by 

performing de-MX either before or during the image reconstruction, 

aided by the DOI information. We have shown that, by optimising the 

system geometry, it is possible to gain a factor of 2 in effective 

sensitivity as compared to a system without MX. 

1 Introduction 

 Conventional X-ray mammography has limited 

sensitivity in patients with dense breasts. Molecular 

imaging is advantageous in these situations, the main 

drawbacks being the relatively high radiation dose and 

long imaging times [1]. Dedicated cameras for molecular 

breast imaging (MBI), operating in planar mode, have 

been in use for years [2]. Improved image quality in planar 

MBI can be obtained using CZT detectors with depth-of-

interaction (DOI) capability [3]. A tomosynthesis (limited 

angle tomography) system for MBI, based on multi-

pinhole (MPH) collimators, has been proposed [4]. This 

system was designed to avoid multiplexing (MX), i.e. 

overlap of the individual pinhole projections on the 

detectors, and requires scanning detector motion to cover 

the whole field-of-view (FoV).  

 We are developing a stationary tomosynthesis system 

for MBI, based on CZT detectors with DOI and MPH 

collimation. Our basic idea is to use a large number of 

pinholes, allowing for MX, resulting in higher sensitivity 

and improved sampling. With MX, there is some degree of 

ambiguity regarding the direction of incidence of the 

detected -photons, which can lead to artefacts in the 

reconstructed images. However, it has been shown in the 

past that artifact-free images can be obtained by combining 

multiplexed and non-multiplexed data [5-9]. DOI 

information has the potential to provide data with variable 

amounts of MX, which could therefore aid in de-

multiplexing.  

 We have investigated various design configurations in a 

multi-parameter space in order to optimize the system 

performance. We have also developed a novel de-MX 

approach that can be applied to the projection data before 

reconstruction. Here we compare this approach with direct 

reconstruction that incorporates MX in the system matrix 

as well as a hybrid approach. 

2 Materials and Methods 

Data generation 

 The system consists of two planar CZT detector arrays 

placed opposite each other (Fig. 1). We assume the use of 

mild breast compression for a mean thickness of 6 cm [2]. 

We performed simulations for a 16x16 cm detector size 

with a pixel-size of 1x1 mm and DOI estimation in 1-mm 

layers. For the system optimisation, we investigated the 

following parameters: Number of pinholes, pinhole 

aperture size, pinhole opening angle and collimator-to-

detector distance.  

 We first used analytical calculations of contrast-to-

noise ratio (CNR) to narrow down the parameter space. 

Next we performed analytical simulations generating 

projection data corresponding to a phantom containing one 

layer of spherical lesions in four quadrants of 36 spheres 

each. The sphere diameter was 6 mm and the sphere-to-

background ratios were 5, 10, 15 and 20 in the four 

quadrants, respectively. Simulations were also performed 

with four layers of spheres separated by 15 mm. The 

simulations, which included attenuation but not scatter, 

represented 10-min patient scans after injection of 150 

MBq of 99mTc-MIBI. We estimated that this would result 

in a background activity concentration of 760 Bq/mL, 

based on information in [10].  

De-multiplexing and reconstruction 

 As MX is a process occurring by definition in the 

detector domain, it depends only on the line-integrals and 

de-MX can in principle be applied to the projection data 

without knowledge of the 3D activity distribution. We 

developed a new approach for de-multiplexing the MPH 

projection data, utilising the DOI information provided by 

the CZT detectors. The algorithm consists of an iterative 

procedure where data are forward and back-projected 

between virtual 2D planes, representing each pinhole, and 

3D detector blocks (Fig. 2). The following steps are 

repeated for a number of iterations:  
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𝑽𝑖,𝑗
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where 𝑷𝑖,𝑗
𝑘  and 𝑽𝑖,𝑗

𝑘  are the 2D virtual data plane and 3D 

detector data, respectively, for detector 𝑖 and pinhole 𝑗 

after 𝑘 iterations, 𝑁𝑑 and 𝑁𝑝 are the number of detectors 

and the number of pinholes per detector, respectively, 𝑨 is 

a matrix for transformation from the 2D to the 3D data 

representation, 𝑩 is a matrix representing the multiplexing 

operator, and 𝑸𝑖 is the measured data for detector 𝑖. The 

MX process was implemented by combining data from 

different pinholes in detector pixels with overlap.  

 This de-MX method differs from the one presented in 

[11] as it is entirely independent of the tomographic 

reconstruction process.  

 For the tomographic reconstruction, we have 

implemented three different approaches: 1) 1-step: direct 

image reconstruction, incorporating MX in the system 

matrix; 2) 2-step: de-MX is applied to the projection data 

before tomographic reconstruction; and 3) a combination 

of the two methods, in which, at each iteration, the image 

is updated using the average of the correction factors 

obtained from the MX data and the de-MX data (Fig. 3). 

For the reconstruction we used a MAP algorithmm [12] 

with a prior obtained by distance dependent smoothing for 

resolution equalisation.  

 Here we compare the three approaches in terms of 

contrast and noise. We also compare the results with 

images reconstructed from ideal projection data for the 

same geometry but without MX (not possible in practice).  

3 Results 

 Target-to-background ratios (TBR) were calculated for 

the spheres in the single layer phantom and the coefficient-

of-variation was calculated in the uniform region away 

from the sphere-plane. Figure 4 shows TBR vs. CoV 

curves with different MPH configurations from 8x8 to 

16x16 pinholes per head with separations in the range 10-

20 mm. The 8x8 configuration with 20 mm separation 

corresponds to the actual MX-free case. The graph 

resembles a “bow and arrow”, with the “arrow” 

corresponding to the ideal no-MX situation, and the other 

three curves corresponding to the different reconstruction 

approaches. Starting from the MX-free case on the right 

side of the graph, all three curves initially move more or 

less in the same direction as the ideal curve. They then 

seem to hit an invisible barrier and bounce off in different 

directions, due to unresolved MX or noise-amplification. 

Along the “invisible barrier” there are multiple solutions, 

which are essentially equivalent, but have different bias vs. 

noise trade-offs. The “bow” crosses the “arrow” at a point 

corresponding to ~14.3 mm pinhole separation. Compared 

to the MX-free case, this corresponds to a pinhole density 

increase by a factor of (20/14.3)2  2, which represents the 

effective increase in sensitivity.  

 The MPH configuration with 14x14 pinholes with 12 

mm separation was chosen for further evaluation. 

Reconstructed images are shown in Fig. 5 for the different 

reconstruction approaches. Fig. 6 shows TBR vs. CoV 

curves for the different reconstruction approaches in the 

single layer phantom and in the multi-layer phantom. It 

can be seen that the best approach (apart from the ideal no-

MX case) is different for the two phantoms; the 1-step for 

the single layer phantom, and the 2-step for the multi-layer 

phantom. In both cases, the results of the hybrid method 

are between the other two, representing a good 

compromise.  

4 Discussion 

 In terms of the different reconstruction approaches, we 

found that the method giving the best results depended on 

the activity distribution. The method of choice could 

therefore be the hybrid approach, but more work is 

required in order to evaluate this option. Although this 

work was performed for MBI, the same ideas could be 

applied in other imaging situations.  

 These results have important implications for clinical 

MBI. Tomosynthesis provides significantly improved 

contrast compared to planar imaging but to achieve 

sufficient angular sampling without MX normally requires 

detector movement. The approach we have developed not 

only solves this sampling limitation but also provides 

potential for significant gain in sensitivity compared to 

non-MX systems. The possible options are to improve 

performance, decrease imaging time or reduce dose (or to 

choose some combination depending on goals of the 

clinical study). For example, this may stimulate more 

widespread use of MBI in screening applications. 

5 Conclusion 

 We have designed a novel stationary MBI 

tomosynthesis system, incorporating multiplexing for 

improved image quality. We have developed various de-

multiplexing and reconstruction approaches, specifically 

for this system. Using simulations we found that it is 

possible to obtain an effective increase in sensitivity by a 

factor of 2 by utilising multiplexing.  
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Figure 1: Full system geometry (left), blow-up of corner, 

showing multiplexing (right). 

 

 
Figure 2: Illustration of the forward transformation 

process in the de-multiplexing algorithm. Virtual planes 

are projected (FP) onto multi-layered detector blocks, 

which are then merged with multiplexing (MX).  

 

 
Figure 3: Schematic description of hybrid reconstruction 

algorithm. The correction factors are calculated based on 

both MX and de-MX data.  

 

 
Figure 4: TBR vs. CoV curves for different pinhole 

configurations, corresponding to pinhole separations of 

10-16, 18 and 20 mm. The solid line with circles 

represents the ideal (but unachievable) no-MX case, while 

the dashed lines with circles represents different 

reconstruction approaches for the MX data. Dotted lines 

join points with the same pinhole separation.  
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Figure 5: Reconstructed images (trans-axial, coronal and 

sagittal) for a 14x14 pinhole configuration (12 mm 

separation) with different reconstruction approaches: a) 

ideal case without MX, b) 1-step, c) 2-step, and d) hybrid 

reconstruction.  

 

 

 

 

 
Figure 6: TBR vs. CoV curves with different number of 

iterations (1-8) for different reconstruction approaches in a 

single layer (top) and a multi-layer phantom (bottom). The 

no-MX curve is always best, as it represents an ideal case 

without MX which is not possible in practice.   
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Abstract Model observers are often used to simulate the way of doctors’ 

diagnosis in medical imaging for task-based performance evaluation. 

However, a big number of image samples are needed to estimate 

statistical mean and covariance of reconstructions necessary in the 

construction of traditional model observer templates, which is hard to 

realize in practical medical applications. For CT imaging, since the 

statistical distribution of the sinogram is known, we propose a new 

method to propagate the covariance from projection domain to image 

domain. For iterative reconstruction methods, the gradient of objective 

function disappears at the point of convergent solution. Making use of 

this condition, one can deduce an analytical covariance estimator 

accordingly. We considered in this paper three typical cases of penalty in 

iterative reconstruction, 1) no penalty, 2) quadratic penalty, and 3) non-

quadratic penalty. We mainly focus on case 1 and 3 since case 2 is exactly 

same as the published work.  For case 1, we mainly deal with the ill-

condition and solve it by widely used Tikhonov-Phillips method in 

regularization area. For case 3, we mainly consider a linear 

approximation for the gradient of non-quadratic penalty, and analyze 

popular WLS-TV and WLS-qGGMRF reconstruction. Analytical 

estimation of the covariance matrices of a simulated phantom are 

compared with results estimated from the early published Taylor 

expansion based method. MAPE is calculated for quantitative analysis. 

Results indicate that our proposed method outperforms the published 

work for TV penalty and is comparable for qGGMRF penalty. However, 

MAPEs of analytical covariance for TV are still different from statistical 

covariance by more than 20%, which needs further improvement. 

1 Introduction 

Traditional model observer methods require the mean 

vector and covariance matrix of images to be observed to 

construct observer templates [1]. The mean vector and 

covariance matrix can be calculated statistically by 

repeatedly obtaining numerous  images under the same 

condition. However, it is impossible to acquire such 

quantities of images in real situation, especially in medical 

imaging since patients’ radiation dose should be minimized. 

In CT imaging, it is widely accepted that a sinogram can be 

approximated as Gaussian with known mean and 

covariance [2]. Image reconstruction is a transformation 

function of projections so that the mean and covariance of 

the sinogram can be transmitted from projection domain to 

image domain. Thus, analytical methods for image mean 

and covariance calculation are proposed that merely require 

a few images.  For analytical reconstruction, Noo et al [3] 

get the covariance matrix of image from that of the 

corresponding sinogram based on the linear property of 

filter back projection (FBP) method. For iterative 

reconstructions, Fessler [4] studies mean and variance 

estimation based on the Taylor expansion of the converged 

reconstructed image. Considering the diversity of iterative 

methods, we focus on covariance matrix estimation of the 

iterative reconstruction images in this work. 

2 Materials and Methods 

Iterative CT reconstruction methods with Gaussian noise in 

projection data normally can be expressed as following: 

21
ˆ =argmin ( , ) argmin ( )

2
R   

W
μ μ

μ g μ Hμ g μ  (1) 

where μ̂  is the reconstruction, g  the projection, H  the 

system matrix, R  the penalty function, and   the hyper-

parameter. Theoretically, μ̂  is the point where the gradient 

of the cost function in Eq. (1) equals to 0: 
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By rearranging Eq. (2), we have: 

   ˆ ˆ =T TR H WHμ μ H Wg  (3) 

Hence, the covariances for both  sides of Eq. (3) is related 

by: 
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To calculate  ˆ ˆCov , R  μ μ  and  ˆCov R  μ , we 

express  ˆR μ  in a linear form: 

    ˆ ˆ ˆ ˆ( ) ( )R  μ L μ μ c μ  (5) 

where  ˆL μ  is a coefficient matrix and  ˆc μ  a constant 

matrix. Therefore, Eq. (4) is simplified as: 

 
ˆ ˆ ˆ+ ( ) Cov( ) + ( )

Cov( )

T
T T

T

    
   



H WH L μ μ H WH L μ

H W g WH

 (6) 

Then the covariance matrix of the reconstruction image μ̂  

can be estimated from the covariance of sinogram g  by: 

   
1

1ˆCov( ) Cov( )T T


μ A H W g WH A  (7) 

with ˆ= + ( )T A H WH L μ . 

Many penalty functions ( )R μ  has been studied for iterative 

CT reconstructions. In this work, we study three cases of 

iterative CT reconstruction for their covariance estimation 

with this method by Eq. (7). 

 

2.1 No penalty term 

One typical iterative reconstruction method is weighted 

least square (WLS) method with 0   in Eq. (1). 

Correspondingly: 
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1 1ˆCov( ) ( ) Cov( ) ( )T T T μ H WH H W g WH H WH  (8) 

Because the condition number of the muplication term 
T

H WH  is very high so that it leads to unstable and 

inaccurate estimation of ˆCov( )μ .  

To solve the ill-posed Eq. (8), we adopt the Tikhonov-

Phillips method commonly used for solving ill-posed 

equations [5]. A weighted identity matrix I  is added to 

reduce the condition number of 
T

H WH : 

1 1

ˆCov( )

( ) Cov( ) ( )T T T  



 

μ

H WH I H W g WH H WH I
 (9) 

which results in a more stable and accurate covariance 

estimation. In fact, the term I  in Eq. (9) is equivalent to 

adding a L2-norm penalty in WLS: 

  
2 2

2

1
ˆ =argmin ( ; ) argmin

2
   

W
μ μ

μ g μ Hμ g μ  (10) 

which indicates μ̂  of minimum potential is preferred. 

 

2.2 Quadratic penalty 

The commonly used quadratic penalty prior can be 

represented as: 

    21
ˆ ˆ ˆ( )

2
i

ij i j

i j

R w  


 μ  (11) 

where ijw  is the inverse of the spatial distance, and i  

the neighborhood of pixel i . In addition,  2 ˆR μ  is the 

second derivative of  ˆR μ : 
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Since 
2 ˆ( )R μ  is a constant indepent of μ̂ , ˆ( )R μ  can be 

expressed as 
21

ˆ ˆ ˆ( )
2

T Rμ μ μ . Obviously, the first derivative 

of ˆ( )R μ  is linear: 

 
2ˆ ˆ ˆ( ) ( )R R μ μ μ  (12) 

Hence, the covariance matrix estimator becomes: 

 
1 1ˆCov( ) Cov( ) ( )T T μ A H W g WH A  (13) 

with 
2 ˆ+ ( )T R A H WH μ .  

Eq. (13) is in accordance with covariance estimator 

proposed by [6] in case of quadratic penalties. 

 

2.3 Non-quadratic penalty 

For non-quadratic penalties, covariance extimation is more 

difficult. Eq. (12) dose not hold. Different non-quadratic 

penalty functions have different expressions so that have 

their unique linear approximation of ˆ( )R μ .  One natural 

way is to perform 1st order Taylor expansion on ˆ( )R μ , 

which means the coefficient matrix 
2ˆ ˆ( )= ( )RL μ μ , and it 

is exactly the Taylor approximation based method (TAM) 

published in [4].  

In this work, we propose a linearity approximation based 

covariance estimation method (LAM). Rewrite ˆ( )R μ  as 

a linear function and the linear coefficients are extracted as 

coefficient matrix ˆ( )L μ , i.e.  ˆ c μ 0  in Eq. (5), and get: 

  ˆ ˆ ˆ( )= ( )R μ L μ μ  (14) 

Apply Eq. (14) to two penalty terms, Total Variance (TV) 

and q-Generalized Gaussian Markov Random Field 

(qGGMRF). These two penalties are representative because 

TV is an approximate function of linear function, and 

qGGMRF is a function between the linear and quadratic 

functions. 

 

2.3.1 TV penalty 

For reconstruction image 
2 1ˆ N μ , TV function is 

defined as: 
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where small quantity   is added to avoid zero value of the 

gradient of ( )i  . The gradient of Eq. (15) is: 
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Thus, the 
th i  row of TV

ˆ( )L μ  is: 
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Consequently, the covariance matrix for TV constrained 

WLS (WLS-TV) method can be computed as in Eq. (7). 

 

2.3.2 qGGMRF penalty 

For reconstruction image 
2 1ˆ N μ , qGGMRF function is 

defined as: 
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where   is a distance dependent weight factor, and  is a 

threshold to adjust the degree of denoising. The 1st 

derivative of Eq. (17) is: 
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 Therefore, the 
th i  row of q

ˆ( )L μ  is: 
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Smilarly, the covariance matrix for qGGMRF constrained 

WLS (WLS-qGGMRF) method can be calculated 

according to Eq. (7). 

 

3 Experimental Results 

A 64 64  phantom is simulated to validate the predicted 

covariance of WLS method, and another larger phantom of 

size 128 128  is simulated to validate the covariance 

estimations of TV- and qGGMRF-WLS methods. Incident 

photons I0 are set to be 105, 104, and 103 to model different 

noise level. 

Since the case of quadratic penalty term has already been 

studied by [7], only the results of WLS and TV/qGGMRF 

methods, are presented and discussed in this section. Only 

one noisy sinogram g  is used to estimate the covariance of 

the sinogram     0Cov exp I g g . In addition, Eq. (8) 

and (9) are calculated to get ill-conditioned and regularized 

covariance results of WLS. Meanwhile, for TV/qGGMRF 

reconstruction, covariance matrices are predicted by TAM 

as well as LAM covariance estimation method. Besides, 

statistical estimation of covariance matrix sta
ˆCov ( )μ  is 

calculated as reference for validation:  

   sta

, 1

1
ˆ ˆ ˆ ˆ ˆCov ( )( )

1

M

m n

m nM 

  

μ μ μ μ μ  (20) 

where M  is the total number of noise realizations. We use 

mean absolute percent error (MAPE) as the metric for 

comparison. 

 

3.1 Covariance estimation for WLS reconstruction 

In this experiment, the condition number of the matrix 
T

H WH  is 106.  Regularized by the identity matrix, the 

condition number of the matrix 
T H WH I  reduced by  
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Fig.1 Variance images of WLS. 

 

Table 1 MAPEs of variance estimation for WLS. 

MAPE ill-conditioned regularized Phantom 

I0=105 137.94% 25.34% 

 

 

I0=104 138.08% 26.07% 

I0=103 149.25% 26.80% 

 

 1000 realizations ill-conditioned regularized 
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Fig.2 WLS covariance images at point ① when I0=104. The profile 

of the red dashed line in covariance image is plotted. 

 

two order of magnitude to 104 so that the stability of the 

image covariance is significantly improved. 

Corresponding variance image estimations are displayed in 

Fig.1. Compared with variance images statistically 

computed from 1000 noise realizations, the effect caused by 

the ill-conditioned matrix is clearly shown. Once the ill-

conditioned matrix regularized with identity matrix, the 

effect is significantly suppressed. As photons decrease, the 

conclusion still holds. Identity matrix Regularization helps 
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improve the accuracy and stableness. The MAPE of image 

variance decreases about 80% from ill-conditioned one to 

regularized one, and results close to reference is obtained. 
 

3.2 Covariance estimation for WLS-TV reconstruction 

We set   of TV to be 0.008 when I0 = 105, 0.02 when I0 = 

104 and 0.12 when I0 = 103 respectively. 200 noisy image 

samples are used to calculate the reference covariance.  
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Fig.3 Variance images of WLS-TV. 

 

The variance image results are displayed in Fig.3. 

Obviously, the LAM outperforms the TAM. Especially in 

smooth regions, the TAM results in much higher variance 

compared with the reference. And the LAM keeps a similar 

structure as the reference but with lower values.  

The quantitative analysis results are listed in Table. 2. In 

case of the 105 incident photons, the MAPE of Taylor is 

about 280%, which is almost 10 times that of linearity. 

When incident photons is 104, the MAPE drops about 88% 

from Taylor to linearity. With even lower incident photons, 

the MAPE of TAM gets even higher to around 1000%, 

while the MAPE of linearity still around 30%. At all noise 

levels, the linearity based method has better performance 

than the TAM. 

Covariance images of two points (shown in the phantom 

image in Table. 2) are displayed in Fig. 4, one with 

relatively high attenuation (marked by red ①) while the 

other with relatively low attenuation (marked by red ②). 

For the high attenuating point, although the central value 

(variance) of the LAM covariance map is of larger error 

than TAM compared with the reference, the total MAPE of 

LAM is about 40% lower than that of TAM. The absolute 

covariance values of the low attenuating point obtained by 

TAM are extremely large, which is around 10 times the 

reference values on average. The covariance map of Taylor 

 

Table 2 MAPEs of variance estimation for WLS-TV. 

MAPE TAM LAM Phantom 

I0=105 278.87% 24.14% 

 

 

 

I0=104 279.45% 33.97% 

I0=103 1610.45% 29.24% 
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Fig. 4 covariance images when I0=104 for TV penalty case. Profiles 

of the red dashed line in covariance image ① and the red solid line 

in covariance image ② are plotted. 

 

is distorted, and the covariance map of LAM is more 

accurate. 

 

3.3 Covariance estimation for WLS-qGGMRF 

reconstruction 

A common parameter setting of qGGMRF with p=2, q=1.2 

and δ=0.002 is studied. The penalty parameter  is set to 

be 3 when I0 = 105, 9 when I0 = 104 and 35 when I0 = 103 

respectively. Again, we use the statistical covariance of 200 

noisy reconstructed images as the reference.  

The corresponding variance images are displayed in Fig.5. 

For the situation of 105 incident photons, both TAM and 

LAM covariance estimation methods show relatively high 

accuracy of covariance. Variance maps of both methods 
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have similar structure as the variance map of reference. 

However, TAM gives more accurate variance map. As the 

number of incident photons reduces to 104, TAM as well as 

LAM has similar performance, the MAPEs of both methods 

are about 10%. The difference is that the variance of TAM 

is slightly higher than the variance of reference, while the 

variance of LAM is slightly lower. When incident photons 

set to be 103, the LAM performs better, since the variance 

of Taylor based method is slightly higher than the variance 

of reference. Linearity gets more accurate variance with 

about 8% MAPE. 
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Fig.5 Variance images of WLS-qGGMRF reconstruction. 

 

As shown in Table.3, covariance maps of two points ① and 

② are presented. For both point ① and ②, TAM results in 

slightly higher covariance values compared with reference, 

while LAM results in slightly lower values, which indicates 

that both methods perfoms similarily when I0 = 104. 

 

4 Conclusion 

We propose a method to estimate the covariance of 

reconstructions analytically from sinogram covariacne, 

which avoid using  a large amount of noisy image samples 

for covariance estimation. Three cases of penalized iterative 

methods are studied. For the case without penalty term, the 

ill-codition problem is solved by Tikhonov-Phillips method 

to give a stable estimation of covariance. For the case with 

non-quadratic penalty terms, the typical case of a TV and 

qGGMRF constraints are studied. The gradient of TV and 

qGGMRF  can be rewritten as a linear function despite that 

the linear coefficient matrices TV
ˆ( )L μ  and  q

ˆ( )L μ  are μ̂  

dependent. The linear coefficient matrix is applied to the 

covariance estimation. For WLS-TV reconstruction, the 

proposed LAM method is more accurate compared with 

TAM. For WLS-qGGMRF reconstruction, it is of higher 

accuracy at high noise level compared with TAM, and of 

relatively low accuracy at low noise level.  

However, the mean absolute percent error of image variance 

of WLS-TV calculated by the proposed method is still over 

20% compared with the statistical estimation. Besides, the 

covariance is hard to estimate when image size is large 

because of the computational complexity. Our future work 

is to further improve covariance accuracy and efficiency for 

large dimention images. 

 
Table 3 MAPEs of variance estimation for WLS-qGGMRF. 

MAPE TAM LAM Phantom 

I0=105 9.32% 14.74% 

 

 

 

I0=104 13.67% 12.10% 

I0=103 23.63% 7.85% 
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Fig.6 covariance images when I0=104 for qGGMRF penalty case. 

Profiles of the red dashed line in covariance image ① and the red 

solid line in covariance image ② are plotted. 
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Abstract Subset PET image reconstruction algorithms accelerate re-
construction during early iterations. However, at later iterations, many
subset algorithms exhibit limit cycle behaviour leading to undesirable
variations between subsequent images, resulting in non-convergence
in the absence of step size relaxation. A class of variance reduction
algorithms address this issue by incorporating previous subset gradi-
ents into the update direction computation. This generates an update
direction that is a better approximation of the full objective function
direction than standard subset algorithms while maintaining similar
low computational cost. In this work, the impact on reconstruction
performance when using a deterministic ordered subset method and
two stochastic subset methods is investigated. These subset selection
methods are applied to a preconditioned gradient ascent algorithm and
three variance reduction algorithms. The ordered subset methodology
resulted in superior performance for both subset gradient ascent and
two of the variance reduction algorithms during early passes through
the data. Yet, at later iterations, the stochastic subset variance reduction
algorithm reconstructions converged closer to the solution.

1 Introduction

Iterative algorithms are commonly used in Positron Emission
Tomography (PET) image reconstruction. A selection of
these algorithms iteratively improve a discretised estimated
PET tracer distribution by adding a preconditioned gradi-
ent of the objective function to the current estimate. These
are known as gradient-based optimisation algorithms. The
computation of the gradient requires forward and backward
projections between measured data and image spaces. For
large scale PET reconstruction problems, these projection
operations are computationally demanding [1].
Projecting the estimated distribution into only a subset of
the measured data significantly reduces the computational
demand. A sub-class of gradient-based algorithms utilise
these subsets during optimisation of the objective function
by cycling through each of the unique and distinct subsets to
compute an approximation of the full gradient to be applied
at each update. These ordered subset (or ‘block sequential’)
algorithms in PET, e.g. Ordered Subset Expectation Maximi-
sation (OSEM) and Block Sequential Regularised Expecta-
tion Maximisation (BSREM), utilise this methodology with
M subsets to realise accelerated convergence rates during
early updates by applying a single subset at each iteration [2,
3]. However, at later iterations, as the estimate approaches
the (unique) solution, discrepancies between subset gradients
due to variations in noise and geometric projection sensitivi-
ties may be observed [3]. This results in behaviour commonly
known as the limit cycle and it prevents algorithm conver-
gence. While linear acceleration may be realised initially

with respect to the number of subsets, image quantification
and lesion detectability may be inhibited when larger num-
bers of subsets are used [4]. Authors have attempted to
address the non-convergence of subset algorithms by utilis-
ing step size relaxation or a Complete-data OSEM (COSEM)
algorithm [3, 5]. An issue with these methods is the impact
of their hyper-parameters on convergence rates.
Stochastic optimisation methods are commonly used in a
number of fields, such as the training of deep learning mod-
els, but it remains largely unexplored in tomography. The
simplest algorithm is Subset Gradient Ascent (SGA), which
uses random sample selection together with step-size relax-
ation to accelerate convergence [6]. A contemporary class
of stochastic first order optimisation algorithms, known as
stochastic Variance Reduction Methods (VRM), aim to re-
duce the impact of variations between subsets by applying
a step that incorporates the current subset gradient as well
as previously computed subset gradients [7–9]. In our pre-
vious work, we applied three stochastic variance reduction
algorithms, Stochastic Average Gradient (SAG), SAGA and
Stochastic Variance Reduced Gradient (SVRG), to the PET
reconstruction problem in a preconditioned form [10]. This
preliminary investigation constructed subsets using the same
methodology as the BSREM algorithm but selected a ran-
dom subset index at each algorithm iteration. The stochastic
algorithms allowed for the use of a larger number of subsets
than the comparison BSREM algorithm. They performed
similarly to BSREM during early passes through the data
and converged to the Maximum A Posteriori (MAP) solution
within numerical tolerance.
In this work, we expand on this previous study by investigat-
ing a set of alternative subset sampling methodologies for
a Preconditioned SGA (PSGA) algorithm and for the three
previously investigated preconditioned VRMs [10]. The aim
of this study is to accelerate image reconstruction, reduce the
variations between sequential image estimates, and allow the
optimisation algorithms to converge closer to the solution.

2 Methodology

In this study, we investigated three subset construction and
sequence methodologies for subset optimisation. A standard
subset construction method in tomographic image reconstruc-
tion involves the construction of M subsets that are unique
and complete [2]. Equally spaced rows of a sinogram are
binned into a subset and subsequent subsets are constructed
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similarly but are offset from one another by their respective
subset index m. The aim of this construction method is to bal-
ance the subsets, i.e. to minimise the variance in the detection
probability of each image voxel between different subsets [1,
3]. The first two investigated subset sequence methodologies
in this work use this subset construction method.
The first methodology, known as Ordered Subset (OS), is
intuitively described by Herman et al. [11]. This method-
ology attempts to apply a subset with a direction that is as
orthogonal as possible to the space generated by recently
used subsets. A deterministic and cyclical sequence of subset
indices is generated and it applies each subset to the algo-
rithm before the sequence returns to the beginning. This
sequence methodology is commonly used in the BSREM
algorithm [3].
The second subset sequence methodology, denoted as
stochastic subsets, uses the same construction method as
described above. However, at each iteration of the recon-
struction algorithm, a subset index is selected at random
from a uniform probability distribution [10].
The final subset methodology, designated as randomised
batches, does not utilise the aforementioned subset construc-
tion method. Instead, a number of projection angles are
selected at random (without replacement) and applied to the
reconstruction at each iteration of the algorithm [10].
To evaluate the subset methodologies, an XCAT torso phan-
tom (Figure 1a and 1b) scan was simulated in a scanner with
280 projection angles and two rings using STIR [12, 13].
Poisson noise was added and scattered events were simulated
in the measured data. The respective data corrections were
included within the forward model and, to further suppress
noise in the images while encouraging edges, the Relative
Difference Prior (RDP) was used to penalise the objective
function [14]. Image reconstructions were performed using
STIR-python and the penalty weighting factor was tuned
visually for this data set.
To assess the performance of the subset methodologies,
global image reconstruction performance was measured as a
distance from convergence using the following metric:

∆k(xk, x̂) =
‖xk− x̂‖2

‖x̂‖2
·100%, (1)

where xk is the image at the kth iteration of the algorithm,
‖ · ‖2 is the `2-norm, and x̂ is the unique solution, which
is computed using the Limited memory Broyden Fletcher
Goldfarb Shanno Bounded Pre-Conditioned (L-BFGS-B-PC)
reconstruction algorithm [15] and shown in Figure 1c.
The previously mentioned subset methods were applied to
both a PSGA algorithm and three VRMs. The preconditioned
update equation is given by:

xk+1 = P+

[
xk +αkD∇̃k,m

]
, (2)

where P+[·] is a non-negativity projection operation, αk = 1
is a scalar step size that is fixed for this work, D is a diagonal

(a) (b) (c)

Figure 1: Transaxial slices of the: (a) simulated source distri-
bution of the XCAT volume with two inserted lung lesions, (b)
simulated attenuation map of the XCAT volume, (c) converged
estimate that is computed using L-BFGS-B-PC [15].

preconditioner, and ∇̃k,m may be interpreted as an objective
function gradient approximation. The preconditioner used in
this work is given by

D =
xinit +δ

AT 1
, (3)

where δ is a small positive constant that allows voxels with
zero value to be updated, and AT 1 is the backprojection
of a uniform sinogram. This preconditioner is inspired by
the Expectation Maximisation (EM) preconditioner used in
BSREM. We used xinit = xOSEM, which is the resulting image
after 1 epoch of OSEM with 20 subsets.
For PSGA, the approximate objective function gradient
is given as the mth subset objective function gradient, i.e.
∇̃k,m := ∇Φm(xk). The VRM gradient approximations are
given by:

∇̃SAG
k :=

∇Φm(xk)−gm

M
+

1
M

M

∑
n=1

gn, (4a)

∇̃SAGA
k := ∇Φm(xk)−gm +

1
M

M

∑
n=1

gn, (4b)

∇̃SV RG
k := ∇Φm(xk)−gm +µ, (4c)

where gm are the previously computed subset gradients
(stored in memory) [7–9]. Both SAG and SAGA update these
variables after each iteration with the latest computed mth sub-
set gradient. However, SVRG recomputes each gm from the
current estimate every three epochs and resets µ = 1

M ∑M
n=1 gn.

It should be noted that SAG is a stochastic modification of
the deterministic cyclical Incremental Aggregated Gradient
(IAG) algorithm [7, 16].
Due to the stochastic nature of two of the subset selection
methods investigated, we define an epoch as equivalent to
the computational cost of computing a full objective function
gradient in terms of projection operations. Furthermore, as
the VRMs may be sensitive to initial conditions, they are
initialised from xOSEM [6, 10].

3 Results and Discussion

In Figure 2a, the OS method exhibited slightly improved per-
formance compared to the stochastic subsets method. How-
ever, this was only realised after approximately 25 epochs
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(a) 14 Subsets (b) 40 Subsets

Figure 2: Global convergence performance plotted using two subset methodologies. The Stochastic Batches plots are not included.

Figure 3: Global convergence performance plotted throughout
three 70 subset SVRG reconstructions using different subset selec-
tion methodologies.

where the impact of the randomly selected subsets began to
affect the reconstruction and the ∆% values began to signifi-
cantly vary.
Increasing the number of subsets, Figure 2b, improved the
convergence rate during the first few epochs for both meth-
ods. Yet, the stochastic subsets method demonstrated large
fluctuations in ∆% values and performed poorer on average
than the OS method. The randomised batches reconstructions
are not included in these figures as the ∆% metric evalua-
tions resulted in significantly poorer performance that is not
competitive with either of the presented subset methods.
In Figure 3, the variations of SVRG are shown and all three
methods appear to perform well. However, the OS subset se-
quence method outperformed both of the stochastic methods
during early iterations. At later iterations, all three methods
performed equally as the reconstructions approached conver-
gence. This indicates that the SVRG algorithm reconstruc-
tions may be improved with the OS sampling methodology.
The ∆% metric performance of SAG, Figure 4, indicates
that the stochastic subsets method optimised the reconstruc-

Figure 4: Global convergence performance plotted throughout
three 70 subset SAG reconstructions using different subset selec-
tion methodologies.

tion problem at a faster rate than random batches and with
with fewer fluctuations. During the first four epochs the OS
method outperformed both of the other methods. However,
the algorithm appears to demonstrate divergent behaviour as
the ∆% values increased rapidly. Voxel values in the image
oscillated from zero to significantly larger than those of the
converged image and similar behaviour was observed when
fewer subsets were used (results not shown).

For the SAGA variant reconstructions, Figure 5, the OS
method outperformed the stochastic methods, which ex-
hibited large fluctuations during the first 6-7 epochs. The
stochastic subsets method’s reconstruction performance be-
came comparable at this point and then outperformed the OS
method at later iterations. The randomised batches method
demonstrated a similar trend in behaviour but with larger
variations during early iterations and reduced fluctuations at
later iterations.

244



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

Figure 5: Global convergence performance plotted throughout
three 70 subset SAGA reconstructions using different subset selec-
tion methodologies.

4 Discussion

The OS method outperformed the stochastic methods when
applied to the PSGA algorithm, particularly when a greater
number of subsets was utilised, but did not converge to the
MAP solution. However, all VRM reconstructions were able
to converge to the MAP solution, except for the OS SAG re-
construction, an algorithm comparable to IAG. Additionally,
the VRMs allowed for the use of a greater number of subsets,
resulting in fewer epochs required to reach a certain value of
∆%, an observation consistent with our earlier work [10].
The OS method applied to the SVRG and SAGA algorithms
lead to faster convergence than the stochastic subsets dur-
ing early iterations. As the algorithms approached conver-
gence, the stochastic methods exhibited either comparable
or superior performance. Therefore, the OS method may be
utilised during the first few epochs before a heuristic switch
to a stochastic subset selection methodology is made. How-
ever, for the SAG algorithm, the OS method is not recom-
mended, based on our preliminary results. Furthermore, the
randomised batches method was consistently outperformed
by the stochastic subsets method and therefore, deliberate
construction of subset structure is important for improved
algorithm performance.
This preliminary study has many limitations, including the
use of a single object and noise level. It should be noted
that repeated stochastic reconstructions may lead to different
results. Yet, we found that the stochastic results and con-
clusions presented represent the general behaviour observed
over other reconstructions of this data set. Another limitation
is the use of a fixed step-size. PSGA has been shown to con-
verge when using a suitable relaxation scheme. Relaxation
will decrease the fluctuations, although it may decrease the
overall convergence rate. Use of too large a step-size might
also explain the divergent behaviour observed for OS SAG.
Despite this limitation, it is encouraging that convergence
was observed for the two other OS VRMs.
In future work, we aim to address these limitations and in-

vestigate the relationships between the presented variance
reduction, IAG and COSEM algorithms [5, 16].

5 Conclusion

While the variance reduction methods were developed for
stochastic optimisation, our preliminary results indicate their
promise for adapting to ordered subset methods. A careful se-
lection of subset structure and/or sequence is advantageous at
initial iterations, while stochastic selection helps convergence
at later stages.
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Abstract Ordered subset variants of statistical iterative recon-
struction algorithms for PET can improve the performance in
early iterations and thus are popular. However, they suffer from
convergence issues, e.g., entering limit cycles. This work consid-
ers a stochastic variant of the maximum likelihood expectation
maximisation. We adapt the algorithm to PET MAP reconstruc-
tion, and for a non spatially separable prior, we combine it with
the separable surrogate approach to facilitate the computation
of the M-step. Preliminary numerical results indicate that the
method is competitive with traditional approaches and enjoys
excellent convergence behaviour.

1 Introduction

Iterative reconstruction methods have been used to
solve the positron emission tomography (PET) problem
since the 70s. A statistical reformulation of the prob-
lem by Shepp and Vardi allows to compute the tracer
distribution through the maximum likelihood (ML) es-
timate [1]. The resulting PET expectation maximisation
(EM) algorithm has been widely used due to its sim-
ple form and desirable properties, e.g., nonnegativity
preservation, and consists of two steps: the E-step and
M-step. The former computes the complete data suffi-
cient statistic, given the current distribution estimate,
and the latter updates the estimate by maximising the
complete-data log-likelihood. Due to the large data
sizes associated with modern scanners, the full batch
computation of the algorithm, i.e., using all of the mea-
surement data to compute the sufficient statistic, is of-
ten infeasible or inefficient. To improve convergence
rates, one established procedure is the ordered subset
EM method (OSEM), whereby, at each iteration, only a
subset (mini-batch) of the given data is used [2]. The
ordered subsets strategy greatly reduces the per-update
computational cost, and it has been observed to provide
significant acceleration in initial iterations.
However, the acceleration comes at a cost since most or-
dered subset algorithms do not converge to a maximis-
ing solution but rather enter a limit cycle [3]. This has
led to the development of several variants of OSEM that
maintain the speedup in early iterations but also guar-
antee convergence to the ML solution by suitably ad-
justing the step-size schedule [3–6]. Another difficulty
for EM methods is the incorporation of a prior distribu-
tion, often employed for combating the ill-posedness of
the reconstruction problem, which can be cumbersome
for the M-step, making it not analytically solvable for

most spatially non-separable priors [7, p. R561]. Ad-
ditional approximations have to be employed, which
tend to further slow down the convergence.
In this paper we address these issues by adapting
the Online-EM algorithm [8] to maximum a posteriori
(MAP) PET reconstruction. Online-EM was developed
for conducting EM on exponential latent models in the
setting of streaming data. Since not all the data is avail-
able at the start, Online-EM instead aims to approx-
imate the conditional statistic by exponentially mov-
ing averages as the data streams in. This reduces the
computational complexity of the E-step for exponential
latent models (compared to standard MLEM) since the
full conditional expectation is never computed.
In this work we develop a stochastic EM algorithm
by adapting the online EM algorithm to PET image re-
construction. The proposed algorithm utilizes ordered
subsets of the measurements as in OSEM, and an expo-
nentially moving average as in Online-EM. To handle
priors, we employ separable parabolic surrogates [9] to
facilitate an explicit solution of the M-step for a range of
popular priors. Thus, the resulting algorithm is mathe-
matically principled and easy to implement.
We study the performance of our method, and compare
it to BSREM, using a relaxed step-size regime that en-
sures it converges [3], on reconstruction of a simulated
PET scan of a torso, using the STIR library [10]. The
numerical results indicate that the proposed algorithm
enjoys steady convergence and is competitive with ex-
isting approaches.

2 Stochastic Expectation Maximisation

EM algorithms are designed for probabilistic models
with observed quantities, but which depend on la-
tent, unobserved quantities. Let f = (f1, . . . , fN)

> be
the discretisation of the tracer distribution organised
into N discretisation boxes, and g = (g1, . . . ,gM)> be
the measured data collected at M detector bins. Sta-
tistical formulations of PET model emission measure-
ments in the ith detector bin using the Poisson model,
gi ∼ Poisson(E[gi]). In this paper we use the complete
data framework for PET proposed by Shepp and Vardi
[1]. We denote the complete data by G, with entries gij
denoting the number of emissions detected in bin j that
originated from voxel site i, which satisfy E[gij|f] = aijfj
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and E[gi] = ∑j E[gij]. The complete data likelihood can
then be written as

p(G|f) = CAG exp(η(f)>T(G)−U (f)), (1)

where CAG is a constant independent of f, and

U (f) =
M

∑
i=1

a>i f, η(f) =
(

log(fj)
)N

j=1,

T(G) =

( M

∑
i=1

gij

)N

j=1
. (2)

2.1 Maximum Likelihood

Maximising the likelihood leads to MLEM iterates

f(k+1) = argmax
f≥0

η(f)>T (f(k))−U (f),

where T (f(k)) = EG|g,f(k) [T(G)]. Instead of all the mea-
sured data, OSEM uses only subsets of the measure-
ments for computing conditional expectations.
Online-EM [8] is an EM type algorithm, developed for
computing on-line estimates of the (full) conditional
expectation T (f(k)) from data coming in a stream, that
continuously updates approximations ŝ(k) of the (full)
conditional expectation T (f(k)) using an exponentially
moving average. Consider an OS decomposition with
Ns subsets of the form T (x) = 1

Ns
∑Ns

r=1 τr(x). In PET
reconstruction, for a subset Sr, we have

τr(x) = Ns x�A>r (gr � (Arx)), (3)

where � and � denote entry-wise multiplication and
division, respectively. Then we compute

ŝ(k+1) = (1− αk)ŝk + αkτtk(f̂
(k)
), (4)

where αk ≥ 0 is a sequence of decaying step-sizes1 ,
and tk ∈ {1, . . . , Ns}. The s(k) are sufficient statistic esti-
mates of the conditional expectation T (f(k)). Note that
the original Online-EM considers streaming statistic
updates τtk , which is different from PET construction.
Here tk denotes the subset index used at the kth iteration,
which can be either cycled through deterministically
(i.e. shuffling) or chosen at random. This algorithm
is called Stochastic Expectation Maximisation (SEM)
below. The M-step is then given by

f̂(k) = argmax
f≥0

η(f)>ŝ(k) −U (f). (5)

For the Poisson likelihood in PET, solving (5) admits
an explicit solution. Next we discuss the extension of
SEM to MAP estimation, where the use of the prior is
of fundamental importance.

1For Online-EM choosing αk =O(1/k) ensures the convergence
[8]

2.2 Regularisation

The goal is to develop a method within a (generalised)
EM framework, in the sense that each iterate is a max-
imiser of the log posterior density, and it admits explicit
solutions at the M-step. MAP maximises p(G|f)q(f),
where q(f) = exp(−βR(f)) is the pre-defined prior.
The resulting M-step then follows

f̂(k) = argmax
f≥0

η(f)>ŝ(k) −U (f)− βR(f). (6)

Maximising (6) through iterative schemes (which is
typically needed if ∇R(f) is not separable) incurs com-
putational costs and numerical inaccuracies [7]. To
mitigate these issues, and explicitly solve the M-step,
we shall instead use a separable surrogate of the prior.
Surrogates for the prior have been used in many works
[3, 11–13]. We consider priors of the form

R(f) = 1
2

N

∑
i=1

∑
j∈Ni

wij ρ
(
fi − fj

)
,

where ρ is a potential function, Ni is a neighbourhood
of the voxel fi, and wij are the weights. We employ a
surrogate defined as (up to an additive constant) [9]

ρ̂(k)(fi; fj) = γρ(f(k)i − f(k)j )

((
fi −

f(k)i + f(k)j

2

)2
(7)

+
(

fj −
f(k)i + f(k)j

2

)2
)

,

with γρ(f) = ρ′(f)
f .Accordingly, the surrogated prior is

given by

R̂(f; f(k)) = 1
2

N

∑
i=1

∑
j∈Ni

wij ρ̂(fi; f(k)).

Some admissible potential functions are in Table 1.

Table 1: Admissible potential functions

ρ(t) ρ′(x) γρ(x)

quadratic x2

2 x 1
log cosh δ2 logcosh(x/δ) δ tanh(x/δ) δ

tanh(x/δ)
x

hyperbola δ
(√

1 + (x/δ)2 − 1
) x√

1+(x/δ)2
1√

1+(x/δ)2

The surrogate M-step for MAP-SEM is thus given by

f̂(k) = argmax
f≥0

η(f)>ŝ(k) −U (f)− βR̂(f; f(k)). (8)

Equating the gradient of the objective with zero we ar-
rive at a quadratic equation, with a single (and explicit)
non-negative solution.
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3 Experimental Results

Now we illustrate the performance of the algorithm on
simulated data. We use PET scan of a torso, obtained
as an XCAT simulated phantom using 2 rings and 280
projection angles. Image reconstruction was performed
using the Software for Tomographic Image Reconstruc-
tion STIR [10], via a python environment [10], available
at https://github.com/UCL/STIR.
The logcosh prior is used to penalise the reconstruction
(cf. Table 1), with the regularisation parameter β = 0.001
and δ = 1.0. The methods examined in this section are
initialised with 5 epochs of standard OSEM using 35
subsets.
As a performance metric we use the value of the objec-
tive function

Φ(f) = L(f)− βR(f),

where L(f) is the log-likelihood andR(f) is the prior.
We compare the performance of our method, which
uses (4) and solves (8) in each iteration, with step-size
relaxed BSREM [3].
The sinogram data was binned into 10 and 20 subsets,
respectively, using geometric projections of the scanner.
To facilitate a fair comparison, MAP-SEM and BSREM
use the same step-size relaxation regime αk = 1

γk+1 ,
where the step-size decay factor γ depends on the num-
ber of subsets. For this stepsize schedule both BSREM
and the original Online-EM converge to the maximising
solution. In the case of 10 subsets, we set γ = 0.002, and
for 20 subset we use γ = 0.008. For a given number of
subsets, the subsets are created by partitioning the data
into equally spaced rows of the sinogram. Then, for
each iteration k the subset index τk is selected uniformly
at random.

4 Discussion and Conclusion

The proposed algorithm provides performance compet-
itive with BSREM (given the same step-size regiment),
ensuring convergence. Like OSEM-based approaches
we maintain the speed-up in early iterations. MAP-
SEM shows a better performance than BSREM, par-
ticularly in early stages. Regarding the later epochs,
the performance of the two methods is largely indis-
tinguishable, although, MAP-SEM can provide more
stable improvements, see Figure 2.
In the first panel of Figure 1, we show the reconstructed
solution computed using 1500 epochs of BSREM with
line-search for the step-sizes (which converges to the
maximising solution within numerical accuracy). The
other two panels show the corresponding reconstruc-
tion errors of iterates computed using 100 epochs of

MAP-SEM and BSREM. The figures show that MAP-
SEM and BSREM are, at this point, visually indistin-
guishable, and the largest errors with both methods are
observed at boundaries.
Comparing the behaviour with a different number of
subsets in Figure 2, two observations can be made. First,
using a lower number of subsets provides a more steady
behaviour. This is expected since a smaller subset num-
ber gives a sufficient statistics estimate of lower vari-
ance. Meanwhile, increasing the number of subsets in-
creases both the acceleration in early iterations but also
the variability in the objective function value. Second,
asymptotically we observe stabilisation as the step-size
decreases in later iterations and the two subset regimes
show comparable behaviour.
As observed in [9], in case of online-EM, the step-size
schedule used for MAP-SEM requires some tuning in
order to ensure convergence and optimise the acceler-
ation in early iterations. Moreover, empirical investi-
gations suggest that the optimal step-size decay factor
depends on the number of subsets, but the precise de-
pendence remains unknown.
Furthermore, as observed in Figure 2, increasing the
number of subsets increases the variability between
the updates which requires an adjustment in the step
size decay constant to stabilise the iterations. This be-
haviour is due to several factors, e.g., imbalances be-
tween subsets and larger variances of the sufficient
statistic estimates.
Future work will aim to address both of these issues
by investigating a MAP-SEM variance-reduction tech-
nique, e.g., [14, 15].
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Abstract Nonlinear reconstruction algorithms have demonstrated
superior resolution to noise tradeoffs compared to traditional linear
reconstruction methods. However, their nonlinear, shift variant, and
data-dependent nature complicates performance analysis. Furthermore,
there usually lacks a predictive framework for image properties that al-
lows efficient control and optimization of imaging performance. In this
work, we quantify the system response of general nonlinear reconstruc-
tions using a quantitative perturbation response metric and develop a
data-driven approach for prospective prediction of such properties as a
function of varying perturbations (size, shape, contrast, and contrast
profile), patient anatomy, and algorithmic parameter. The feasibility
of prediction framework is demonstrated for a penalized-likelihood
reconstruction algorithm with a Huber penalty (PLH). We incorporated
a compact representation of the imaging system and the perturbation as
the input to the network and used a three-layer perceptron network for
image property prediction. The predicted perturbation response shows
good agreement with those obtained from empirical measurements.
The prediction accuracy is generalizable to all perturbations, anatom-
ical locations, and regularization parameters investigated. Results
in this work suggest that the data-driven method and training strate-
gies developed herein is a promising approach for prospective image
property prediction and control in nonlinear reconstruction algorithms.

1 Introduction
The recent proliferation of nonlinear reconstruction algo-
rithms have presented tremendous opportunities for image
quality improvement and dose reduction. However, despite
promising results in the research setting, clinical translation
of these algorithms have met a number of challenges. Due
to their nonlinear, shift-variant, and data-dependent nature,
traditional image quality assessment metrics rooted in linear
system analysis (e.g., impulse response, noise power spec-
trum) may no longer apply. For example, the appearance of
a lesion of interest in an MBIR reconstructed image can be
highly dependent on its location in the anatomy. Lesions of
different contrast may also result in different edge profiles
[1]. Furthermore, the performance of nonlinear algorithms
often rely on careful tuning of algorithmic parameters (e.g.,
regularization strength). The relationship between these pa-
rameters and image properties, however, is often opaque. As
a result, image properties are often analyzed in a retrospec-
tive fashion via empirical measurements. Optimization of
nonlinear algorithms therefore frequently relies on exhaus-
tive evaluations overs the parameters of interest, which is
time consuming due to the large number of dependencies
mentioned previously.
In previous work [2, 3], we proposed a novel image quality
analysis framework capable of prospective predictions of im-
age properties in general nonlinear reconstruction algorithms.
Leveraging the universal approximation theorem, we trained
an artificial neural networks model to map the nonlinear
transfer functions of an example model-based reconstruction

algorithm. In this work, we present further development of
the framework focusing on efficient training strategies that al-
lows the predictive capability of the model to be generalized
to arbitrary stimuli, anatomy, and imaging conditions.
2 Materials and Methods
2.1 Generalized system response
In linear shift-invariant imaging systems, the system response
can simply be characterized by the impulse response func-
tion which is dependent on the system parameters, S. For
general nonlinear algorithms, the system response carries
additional dependencies on the measurement data, y, and the
stimulus/perturbation, µs. Following Ahn and Leahy[4], we
define the generalized system response of a reconstruction
algorithm, H (µs; µ,S), as the difference between the mean
reconstructions (µ̂) with and without the perturbation:

H (µs; µ) = µ̂(y(µ +µs;S))− µ̂(y(µ;S)). (1)

The generalized system response extends the characterization
of the dependencies on the background anatomy µ and the
stimuli µs introduced in nonlinear algorithms in addition
to the dependencies on imaging system characterizations
and reconstruction approach including regularization designs
demonstrated in locally linearizable algorithms.
2.2 Penalized-likelihood reconstruction with a Hu-

ber penalty
In this work, we demonstrate methods for developing the
predictive analysis framework on an example MBIR algo-
rithm based on a penalized-likelihood objective with a Huber
penalty. The objective function is given by:

Φ(µ,y) = L(µ;y)−R(µ,β ,δ ) (2)
where L(µ;y) is the log-likelihood term that presumes the
measurements follow an independent Poisson distribution,
and R(µ,β ,δ ) is the Huber penalty active in the 4-nearest
neighborhood:

R(µ,β ,δ ) = β ∑
j

∑
k∈N j

φH(µ j−µk;δ ) (3)

φH(x;δ ) =

{
x2

2δ , |x| ≤ δ
|x|− δ

2 , |x|> δ
(4)

The term contains two regularization parameters, where β
controls the overall regularization strength and δ controls the
threshold in voxel differences where the potential function
transitions from quadratic to linear. The interaction between
β and δ results in a complex tradeoff between overall smooth-
ness and edge preservation. Examples of such dependencies
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Figure 1: Generalized system response of two lung nodules with
different regularization values. The green line circumscribes the
“good” perturbation responses. (Unit: mm−1)

are illustrated in Figure 1 with two lung nodules in the Lung
Image Database Consortium (LIDC) [5]. Each subplot on
the right shows the generalized system response (Eq.1) corre-
sponding to PLH reconstructions at different combinations of
β and δ . From visual inspection, the perturbation response
can be distorted with poor regularization parameters com-
binations. Moreover, because the system is nonlinear, a set
of regularization parameters that can achieve good response
with one perturbation may not work for other perturbations.
The spiculated lung nodule (top) shows less tolerance of high
regularization strength compared to the smooth lung nod-
ule (bottom). As a quantitative measure of how faithfully
nodules are represented in the reconstructions, we circum-
scribed the region of “good” (β , δ ) where the perturbation
response has less than 30% relative root mean square error
(rRMSE) compared to the ground truth (rRMSE is defined
as the normalized RMSE over the root mean square of the
ground truth ). While the regions in Fig.1 were identified
through empirical measurements, the following sections aim
to establish a model to predict perturbation responses without
the need for reconstructions.
2.3 Prediction Framework Implementation
The prediction framework leverages the universal approxi-
mation theorem which states that a fully-connected neural
network with a single hidden layer that is of arbitrary number
of nodes or an arbitrarily deep fully-connected network with
a finite number of nodes in each hidden layer can approx-
imate any well-behaved continuous function f : Rd → RD

with a arbitrarily small residual distance.[6, 7] In this section,
we discuss the efficient information for perturbation response
prediction, space sampling strategy, and prediction neural
network architecture setup.
2.3.1 Efficient information for prediction
We leveraged prior knowledge of the image properties of
PLH to devise efficient network inputs. Ahn and Leahy [4]

derived an explicit closed-form expression of the perturbation
response in locally linearizable algorithms:

H (µs) = [AT WA+R]−1AT WAµs (5)
where W is the covariance matrix of the measurements and
R denotes the Hessian of the regularizer. For Huber penalty,
the Hessian term is image dependent and therefore difficult
to evaluate. However, the Fisher information term AT WAµs

efficiently characterizes the dependencies on system geome-
try (through A), data statistics (through W), and perturbation
(through µs). Therefore, as a compact representation of the
imaging system, the anatomical background, and the pertur-
bation, the Fischer information term AT WAµs along with the
regularization parameters are used as inputs to the network to
provide sufficient information to determine the generalized
system response of the PLH. This expression also informs
the range of training data required to achieve generalizable
predictive capability.
2.3.2 Parameter space sampling in training data
In a data-driven method, the range of training data is directly
related to network performance. In this work, we seek to
build a predictive model for the generalized system response
as a function of (A) perturbation, (B) background anatomy
and locations, and (C) regularization. We propose the follow-
ing sampling strategies for each parameter in the context of
lung imaging:
(A) Sampling the perturbation (µs): The perturbations, or
lung lesions, have large variabilities in terms of their size,
contrast, shape, and contrast profiles. To efficiently sample
the perturbations, we adopted a parametric model for realistic
lesion simulation developed by Solomon and Samei [8]:

c(θ ,r) =C(1− (r/Rθ )
2)n (6)

where C is the peak contrast value, n describes the steepness
of the profile, and Rθ is the distance from the center to the
edge along the radial direction θ . This type of model allows
us to systematically represent perturbations by sampling com-
binations of (C,n,Rθ ). We sampled scalars C and n with the
range described in [8]. For the vector Rθ , we sampled Rθ
along 8 radial directions according to a normal distribution of
mean R̄ and variance σR), and used interpolation to achieve
smoothly varying Rθ for arbitrary θ .
(B) Sampling the anatomy and locations (W): We used the
XCAT chest digital phantom [9] as the background anatomy
in the simulation study and manually selected locations to
insert lesions. These locations represent various profiles of
statistical weights W pertaining to lung imaging.
(C) Sampling the regularization (β ,δ ): We sampled the
different combinations of regularization parameters (β , δ )
using a 2D sweep. The range of the regularization parameters
are selected to sufficiently include a variety of reconstruction
outcomes illustrated in Fig.1.
2.3.3 Efficient network architecture
With the efficient input proposed in Sec. 2.3.1, we seek to
approximate the following function with a neural network:

H (µs,µ) = f (ROI[AT WAµs],β ,δ ). (7)
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Figure 2: Structure of the multi-layer perceptron neural network.

Dataset C (HU) n R̄(mm) σR/R̄
Training 600:200:1400 0.5,0.75,1.0 3,4,5,6 0.2,0.5
Testing 700,1100 0.6,0.9 3.5,4.5,5.5 0.35

Dataset log(β ) log(δ )
Training 2.0:0.8:6.0 2.4:0.8:5.6
Testing -5.0:0.8:-1.0 -4.6:0.8:-1.4

Table 1: Lesion synthesis and regularization parameters in data
generation.

According to the universal approximation theorem, a per-
ceptron network with a single hidden layer can approximate
arbitrary functions give enough nodes in the hidden layer.
When using more hidden layers, each layer requires a smaller
number of nodes. Through empirical experimentation, we
adopt a perceptron network that has three hidden layers as
shown in Figure 2. The input stacks the Fisher information
term the regularization parameters. The corresponding output
is the measured system response as the difference between
PLH reconstructions with the perturbation and without the
perturbation. Furthermore, for this investigation, we assumed
a well-sampled imaging geometry where the perturbation re-
sponse is contained in a local region. This assumption allows
us to truncate AT WAµs and µs to reduce the dimensional-
ity of the network. All Fisher information term (AT WAµs)
and outputs (H (µs,µ)) of the network is contained with in
a 21x21 grid. Each hidden layer has 441 nodes that is of
the same size as the output layer. To feed the regularization
parameters to the network, we concatenate (β ,δ ) to the first
two hidden layer. All nodes are fully connected. The first
two layer is activated with a rectified linear unit (ReLU), and
the last layer with a sigmoid function.

2.4 Experiment setup

Following the sampling strategies proposed in Sec. 2.3.2,
we generated training and testing datasets according to the
various dependent parameters. The lung nodule parameters
and (β ,δ ) are shown in Table 1. With each set of parameters,
we generated 50 nodules for training and 10 nodules for
testing, resulting in 6000 nodules in the training dataset and
120 nodules in testing dataset. Figure 3 illustrates example
nodules corresponding to nodule parameters in both training
and testing. The simulated lung lesions are inserted in 19
locations on a 2D slice in the chest phantom as shown in

Fig.4. For initial investigation, we performed training and
testing on the same anatomical background. Generalizing the
prediction framework to varying anatomical background is
the subject of ongoing work.
The perceptron neural network was trained by minimizing
the mean square error between the predicted perturbation
responses and the measurements using the ADAM optimizer.
Prediction feasibility was validated through qualitative com-
parison and quantitative evaluation using structural similarity
index measure (SSIM). We raised one example application
of the proposed prediction framework in efficient prospec-
tive regularization selection, where the boundaries of proper
regularizations that can produce “good response” with small
rRMSE (akin to Fig. 1) were determined using measured re-
sponse through a retrospective exhaustive parameters sweep
or prospective evaluation using the prediction model. The
comparison between the measured and predicted boundaries
demonstrated the efficacy of prospective approach.
3 Results
Prediction accuracy of the proposed framework was validated
through comparisons between predicted and measured per-
turbation responses. Pairs of measurement and prediction
are shown in Figure 5 with varying regularization parame-
ters (β , δ ), perturbations, and locations, respectively. The
predictions show good agreement with the measurements
and are capable of characterizing all dependencies investi-
gated. The agreement between prediction and measurement
is further quantified in terms of the SSIM metric. The mean
SSIM among all testing cases is 0.9991. Over 99% of the
predictions achieves 0.995 of SSIM when compared to the
measured ground truth.
An example application of the proposed predictor is demon-
strated in efficient selection of “good” regions of regular-
ization parameters, i.e., a quantitative alternative to Fig.1
without the need for additional reconstructions. Figure 6
shows two maps of rRMSE with varying regularization com-
binations. The ground truth plot (top left) were computed
from measured perturbation response through an exhaustive
sweep. The bottom left plot shows the predicted rRMSE map
computed with finer sampling of regularization parameters.
The green lines circumscribed the “good response” areas
where the rRMSE is smaller than 30%. The plots on the
right show two examples of perturbation responses from the
“good response” region circumscribed in green and the “bad
response” region circumscribed in red. We notice that de-
spite the predicted rRMSE values deviate from the measured
values in the highly-regularized region, the predicted “good
response” region shows great agreement with the outcome
of retrospective evaluation, demonstrating the capability of
using this predictor for regularization parameters selection.
4 Discussion and Conclusion
In this work, we propose a prediction framework that quanti-
fies the perturbation response of a nonlinear reconstruction
algorithm, where a multi-layer perceptron network is used
to approximate the perturbation response in a data-driven
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Figure 3: Examples of synthesized lung nodules for training.
Figure 4: XCAT simulated anatomical back-
ground. The yellow crosses indicate the loca-
tions to insert perturbations.

Figure 5: Comparisons between measurements and predictions with varying regularizations, perturbations, and locations. Unit: mm−1.

Figure 6: Measured and predicted rRMSE map with varying β and
δ . The regularization parameter combinations are circumscribed
with green lines. Examples of perturbation responses are shown
on the right.

fashion. We establish a sampling strategy to guarantee good
characterization of the perturbation dependencies on regu-
larization parameters, perturbation features, and locations.
We demonstrate the feasibility of the prediction framework
in simulation study, and show the potential application of

the tool towards regularization tuning for reliable system
response. Ongoing work includes incorporating variability
in background anatomy and refine the perturbation model to
achieve good agreement for more realistic perturbations in
clinical dataset.
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Abstract A one-step spectral computed tomography (CT) image re-
construction algorithm is developed that is tailored to scanning subjects
that contain metal. The algorithm is based on a large-scale nonconvex
and non-smooth optimization problem that includes a transmission
Poisson likelihood (TPL) term and a regularizing total-variation con-
straint. From an algorithmic standpoint, metal presents a challenge
due to low X-ray transmission through such objects, and the com-
bination of photon starvation with the inherent nonconvexity of the
optimization problem can make it difficult to formulate a convergent
iterative algorithm. In this work, this problem is addressed by consid-
ering a new convexification of the TPL term. In addition, one of our
previous preconditioning strategies is seen to be effective in improving
algorithm efficiency. The algorithm is demonstrated on inversion of
simulated noiseless spectral CT data of a test phantom of a human
pelvis with metal prosthesis.

1 Introduction

Photon-counting detectors (PCD) enable the possibility of
acquiring X-ray transmission data in a number of energy
windows simultaneously. When PCDs are incorporated in a
CT system, the resulting spectral CT device provides suffi-
cient information to determine the energy dependent linear
X-ray attenuation map, assuming that the attenuation energy
dependence can be represented by few basis functions. This
capability has use for quantitative CT and particularly quan-
titative imaging with K-edge contrast agents [1]. Spectral
CT can also be useful to overcome beam-hardening artifacts,
which can be particularly severe for highly-attenuating mate-
rials. An extreme example of such materials are metal objects.
Metal not only poses a challenge due to beam-hardening, it
can also completely block X-ray transmission causing photon
starvation.
One-step image reconstruction for spectral CT [2, 3], where
the linear attenuation map is estimated directly from the
transmission data, allows for a unique opportunity to address
objects with metal. One-step algorithms do not need all en-
ergy windows to be collected for every tranmission ray. This
fact is useful in particular for the situation where a given
transmission ray has useful information for higher energy
windows while it is photon-starved for lower energy win-
dows. When a given transmission ray is completely blocked
for all energy windows, it can also be discarded, and this
strategy leads to various “missing data” or in-painting prob-
lems. There is, however, a degree of arbitrariness in this
approach because a cut-off strategy needs to be specified that
determines which data to throw out and whether to have a

sharp transition or a smooth data-weighting scheme. This in-
volves specifying addition parameters, increasing complexity
of the image reconstruction algorithm.
In this work, we present an algorithm that accepts spectral
CT data in the form of photon counts along each transmis-
sion ray resolved in multiple energy-windows. In particular,
it can be applied to data from a subject that contains metal
where the corresponding transmission data is photon-starved,
enabling new ways to deal with CT scanning of patients with
metal. In Sec. 2, we briefly describe the image reconstruc-
tion algorithm; in Sec. 3 the algorithm is demonstrated on a
challenging model inversion problem for a pelvis phantom
with metal hip implants; and the conclusion and outlook is
provided in Sec. 4.

2 Methods

We write the continuous spectral CT data model as

Iw,` =
∫

Sw,`(E)exp
[
−
∫

`
µ(E,~r(t))dt

]
dE, (1)

where Iw,` is the transmitted X-ray photon fluence along ray
` in energy window w; t is a parameter indicating location
along `; Sw,`(E) is the spectral response; and µ(E,~r(t)) is the
energy and spatially dependent linear X-ray attenuation map.
This unknown function is four dimensional, and the dimen-
sionality can be reduced by employing a standard material-
expansion decomposition

µ(E,~r(t)) = ∑
m

(
µm(E)

ρm

)
ρm fm(~r(t)), (2)

where ρm is the density of material m; µm(E)/ρm is the mass
attenuation coefficient of material m; and fm(~r) is the spatial
map for material m.
Combining Eq. (1) with Eq. (2), normalizing the spectral
response, and discretizing the integrations leads to the data
model used for image reconstruction

ĉw,`( f ) = Nw,`∑
i

sw,`,iqexp

(
−∑

m,k
µm,iX`,k fk,m

)
, (3)

where ĉw, `( f ) and Nw,` are respectively the mean transmitted
photon count and the total number of incident photons along
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ray ` in energy window w; sw,`,i is the normalized spectral
response, i.e. ∑i sw,`,i = 1; i indexes the sum over energy,
which replaced the energy integration; X`,k represents X-ray
projection along the ray `; and fk,m is the pixelized material
map with k and m indexing pixel and expansion-material,
respectively. The function qexp is a modification of the
exponential

qexp(x) =

{
exp(x) x≤ 0
1
2 x2 + x+1 x > 0

,

that is identical to exp(·) for non-positive physical argument
values. The softer quadratic dependence for positive argu-
ments is helpful for iterative image reconstruction where
unphysical, negative attenuation values may occur at interme-
diate iterations. The goal of spectral CT image reconstruction
is to invert Eq. (3), obtaining the material maps f from mea-
sured counts data c.
Maximizing the transmission Poisson likelihood (TPL) is
equivalent to minimizing the following data divergence be-
tween the photon count data, c, and mean photon count
model, ĉ( f ),

DTPL(c, ĉ( f )) =

∑
w,`

[
ĉw,`( f )− cw,`− cw,` log

ĉw,`( f )
cw,`

]
, (4)

where cw,` are the measured counts in energy window w
along ray `. We consider both minimization of DTPL alone
and constrained minimization

f ? = argmin
f

DTPL(c, ĉ( f )) such that GTV( f )≤ γ, (5)

where
GTV( f ) = ∑

pixels

√
∑
m
|D fm|2mag;

D is a numerical gradient operator; | · |mag computes the spa-
tial vector magnitude and accordingly |D fm|mag is the gradi-
ent magnitude image of the material map fm. The parameter
γ is the constraint value for the image GTV.
The challenge for minimizing DTPL is that it is a large-scale
nonconvex optimization problem, and introducing the con-
straint in Eq. (5) adds non-smoothness to the optimization
problem. We discuss optimization of the smooth nonconvex
objective function DTPL. Most strategies for solving noncon-
vex problems involve “convexification”, where the complete
nonconvex problem is approximated by a convex problem
that depends on the current value of the image estimate. The
convex approximation is used to generate a descent step, and
if the convexification is well-designed the descent step will
be an efficient descent step for the original non-convex prob-
lem. In our previous work [2], convexification is achieved
by forming a convex quadratic expansion that is guaranteed
to be an upper bound to the smooth part of the nonconvex
problem locally. While this approach to convexification has

been effective for numerous spectral CT studies, it encoun-
ters difficulty in dealing with data sets containing photon
starvation.
We have recently been pursuing a different form of convexifi-
cation for spectral CT image reconstruction. First, we note
that

DTPL(c, ĉ( f )) = ∑
w,`

[ĉw,`( f )− cw,` log ĉw,`( f )]+C,

where C is independent of f . Accordingly, we consider
minimization of

L( f ) = L1( f )+L2( f ) (6)

L1( f ) = ∑
w,`

ĉw,`( f ) (7)

L2( f ) =−∑
w,`

cw,` log ĉw,`( f ). (8)

The first term L1( f ) is convex, and it is the second term L2( f )
that is nonconvex. The form of convexification employed for
this work involves linearization of the second term

Lc( f , f0) = L1( f )+ f>∇L2( f0), (9)

where f0 is the expansion point for the linearization of the
second term, and Lc is a convexification of L. In the proposed
iterative algorithm, the value of f from the previous iteration
is used as the expansion point, f0. This form of convexifi-
cation is analyzed for spectral CT in [4], where it is shown
that convergence is proved under an assumption of restricted
strong convexity. The details of the algorithm are presented
in [4].
For this work, we consider DTPL minimization with and with-
out introducing a constraint on the material map GTV. We
also investigate the impact of µ-preconditioning (µ-PC), de-
scribed in [2], where a transformation of the material linear
attenuation functions is performed that orthonormalizes these
functions. The same transformation is applied to the material
maps so that we have

∑
m

µm,i fm = ∑
m

µ ′m,i f ′m and ∑
i

µ ′m,iµ
′
m, j = δi, j,

where δi, j is the Kronecker delta function, and the primed
quantities are transformed.

3 Results

The presented reconstruction problem is an idealized spectral
CT set-up where we investigate the solution of the inverse
problem corresponding to noiseless 4-window spectral CT
data for a simulated pelvis phantom with metal hip implants.
The spectral sensitivities used in the study are shown in Fig. 1.
The object is exactly represented in a two-material basis
expansion using bone and water for expansion materials. The
test phantom is shown in Fig. 2 in two grayscale windows; the
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Figure 1: Photon energy distributions used for the simulated 4-
energy bin spectral CT system. While the transmission counts data
is simulated, these distributions result from calibration measure-
ments of an actual DxRay PCD.

high contrast window is displayed so that the cross section
of the Co-Cr-Mo metal rods is visible, and the low contrast
window is shown so that soft-tissue can be resolved. The
CT setup involves 512 X-ray projections over a 360 degree
scanning angular range.
Due to the metal rods, the mean transmitted photon counts
has a high dynamic range. The modeled X-ray fluence is 106

photons incident on each detector pixel, and the maximum
photon count on a single energy window for the unattenuated
beam is 2.85×105 photons. The mean photon count for a ray
crossing both metal rods and detected in the lowest energy
window is as low as 6.71×10−5 – ten orders of magnitude
lower than the maximum count value. For the study pre-
sented here, we consider ideal noiseless data and investigate
the ability to recover the pelvis phantom. Accordingly, we
use the mean photon counts as the input data for image recon-
struction. The large dynamic range of the transmitted photon
count data makes this inverse problem challenging, and our
previous algorithm [2] could only be applied to this system
by masking out the measurements with a mean photon count
of 10 or less.
The approach specified by the convexification described in
Eq. (9) and explained in [4] can yield convergent iteration
without masking the photon count data. This is demon-
strated by the DTPL plots in Fig. 3, where progress over
1000 iterations is shown for minimization based on DTPL is
shown. Also shown are the use of the GTV constraint and
µ-preconditioning. Because this study uses noiseless con-
sistent data it should be possible to drive the DTPL to zero,
and we note that all curves show a downward trend over the
1000 iterations. The results also show that use of the GTV
constraint and µ-preconditioning can substantially improve
convergence.
To examine convergence of the algorithm more closely,
reconstructed images by use of GTV-constrained DTPL-
minimization with µ-preconditioning are shown in Fig. 4.
Corresponding line profiles are shown in Fig. 5 for a line
in the image that crosses both metal implants. The images

Figure 2: Pelvis phantom shown in high contrast and low contrast
gray scales on the left and right columns, repsectively. The gray
scale window values appear below each panel. The bone and
water material maps are shown along with a monochromatic image
corresponding to linear attenuation at 95 keV. The shown image
array is 512x512, and the pixel size is 1 mm2.

Figure 3: Convergence of DT PL as a function of iteration number.
The green curve shows iteration based solely on minimization of
DT PL. The label “GTV” indicates use of the GTV constraint with
the constraint parameter γ set to the true phantom value. The label
µ-PC indicates use of µ-preconditioning.
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Figure 4: Results from reconstruction using GTV-constrained, DTPL-minimization with µ-preconditioning. The gray scale windows for
the material maps is set to the 10% level so that subtle discrepancy from the ground truth can be appreciated.

Figure 5: Profile comparisons for a horizontal line going through
both metal implants for the images shown in Fig. 4. The top graph
shows the comparison for the material maps and the bottom graph
shows the same for the monochratic image at 95 keV.

show that the soft tissue regions are recovered to a high
degree of accuracy. There is noticeable discrepancy in the
reconstructed water map when viewed in a narrow gray scale
window; small bright patches appear on either side of the hip
bone regions. Interestingly, the recovery of the metal objects
themselves appears to be quite challenging in a water-bone
basis. There is significant discrepancy between reconstructed
profiles and the truth for the water and bone profiles in the
metal regions. When the profile comparison is shown for the
monochromatic image, however, the agreement appears to be
quite good even for the metal rods. This may be an indication
that a different material basis would allow better phantom
recovery performance.

4 Conclusion

We have presented preliminary results on one-step image
reconstruction for spectral CT for the situation where the
subject contains metal and the transmitted photon count data
is photon starved. The corresponding nonconvex optimiza-
tion problem is approached by a new convexification strategy,
which enables image reconstruction from spectral CT data
that has a high dynamic range. The results show promise in
solving the corresponding inverse problem. Further results at
the meeting will focus on exploring the boundaries of accu-
rate image recovery. Also, we will present results focussing
on inconsistent data where noise is present.

Acknowledgements

Work supported by the National Institutes of Health via grants
R01-023968 and R01-026282. R.F.B. was also supported by
the National Science Foundation via grant DMS–1654076
and by the Office of Naval Research via grant N00014-20-1-
2337. The contents of this article are solely the responsibility
of the authors and do not necessarily represent the official
views of the National Institutes of Health.

References

[1] J. P. Schlomka, E. Roessl, R. Dorscheid, et al. “Experimental fea-
sibility of multi-energy photon-counting K-edge imaging in pre-
clinical computed tomography”. Phys. Med. Biol. 53.15 (2008),
pp. 4031–4048.

[2] R. F. Barber, E. Y. Sidky, T. G. Schmidt, et al. “An algorithm for
constrained one-step inversion of spectral CT data”. Phys. Med.
Biol. 61 (2016), pp. 3784–3818.

[3] C. Mory, B. Sixou, S. Si-Mohamed, et al. “Comparison of five
one-step reconstruction algorithms for spectral CT”. Phys. Med.
Biol. 63 (2018), p. 235001.

[4] R. F. Barber and E. Y. Sidky. Convergence for nonconvex ADMM,
with applications to CT imaging. https://arxiv.org/abs/2006.07278.
2020.

258



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
  

Few-shot learning with Light-weight Neural Network for limited-angle 
computed tomography reconstruction 

 

Ping Yang1, 2, Yunsong Zhao1, 2, and Xing Zhao1,2, * 

1 School of Mathematical Sciences, Capital Normal University, Beijing, China 
2 Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China. 

 

Abstract Traditional reconstruction algorithms for limited-angle 

computed tomography (CT) have shortcomings including excessive 

iterations and prolonged reconstruction time. With the rapid development 

of deep learning, several deep learning-based limited-angle CT 

reconstruction algorithms emerged to improve image quality and to 

overcome the disadvantages of traditional algorithms. However, due to 

the small sample size and complex learning models, many algorithms 

can’t be widely applied. Against such a backdrop, in this work, a new 

network structure based on traditional optimization imaging model is 

built. By fully utilizing the characteristics of limited-angle CT, the new 

network has low complexity, thus the number of samples needed for 

training is small. In addition, an attention mechanism is introduced to 

learn the hyperparameters in the network. The results show that the 

proposed method has good performance in improving image quality and 

the limited-angle artifacts in the images are alleviated effectively. 

1 Introduction 

 

Computed tomography (CT) technology has been widely 

used in medical diagnosis, industrial nondestructive testing 

(NDT), and other fields [1]. In its practical applications, 

limited by geometric shapes of scanned objects and the 

scanning system, problems of limited-angle CT imaging 

due to missing projection data have emerged. Fields like 

circuit board tomography and breast imaging have been 

research focus and difficult issues in CT reconstruction 

algorithms. In recent years, artificial intelligence (AI) and 

deep learning have achieved rapid development, and it is 

widely recognized that deep learning may provid new ideas 

and means to tackle CT imaging problems [2-5]. In terms 

of limited-angle CT imaging, multiple deep learning-based 

limited-angle CT reconstruction algorithms have also 

emerged with good performance, such as AirNet proposed 

by Gaoyu Chen et al. [6]. 

Although many deep learning-based CT reconstruction 

algorithms have been built, their effective use is still 

hindered by a lack of training samples [7-8]. According to 

the latest research, to improve the generalization 

performance of few-shot learning, one should focus on two 

aspects: more effective feature decoupling and integration 

of physical information with network design [9]. Images 

reconstructed with limited-angle CT reconstruction 

algorithms have such distinct features as image blurring and 

serious streak artifacts along the directions perpendicular to 

the missing scanning angles, and images of acceptable 

quality in directions are not perpendicular to the scanning 

angles. Some researchers have conducted research based on 

the above characteristics, and improved image quality by 

introducing them to the reconstruction model [10]. 

In this paper, a light-weight deep learning model-based 

method for limited-angle CT reconstruction is proposed. 

The model is based on traditional methods of optimization 

which integrates features of images reconstructed with 

limited-angle CT into network design. The proposed 

algorithm combines a neural network with the existing 

limited-angle CT optimization model, it can obtain effective 

image features and reduce the number of required samples. 

In addition, it uses the attention mechanism to learn 

hyperparameters in the optimization model, we can avoid 

manual adjustment. It should be noted that, ray angle 

information is integrated into the model to design a specific 

neural network structure, thus enhancing the generalization 

ability of few-shot learning. 

2 Methods 

 

A. Image Reconstruction Models 

The CT reconstruction model is shown in  (1): 

Ax p                                      (1) 

where A is a large sparse matrix, x is the reconstructed 

image, p is the projection image. The limited-angle CT 

reconstruction is a typical ill-posed problem, and the 

regularization is an effective solution[11-14]. It is usually 

described as: 

1

1
min ( )

2

K
c

k k kwx
k

Ax p G x  


                   (2) 

where 
c

w
Ax p is a measure of data fidelity, and λ is used 

to balance the weight of the fidelity term and the 

regularization term.  The second item is expressed as the 

sum of different regularization terms, in which K is the 

number of different regularisation items, k  is the weight of 

each regular item, and ( )   is a measure, like 0l , 1l and 2l , kG  

is a transformation type like sparse transform and wavelet 

transform. When solving (2), both the Alternating Direction 

Method of Multipliers and Split Bregman will inevitably 

increase the number of hyperparameters, and the 

determination of hyperparameters is very difficult. 

In view of the difficulty in choosing regularization terms 

and its hyperparameters, many researchers have combined 

traditional methods with deep learning to learn the 

unknowns in (3). It can be expressed as: 

1

1
arg min ( )

2

K
c

k kwx
k

x Ax p NN x


            (3) 
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where c and w  are forms of measurement of the fidelity 

terms of network learning; k is the weight of each regular 

item, ( )kNN x  is a regularization term using neural network. 

 

B. Prior Regularized Neural for Limited-angle CT  

In the field of industrial CT scanning, it cannot be ignored 

that the number of training sets for deep learning-based 

reconstruction or denoising is insufficient. To tackle the 

problem, methods such as training set expansion and 

introduction of prior knowledge are often adopted. By 

contrast, the second method is a more feasible approach 

[15]. In addition to the piecewise constant, the limited-angle 

CT reconstructed image also feature blurring and streak 

artifacts along the direction perpendicular to the missing 

rays. In other words, image blurring and streak artifacts are 

correlated to the direction of ray. Combining the 

characteristics of the limited-angle CT reconstruction image 

and the deep learning method, (3) is further expressed as: 

 
2

2

1
min ( ) ( ) ( )

2
h v r

x
Ax p HNN x VNN x CNN x       (4) 

where ( )HNN x and ( )VNN x  are used for edge-preserving 

extension and edge-preserving smoothing; ( )CNN x  is the 

regularization term remainder; h and v  stand for the 

horizontal and vertical directions; h , v  and r  are to 

adjust the role of ( )HNN x , ( )VNN x ,and ( )CNN x  in the 

optimization function. (4) is the solution to a typical 

coupling problem, which can be broken down to the 

following steps: 

  2 21/4

22
arg mink k

x

x x x Ax p                 (5) 

 2
2/4 1/4 1/4

2
arg min ( )k k k

h
x

x x x HNN x          (6) 

  2
3/4 2/4 2/4

2
arg min ( )k k k

v
x

x x x VNN x          (7) 

  2
1 3/4 3/4

2
arg min ( )k k k

r
x

x x x CNN x           (8) 

In this paper, (5) is solved approximately using  

Simultaneous Algebraic Reconstruction Technique(SART). 

(6-8) are approximated with Prior Regularized Neural 

Network (PRNN). The algorithm is presented in Table 1.  

Table 1. PRNN Algorithm steps 

Algorithm： 

1. Inputs：projection data p  

2. Output：
Nx   

3. initial image 
0x  = 0, iteration N 

4. for k = 1: N do 

5.     
1/4 ( , )k kx SART x p   # step 1. solving the fidelity term 

6.     
1/4( )k kH HNN x   # step 2. Horizontal regularization 

7. 
1/4( , )k k

h

kAttentionHNN H x   

8. 
2/4 *k k k

hx H    

9.     
2/4( )k kV VNN x   # step 3. Vertical regularization 

10. 
2/4( , )k k

v

kAttentionVNN V x   

11.     
3/4 *k k k

vx V   

12.     
3/4( )k kR CNN x   # step 4. Other regularization 

13 
3/4( , )k k

r

kAttentionCNN R x   

14.     
1 *k k k

rx R   

15. end for 

 

The overall network architecture of PRNN is shown in Fig. 

1. It mainly includes 5 modules: traditional reconstruction 

(REC) module, HNN module, VNN module, CNN module, 

and Attention Mechanism module. HNN and VNN are 

shown in Fig. 2. The VNN module regularizes results of the 

previous module along the direction parallel to the missing 

rays, and it is used for image smoothing. The design is 

roughly the same with that of the HNN module, but 

different in taking each column of data as one set to input. 

The number of iterations N is set to 10. 

 
Fig 1. Integral network framework. 

With the REC module reconstructed images, the HNN 

module uses a fully connected neural network to regularize 

along the direction perpendicular to the missing rays. The 

neural network is applicable for the actual research problem. 

For one thing, according to features of limited-angle CT 

images, we can reduce the nodes and network parameters of 

the input layer by learning line by line; for another, the 

traditional reconstruction algorithm has been obtained 

abundant information, so we can enhance network 

expression without increasing the number of layers.  

 

 
 

Fig 2. HNN-Net and VNN-Net 
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The module contains a 4-layers neural network. Each row 

of data in the horizontal direction (direction perpendicular 

to the ray) of the reconstructed images is input as one set of 

the network. When the image width is W, the number of 

neurons and image width in the input layer and the output 

layer will also be W, and the number of neurons for the 

hidden layers is 2W+1 [16]. Residuals between input 

images and tag images are used as the network label for 

training. The sum of output and input of the network is 

taken as corrected images. 

The CNN module is a 7-layers residual network using 

64*3*3 convolution filters, where residuals between input 

images and label images are used for training. The module 

trains weighted parameters in (4). According to actual 

demand, we modified the basic attention network [17]. As 

shown in Fig. 3, there are two inputs: I. the difference 

between preposition module output and SART module 

input; II. the residual of the previous module output. First, 

we perform a non-negative operation on the input, and then 

enter the results to the Squeeze-and-Excitation 

module,eventually obtain the residual coefficient λ of the 

current term. 

3 Experiment 

 

In this section, a simulation experiment is used to verify the 

feasibility and validity of the proposed algorithm, and to 

evaluate its performance through comparison with the 

following algorithms: SART, SART-TV, and Air-Net. 

The experiment adopts two datasets, TCIA Collections and 

real PCB. The TCIA Collections dataset includes data of 20 

patients, from which 10 patients are sampled at the same 

interval to form the training set, and the remaining patients 

sampled in the same way to form the test set, image size 

being 256*256. The PCB dataset includes 7 real PCB 

omnidirectional data, in which 5 data sampled at the same 

interval to form the training set, and the remaining sampled 

in the same way to form the test sets. The experimental 

environment is specified as: 1) Hardware: CPU: Intel Core 

Processor 2.59GHz (16 cores); memory: 64GB; GPU: Tesla 

P100 16GB; 2) Software: MatConvNet deep learning 

framework and Matlab R2019b. 

To better evaluate the proposed algorithm, peak signal-to-

noise ratio (PSNR) and structural similarity index measure 

(SSIM) are adopted for a quantitative evaluation [18]. 

In this study, we select two representative images from two 

test sets for display. Fig. 5 shows results from different 

methods at the sample size of 100 in the projection range of 

[-45˚,45˚]. The first row represents reconstruction results of 

the LUNG using different methods. SART shows obvious 

artifacts; SART-TV does reduce some artifacts but fails to 

restore the image structure accurately; Air-Net restores the 

structure of the image of the lung, the border of the result is 

blurred, but for PCB, SART-TV is better than Air-Net. Air-

Net is not suitable for reconstructing this type of data. While 

the proposed algorithm better restores structural 

information, the smoothness of the reconstructed images 

still needs to be improved compared with the reference. The 

second row shows reconstruction results of the PCB using 

different methods. Compared the above methods, the 

algorithm herein better reconstructs edge information, 

reduces artifacts, and improves image quality. Besides, we 

calculate the SSIM and PSNR of the reconstructed images, 

and extract a row of pixel values for comparison. The SSIM 

and PSNR of PRNN are higher than other methods. The 

number of parameters of PRNN is reduced. They are shown 

in Table 3. PRNN’s pixel curve is closer to the reference 

curve, as in Fig. 6. 

In the PCB dataset, different methods are adopted and 

experiments are conducted for comparison at different 

scanning ranges. It is known to all that as an important test 

method of PCB, X-ray can detect through-hole copper 

fractures, soldering joint quality, and cracks, among others. 

It can be found from Fig. 7 that the images of PRNN show 

PCB through-hole copper more clearly within [-75˚,75˚], 

and the image quality is better. 

In addition to the above experiments, this paper also 

examines the effect of the sample size on the algorithm. The 

roles of the HNN, VNN and CNN module in the algorithm 

are also analyzed. In the learning process, the sample size is 

closely related to an abundance of image feature 

information. The effect of sample sizes of 100 and 200 on 

PCB data in the paper is tested within the scanning range of 

[-45˚,45˚], it is shown in Fig. 8. In Fig. 9, two curves of pixel 

values obtained from training are not completely consistent 

with the reference; the curve of the sample size 100 and that 

of the sample size 200 are different, but the difference is 

acceptable because they have similar waveforms. h , v  

and r balance the fidelity term and the regular term. In 

other words, they are also used to control the introduction 

Fig 3. Attention-Net 

 

Fig 4. PCB 
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of errors. In this article, the error value is set not higher than 

sum of all pixels *
210

. 

 
Fig 5. 1st column is the reference image, and 2nd -5th column are the 

images reconstructed by SART, SART-TV, Air-Net and PRNN. 

  

 
Fig 6. The two pictures are the line graphs of the pixel values of a certain 

row in the extraction result: LUNG(left) and PCB(right). 

Table 3. PSNR and SSIM :when the scanning range is [-45˚,45˚] 

Category Algorithm Number of 

parameters 

PSNR SSIM 

LUNG 

SART  21.35330 0.91925 

SART-TV  21.43434 0.92127 

Air-Net 3,000,000 25.26701 0.97020 

PRNN 1,854,720 31.8804 0.9933 

PCB 

SART  23.18693 0.81345 

SART-TV  24.98306 0.88787 

Air-Net 3,000,000 24.23246 0.89024 

PRNN 1,854,720 30.58110 0.97000 

 

 
Fig 7. When the scanning range are [-60˚,60˚] and [-75˚,75˚], the PCB 

uses SART, SART-TV,Air-Net and PRNN to obtain the results. 1st 

column is the result of  [-60˚,60˚], and 2nd column is the result from [-

75˚,75˚].1st~4th rows are the results of the above four methods. 

The REC module plays an important role in providing rich 

information to facilitate other modules’ input and reducing 

the number of required samples. In the PRNN, we adopt a 

fully connected network alone to implement HNN and 

VNN modules, reduce parameters of each operation, and 

simplify the network structure. In the meantime, the 

introduction of Attention and CNN modules improves 

network generalization to a certain extent. The experimental 

results show that the CNN module not only learns 

regularization term remainders, but also overcomes the 

drawback of a fully connected network that ignores the 

spatial structure of images. The Attention module can 

reasonably control hyperparameters values. 

4 Conclusion 

 

Fig 8. This is the curve when we use different capacity. 

Fig 9. The curve of the weight parameters: LUNG(left) and 

PCB(right). 
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In this paper, a limited-angle CT reconstruction method is 

proposed based on a few-shot lightweight learning model, 

whose effectiveness is verified with both simulated and real 

data. We can conclude that PRNN reduces the number of 

samples required, simplifies the network structure, and 

enhances model generalization and improves image quality. 

Combined with traditional methods of optimization and 

reconstruction and characteristics of limited-angle CT 

reconstructed images, the modularized network structure 

improves network adaptability while making full use of 

features of limited-angle CT reconstructed images. PRNN, 

whose experiment is conducted on two datasets in the paper, 

reduces the number of required samples, simplifies the 

network structure, and enhances model generalization and 

image quality. However, due to limited types of training 

samples, more data are needed to test the performance of 

the algorithm. 
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Abstract Perfusion imaging is an interesting new modality for evalua-
tion and assessment of the liver cancer treatment. C-Arm CT provides
a possibility to perform perfusion imaging scans intra-operatively for
even faster evaluation. The slow speed of the C-Arm CT rotation and
the presence of the noise, however, have an impact on the reconstruc-
tion and therefore model based approaches have to be applied. In
this work we apply the Time separation technique (TST), to denoise
data, speed up reconstruction and improve resulting perfusion images.
We show on animal experiment data that Dynamic C-Arm CT Liver
Perfusion Imaging together with the processing of the data based on
the TST provides comparable results to standard CT liver perfusion
imaging.

1 Introduction

Perfusion CT imaging is an important modality for the treat-
ment of the liver cancer, see [1]. It would be the additional
benefit to have C-arm CT available as part of the interven-
tional suite, see [2, 3]. The ability of C-arm systems to mea-
sure parenchymal blood volume (PBV) has been the subject
of research during the last few years, see [2, 4–7]. The study
in [8] has used animal model to evaluate the dynamic recon-
struction algorithm [9] and measure Arterial Liver Perfusion
using C-arm CT data.
Using C-Arm CT perfusion imaging in the liver cancer man-
agement could provide an option to evaluate the performed
embolization intraoperatively. The data moreover could be
used to plan ablation. The slow rotation time, limited num-
ber of projections and time gap between rotations causes
undersampling and artifacts in the contrast agent dynamics
reconstruction. Neglecting these limitations by static recon-
struction i.e. reconstruction of each rotation individually as if
it was a native CT scan, will cause loss of accuracy and could
result in incorrect perfusion measurements, see [10]. To over-
come these problems we use the model-based approach to
describe time attenuation curves (TAC) as a weighted sum of
temporal basis functions, so called Time separation technique
(TST), see [11, 12].
In this paper we use the data from the C-Arm CT perfusion
reconstruction of the swine liver. We are solving the afore-
mentioned problems by using an analytical basis derived
from Fourier analysis and applying TST. Then we use the
deconvolution based algorithms together with Tikhonov sta-
bilization to compute perfusion parameters, see [13]. Using
this approach we reduce noise in the data and show that pro-
duced perfusion maps are comparable to the CT perfusion
data.

2 Materials and Methods

Procedure

We used 2 anaesthetized domestic pigs to perform C-Arm
CT perfusion scans of the liver using iodinated contrast agent
after the embolization that induced the area of decreased
perfusion. To induce areas of hypoperfusion in the swine
liver model we embolized branches of the right hepatic artery
with tantalum-based embolization material (Onyx) and coils.
Two matching C-arm and CT perfusion scans were acquired
using Siemens ARTIS pheno C-arm and SOMATOM Force
CT. A 15ml of contrast material Imeron 300 was injected
with the duration of 5s. The tube voltage was set to 90 kVp.
Each C-arm scan consisted of five forward-backward sweep
pairs. Each sweep covered rotation of 200° and with angular
step of 0.8° acquired 248 projections. The scans with the
two scanners were performed ten minutes apart to insure the
contrast material has washed out.

Time separation technique

Let the interval I = [0,T ] represent the duration of the scan.
The TACs are modeled as a linear combination of a defined
set of N orthogonal functions

B = {Ψ1, . . . ,ΨN}, (1)

where for each i ∈ {1, . . . ,N} Ψi = Ψi(t), t ∈ I are scalar
functions of the time. We call the set B basis and refer
to functions Ψi as to the basis functions. In practice these
functions might be analytical functions and therefore I = I
or Ψi can be represented as a vector of its values in the M
time points I = {0,T/(M−1), . . . ,T}. According the TST,
the time attenuation curve in a particular volume point xv is
given by the linear combination of the basis functions

xv(t) =
N

∑
i=1

wv,iψi(t). (2)

Under the assumption of the orthogonality of the basis func-
tions, we can transform the contrast agent dynamic recon-
struction problem to the N standard CT reconstruction prob-
lems to reconstruct weight coefficients wv,i, see [12] for the
details.
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To do so, we assume that the projection data for any C-
Arm spatial configuration, namely angle and pixel position,
encoded by index k satisfies

pk(t) =
N

∑
i=1

ωk,iψi(t). (3)

Note that by means of equations (2) and (3) we separate time
development, encoded by basis functions Ψi(t), from the
spatial configuration encoded by weighting coefficients w
and ω respectively, thus the method is called time separation
technique.
In order to reduce noise in the data and extract important in-
formation about the contrast agent dynamics, we use trigono-
metric functions as a basis. Based on the numerical exper-
iments we figured out that N = 5 provides a good tradeof
between the number of reconstructions and the image quality.
Therefore we have chosen N = 5 and Ψi to be

Ψ0 = 1, Ψ1 = sin(
2πt
T

), Ψ2 = cos(
2πt
T

),

Ψ3 = sin(
4πt
T

), Ψ4 = cos(
4πt
T

).

(4)

These functions are orthogonal with respect to the scalar
product < Ψi,Ψ j >=

∫ T
0 Ψi(t)Ψ j(t)dt. To find the weight-

ing coefficients of the projection data wp, we performed a
least squares fitting. This was followed by the 40 iterations
of the algebraic reconstruction, see [14] 1 and the TAC data
was obtained using (2).
In case of CT perfusion data, the acquisition on SIEMENS
SOMATOM Force was followed by the analytical recon-
struction using Br36 kernel in syngo CT VA50A software.
The reconstructed volume data was interpolated by means of
cubic splines to obtain TAC data. The estimation of the per-
fusion maps by our software is identical for both modalities
by the method that follows.

Perfusion Parameters Estimation

The artery input function (AIF) is needed to compute the
blood flow through the organ. It describes the contrast agent
flow over time. To generate comparable perfusion maps
artery was detected as suggested in [13].
We estimate TAC in every voxel as a convolution of AIF with
residual function

tac(t) = aif(t)∗ fr(t). (5)

We discretize the function ai f (t) by its values in k = 100
time points. Then we apply the pseudoinverse with Tikhonov
regularization to (5) in order to recover function fr(t).

1Source code of the reconstruction technique, namely CGLS, which
has been used can be found at https://bitbucket.org/kulvait/
kct_cbct.

(a) Location of CT AIF (b) TAC for CT AIF

(c) Location of C-arm AIF (d) TAC for C-arm AIF

Figure 1: C-arm and CT artery input function

We compute four perfusion parameters, blood flow (BF),
blood volume (BV), mean transit time (MTT) and time to
peak (TTP) using the following formulas from [13]:

BF = max fr(t), BV =
n

∑
i=1

fr(i),

MT T =
BV
BF

, T T P = argmax
t

fr(t).

(6)

3 Results

We processed the data from the swine liver perfusion using
methods described in M&M section. To compute perfusion
parameters, first we have to locate the arterial inlet in order to
derive AIF function. In Figure 1 the detected location of AIF
is shown together with the time attenuation profile of this
voxel from both modalities. Due to the injection duration,
an undersampling of the contrast material peak in C-arm CT
compared to CT can occur.
Using the model (5) and (6) we have computed perfusion
maps. The results for a selected C-arm slice and correspond-
ing CT slice are shown in Figure 2. The perfusion maps gen-
erated by the means of described TST technique are given in
the first row, in the second row are the results from the TAC
obtained by spline interpolation of the static reconstructions
and the third row contains the CT perfusion maps.
To compare the results we mainly look for the hypoperfused
areas. They are easily distinguishable in the reconstruction
image, see Figure 3. We can clearly observe these areas in
the perfusion maps as they have different color, see Figure 2.
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TST C-arm 
Reconstruction

Static C-arm 
Reconstruction

BLOOD FLOW BLOOD VOLUME MEAN TRANSIT TIME TIME TO PEAK

CT Reconstruction

Figure 2: Perfusion maps, BF in mL/100g/min, BV in mL/100g, MTT in s and TTP in s, white arrow is pointing to the area of reduced
perfusion induced by embolization.

Figure 3: Hypoperfused area in C-arm (left) and CT (right).

The unhealthy tissue induced by embolization is very well
distinguishable namely in the BF and BV maps of the TST
reconstruction, where they have dark blue color code.
We observe that in the TST C-arm reconstruction perfusion
maps the hypoperfusion area is much more pronounced than
in the static C-arm reconstructions.
To better evaluate the differences between hypoperfusion area
and healthy tissue, we selected regions of interest in both
CT and C-Arm CT images, see Figure 4. We then computed
mean value and standard deviation of the respective perfusion
coefficient.

ROI hypoperfused area

ROI hypoperfused area

ROI healthy tissue

ROI healthy tissue

Figure 4: C-arm (left) and CT (right) regions of interest.

We have found that not only the means are different, but
when performed T-test to find out the significance of that
difference, we found a p-value of < 10−10. The mean value
and standard deviation of BF and BV for selected regions are
given in Tables 1 and 2.

4 Discussion

In this paper we have shown that C-Arm CT liver perfusion
imaging can provide similar results as CT perfusion imaging
when we use an adequate model based approach.
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Reconstruction Hypoperfused area Healthy tissue

TST 20.7±20.4 95.6± 24.3
Static 38.8±39.6 133.4± 41.4

CT 91.0±32.9 1162± 122

Table 1: BF measurements in units of mL/100g/min. Mean and
the standard deviation taken over the selected regions of interest.

Reconstruction Hypoperfused area Healthy tissue

TST 2.3± 3.0 13.4± 3.1
Static 1.9± 2.4 19.1± 5.0

CT 18.8± 8.6 58.9± 14.1

Table 2: BV measurements in units of mL/100g. Mean and the
standard deviation taken over the selected regions of interest.

It can be seen that proposed basis set of the TST provides a
perfusion maps that reduce the noise and clearly separates
the hypoperfusion areas from healthy tissues, see Figure 2
and Tables 1 and 2. Thus, this method enables detection of
hypoperfusion regions and has the potential to be introduced
into clinical practice.
C-arm perfusion maps show also some differences in well
perfused areas when compared to CT perfusion maps. The
difference in values are mostly noticeable on BF and BV.
This can be mainly attributed to the fact that the positioning
of the animal in two different modalities is different but the
different setup of the reconstruction for the two modalities
can also play its role, see [6]. C-Arm and CT devices also
were not calibrated to provide equal attenuation values.

5 Conclusion

From the results it can be seen that model based reconstruc-
tion of the C-Arm CT perfusion scans outperforms methods
based on individual static reconstructions. The data are less
noisy and the area with reduced perfusion is more visible
on perfusion maps. Therefore it provides the results com-
parable to the CT perfusion imaging. We plan to perform
clinical evaluation of these data to assess whether this ap-
proach should be part of the clinical setup.
Additional improvement of the TST results is expected by
including dedicated perfusion basis functions based on CT
data as prior knowledge, as studied for brain data in [12, 15].
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Abstract Anisotropic X-ray Dark-field Tomography (AXDT) enables
visualization of microstructure orientations via Talbot-Lau grating
interferometers. The measured dark-field signal produced by the small-
angle scattering of X-rays passing through the sample can be used to
reconstruct spherical scattering functions inside the sample, which in
turn allows the extraction of the orientation of microstructures that are
otherwise invisible. Dark-field measurements are prone to high levels
of noise, indicating the use of regularization in the AXDT reconstruc-
tion process. In this work, we introduce Laplace-Beltrami operator for
spherical harmonics as a regularization method for the AXDT inverse
problem. To validate our model, we present two different experiments,
one performed on synthetic data and one executed on experimental
data acquired by measuring a wooden sample.

1 Introduction

Anisotropic X-ray Dark-field Tomography (AXDT) enables
the reconstruction of spherical scattering functions from the
dark-field measurements [1]. The dark-field signal is pro-
duced by the ultra-small angle scattering effects of X-rays
when they pass through structures smaller than the voxel size
and can be measured using a Talbot-Lau grating interferom-
eter [2]. In order to perform tomographic reconstruction of
the spherical scattering functions, AXDT discretizes them
using spherical harmonics (SH) and seeks to compute their
respective spherical harmonics coefficients.
In previous works, the AXDT inverse problem has been
solved using conventional non-regularized least squares-
based algorithms [1, 3]. As the measured dark-field contrast
obtained with a grating interferometer is very noisy, adjust-
ments to stop the iterative non-regularized reconstruction
process before the solution overfits to noise are advantageous.
A regularization strategy to minimize the impact of measure-
ment noise would, therefore, be highly desirable, but so far
there is a lack of successful developments in this direction.
For this work, we will look to regularization methods for
Q-Ball imaging (QBI) in the context of Diffusion MRI for
inspiration. In QBI, spherical functions are used to represent
orientation distribution functions (ODF) at each voxel loca-
tion. One such approach was introduced by Descoteaux et al.
[4] who introduced the Laplace-Beltrami operator, an exten-
sion of the Laplacian operator to functions defined on the unit
sphere to penalize the high order spherical harmonics terms
which are usually only modelling noise in the system and
to leave those that are necessary to describe the underlying
ODF.

Figure 1: Schematic of an X-ray grating interferometer. The
stream of X-ray photons generated by source S illuminates the
sample through the source grating G0. The phase grating G1
creates an interference pattern that is sampled by the analyzer
grating G2 in front of the X-ray detector D. For AXDT, either the
sample or the grating interferometer have to be rotated around all
three axes in order to fully sample the scattering functions.

As the tomographic reconstruction of the ODFs in QBI is
equivalent to the one of the spherical scattering functions
in AXDT, in this work we build upon the works of Wiec-
zorek et al. [3] and Descoteaux et al. [4], introducing a
new regularized tomographic reconstruction approach in the
context of AXDT based on the Laplace-Beltrami operator.
Additionally, we perform a suite of tests with different regu-
larization parameters in order to find the optimal one for the
reconstructions.

2 Laplace-Beltrami Regularization for AXDT

2.1 AXDT Forward Model Discretization

In order to allow the extraction of multiple fiber directions
inside each voxel, the forward model assumes the integra-
tion over all scattering directions on the unit sphere. The
continuous model can be expressed as follows:

− lnd j =
1

4π

∫

S2
h(ε̂, t̂ j, ŝ j)

[∫

L j

η(ε̂,r)ds
]

d2ε̂ (1)

for j = 1, . . . ,J where we aim to reconstruct the scattering
amplitude

ηk(ri) = |εk(ri)|2 : R3→ R

for each direction ε̂k and at every voxel ri, i = 1, . . . I, where
I is the number of voxels. Here, d j denotes the jth scalar
dark-field measurement, L j the corresponding X-ray with
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the normalized incident direction ŝ j ∈ S2, and t̂ j ∈ S2 the
sensitivity direction of the grating interferometer, and h : S2×
S2×S2→R is a weighting function representing the physical
interaction process of the X-ray with the sample, as defined
in [3]. In order to discretize our continuous problem, let us
consider the spherical harmonics expansion of the scattering
amplitudes:

η(ε̂,r) =
N

∑
n=0

n

∑
m=−n

ηm
n (r)Y

m
n (ε̂). (2)

Next, we discretize the continuous model from eq. (1) and
we obtain the following forward model:

Aη = b, (3)

where η represents the scattering functions vector η =[
η0

0 . . . η−N
N . . . ηN

N

]
and ηm

n is a vector that stacks
the evaluation of the spherical harmonic coefficient of order
n and phase m at each voxel, A is the forward operator encod-
ing weighting functions and projection matrix, and b is the
vector of dark-field measurements. For more details about
the forward model we refer to ref. [3].

2.2 The Regularization Term

If we want to perform reconstruction on the AXDT inverse
problem, we will be facing a discrete ill-posed problem. To
mitigate the accuracy issues caused by this, we employ reg-
ularization with the aim of damping the noise. For this, we
start by considering the well-know method of Tikhonov reg-
ularization. This approach consist in finding a minimum for
the objective function

Fλ (η) =
1
2
||Aη−b||22 +λR(η), (4)

where
||x||22 = [x]21 + . . .+[x]2N (5)

is the L2-norm of the vector x ∈ RN , λ the regularization
parameter, and R(η) the regularization term.

2.3 Laplace-Beltrami-Based Regularization

Because the reconstruction is performed in the spherical
harmonics coefficient space, we have to choose an appropri-
ate regularization term that controls the magnitude and/or
the smoothness of the obtained solution. Consequently, we
enforce smoothness of η(ε̂,r) with respect to the angular
variable ε̂ using the Laplace-Beltrami operator, which is
equivalent to the Laplace operator in spherical coordinates.
Another important aspect is the simplicity of evaluating the
Laplace-Beltrami operator, denoted by4b, on spherical har-
monics, which is simply

4bY m
n =−n(n+1)Y m

n , (6)

where Y m
n represents the spherical harmonic of order n and

phase m. Using this information, we can now define the
regularization term in a continuous setting as

R(η) :=
1
2

∫

S2

∫

D
|4bη(ε̂,r)|2 dVd2ε̂, (7)

where4b acts on ε̂ = (θ ,ϕ) , while the corresponding dis-
crete version is

R(η) =
1
2

I

∑
i=1

∫

S2
(4bη(ε̂,ri))

2 d2ε̂. (8)

We apply the Laplace-Beltrami operator on Eq. 2:

4bη(ε̂,ri) =
N

∑
n=0

n

∑
m=−n

ηm
n (ri)(4bY m

n (ε̂))

=−
N

∑
n=0

n

∑
m=−n

n(n+1)ηm
n (ri)Y m

n (ε̂).

We can now define the regularization term, making use of the
orthogonality property of spherical harmonics:

R(η) =
1
2

I

∑
i=1

∫

S2
(4bη)2 d2ε̂

=
1
2

I

∑
i=1

∑
mn

∑
m′n′

nn′(n+1)(n′+1)ηm
n (ri)ηm′

n′ (ri)

×
[∫

S2
Y m

n (ε̂)Y m′
n′ (ε̂)d2ε̂

]

=
1
2

N

∑
n=0

n

∑
m=−n

n2(n+1)2
[ I

∑
i=1

ηm
n (ri)ηm

n (ri)
]

=
1
2

N

∑
n=0

n

∑
m=−n

n2(n+1)2(ηm
n )

T ηm
n

=
1
2

ηT DT Dη

=
1
2
||Dη ||22,

where D represents a diagonal matrix with entries n(n+1),
where n is the order of the corresponding spherical harmonics
coefficient, and η is the quantity that we aim to reconstruct,
the spherical harmonics coefficients [5].
Finally, we rewrite the objective function from eq. (4):

Fλ (η) =
1
2
(||Aη−b||22 +λ ||Dη ||22), (9)

and we define its corresponding normal equation

(AT A+λDT D)η = AT b. (10)

As a linear problem, the solution can be computed in a
straightforward manner, for example via the conjugate gradi-
ent method.
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(a) original (b) λ = 0 (c) λ = 1 (d) λ = 5

Figure 2: A slice of the synthetically generated volume for the first experiment. (a) is extracted from the original volume, while (b), (c)
and (d) are slices of different reconstructed volumes using the proposed regularization method: (b) with λ = 0 (i.e. no regularization), (c)
with λ = 1 and (d) with λ = 5. In (c) the fibers are much closer to the original (a) compared to (b) where noise is still present, while for
λ = 5 the solution already appears to over-regularize.

3 Experiments and Results

3.1 Reconstructing the data

To test the effects of the regularization term on the recon-
structed solution, the functionality of the tomographic recon-
struction framework elsa [6] has been extended accordingly
to include the Laplace-Beltrami-based regularization matrix.
After the reconstruction, fiber extraction was performed us-
ing the Funk-Radon transform [1]. We ran our experiments
on a machine with two Intel Xeon E5-2687W v2, 128GB of
memory and two RTX 2080Ti.
We performed tests on two different data sets: one simulated
measurements set from synthetically generated volume, and
one experimental measurements set of two crossed wooden
sticks obtained using the hardware setup from Fig. 1. The
reconstructions were all obtained running 25 iterations of the
conjugate gradient method, and for different values of the
regularization parameter.

3.2 Assessing the quality of the synthetic data re-
construction

In order to evaluate the effects of the regularization parameter
λ on the reconstruction, we generated a 403 voxel sample.
The volume has been created starting from two different
scattering profiles and populating three distinct regions with
them, as presented in Fig. 2-a. We simulated dark-field
measurements using elsa [6] and added normally distributed
noise with mean 0 and variance 10−2. After that, we per-
formed the reconstructions using 15 different regularization
parameters and eventually extracted the fiber directions from
the reconstructed data. To assess the quality of the data, we
computed two different metrics: the mean absolute difference
between the spherical harmonics coefficients vectors of the
original and of the reconstructed data, which is a measure
that shows the similarity between two spherical harmonics,
and the mean dot product between the fibers of the original
volume and the fibers of the reconstructed volume, which
indicates the angle between the fibers and ranges between
1 (fibers are parallel) and 0 (fibers are perpendicular). Con-

sidering this, a good reconstruction then corresponds to a
mean absolute difference score close to 0 and to a mean dot
product score close to 1.

Figure 3: Fifteen different regularization parameters from 0 to
5 plotted against the mean absolute difference of the spherical
harmonics coefficients (left) and the mean dot product scores of
the extracted fibers (right) over the slice shown in Fig. 2. The best
scores were obtained for λ values close to 1 and represent a con-
siderable improvement compared to the reconstructions performed
without regularization.

Plotting the mean absolute difference and the mean dot prod-
uct against the regularization parameters λ for each of the
15 reconstructions, we observed optimal results for the re-
constructions corresponding to values for λ close to 1 (see
Fig. 3).

3.3 Assessing the Quality of a Real Data Recon-
struction

In the same manner as presented above, we performed re-
constructions for the same λ values of a 3203 volume from
experimental data acquired using the setup showed in Fig. 1,
containing two crossing wooden sticks (more detail on the
experimental setup can be found in [3]).
In this case, the comparison between the original and the re-
constructed data was not possible, as we do not have ground
truth data of the crossed sticks volume. Instead, we assess
the quality of the reconstruction through visual inspection of
the results obtained with different values for λ based on a
priori assumptions about the sample: we can make the sup-
position that the wooden fibers from each stick are parallel
along the length of the stick, thus we want to also observe this
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Figure 4: Left: 3D rendering of the two wooden sticks used for
acquiring the data and the slice selected for the visual assessment of
the result. Right: Respective rendering of the spherical scattering
functions.

(a) λ = 0 (b) λ = 5

Figure 5: Two representative slices from the reconstructed
wooden sticks volume. We extracted the dominant fiber orien-
tations in each voxel by applying the Funk-Radon transform on the
reconstructed scattering function. The area between the two sticks
contains fibers facing in approximately opposite directions while
fibers inside a particular stick are mostly facing the same direction.
(a) reconstruction with λ = 0 (i.e. no regularization), (b) recon-
struction with λ = 5. As the regularization term tries to reduce the
impact of high order spherical harmonics in the reconstruction, the
direction of the fibers can be imaged in a more accurate fashion, as
the noise that correlates to high-order coefficients is reduced.

phenomenon in the visualized slice [7]. In other words, we
visualize the reconstructed data and decide whether the ob-
servation meets our expectations. For this, we selected a slice
around the region where the two sticks cross, as presented
in Fig. 4. Two representative reconstructions are shown in
Fig. 5 for λ = 0 (no regularization) and λ = 5. We remark
that in the reconstruction slice corresponding to λ = 5, the
fibers are arranged in a parallel manner, while the reconstruc-
tion with λ = 0 has fibers oriented in uneven directions. We
can thus conclude that the regularized result closer resembles
our expectations compared to the non-regularized one.

4 Conclusion

In this work we introduced a regularized approach to solving
the AXDT inverse problem based on the Laplace-Beltrami
operator for spherical harmonics. We showed that given an
well-chosen regularization parameter we can obtain higher
quality results compared to a conventional non-regularized
method. We can conclude that both in the simulation and
experimental study the addition of the regularization term
improved the results. In the first case, good scores for the

mean absolute difference and mean dot products metrics can
be observed, while in the second case by employing the re-
sults we get a reconstruction that is closer to our expectations
regarding the experimental sample. In future work, we will
seek to implement a more robust algorithm of finding an
optimal regularization parameter while also using a quantita-
tive method to assess results when ground truth data is not
present.

5 Acknowledgments

The authors would like to thank C. Jud and S. Seyyedi for
recording the wooden sticks data set. We acknowledge finan-
cial support through the Munich Centre for Advanced Photon-
ics (MAP), the DFG (Gottfried Wilhelm Leibniz program)
and the European Research Council (AdG 695045). This
work was carried out with the support of the Karlsruhe Nano
Micro Facility (KNMF, www.kit.edu/knmf), a Helmholtz
Research Infrastructure at Karlsruhe Institute of Technology
(KIT).

References

[1] M. Wieczorek, F. Schaff, C. Jud, et al. “Brain Connectivity Exposed
by Anisotropic X-ray Dark-field Tomography”. Scientific Reports 8
(1 2018), p. 14345. DOI: 10.1038/s41598-018-32023-y.

[2] F Pfeiffer, M Bech, O Bunk, et al. “Hard-X-ray dark-field imag-
ing using a grating interferometer.” Nature Materials 7.2 (2008),
pp. 134–137.

[3] M. Wieczorek, F. Schaff, F. Pfeiffer, et al. “Anisotropic X-Ray
Dark-Field Tomography: A Continuous Model and its Discretiza-
tion”. Phys. Rev. Lett. 117 (15 2016), p. 158101. DOI: 10.1103/
PhysRevLett.117.158101.

[4] M. Descoteaux, E. Angelino, S. Fitzgibbons, et al. “Regularized,
fast, and robust analytical Q-ball imaging”. Magnetic Resonance in
Medicine 58.3 (2007), pp. 497–510. DOI: https://doi.org/10.
1002/mrm.21277.

[5] B. P. Neuman and C. Tench. “DWI Laplace – Beltrami Regular-
ization for Diffusion Weighted Imaging”. British Machine Vision
Association, 2015.

[6] T. Lasser, M. Hornung, and D. Frank. “elsa - an elegant framework
for tomographic reconstruction”. 15th International Meeting on
Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine. Ed. by S. Matej and S. D. Metzler. Vol. 11072.
International Society for Optics and Photonics. SPIE, 2019, pp. 570
–573. DOI: 10.1117/12.2534833.

[7] Y. Sharma, M. Wieczorek, F. Schaff, et al. “Six dimensional X-
ray Tensor Tomography with a compact laboratory setup”. Applied
Physics Letters 109.13 (2016), p. 134102.

272



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuv en, Belgium 
 

Learned energy-flexible algorithm using joint sparsity for dual-energy CT: a 

preliminary study 

Donghyeon Lee1 and Seungryong Cho1 

1Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea 

 

Abstract In dual-energy computed tomography (DECT), it  is often the 

case that  an x-ray energy pair differ from site to site and from even scan 

to scan. In this study, in an attempt to come up with a flexible material 

decomposition engine, we propose a deep learning (DL)-based algorithm 

that can be easily applicable for various scanning conditions of DECT. 

The proposed network is trained to find the optimal energy-flexible 

sparsifying transform based on the training data, and enhance image 

quality by using joint sparsity between dual-energy images. We 

demonstrate the performance of the proposed method not only for the 

pairs of energies (80/140kVp and 140/80kVp) used for training, but also 

for the other unused pair (100/140kVp). We expect that the proposed 

algorithm can greatly increase the material decomposition accuracy in 

DECT and improve the overall diagnostic performance of DECT. 

1 Introduction 
 

 Dual-energy computed tomography (DECT) is a widely 

used imaging modality that can increase the diagnostic 

performance through providing material-specific 

information or monoenergetic image in various clinical 

practices. Applications of DECT are diverse depending on 

the purposes including: virtual non-contrast imaging [1], 

bone removal in vascular imaging [2], characterization of 

renal stones [3], differentiation of hemorrhage in 

neuroimaging [4], etc. Material decomposition process is 

based on the nonlinear attenuation characteristics of the 

objects for two different x-ray energy spectra. 

Recently, deep learning (DL) approaches have received 

much attention in many fields including medical imaging 

due to their successful performance and potential, and 

several DL-based methods for dual-energy or spectral CT 

have also been proposed [5]–[7]. However, the existing DL-

based methods that are aimed at achieving both 

reconstruction and material decomposition have several 

difficulties in applying to real systems. The performance of 

the DL-based methods largely depend on the amount and 

the quality of training data, but it is usually challenging to 

obtain enough data for training in DECT. This is because 

not only does the combination of materials vary greatly 

according to the purposes (i.e., iodine/tissue [1], bone/tissue 

[2], liver tissue/fat [8], xenon or krypton/lung tissue [9], 

etc.), but also the pair of x-ray tube energies can differ 

depending on the scanning anatomical target organ or on the 

patient obesity. The two standard energies that have been 

typically employed in DECT are 80 kVp and 140 kVp, but 

80/120 kVp and 100/140 kVp have also been used [10]. It 

should be noted that, even with the same system setting, 

there may be drift in measured energy spectra as the 

equipment ages. 

The purpose of this research is to reduce the 

aforementioned difficulties by proposing an energy-flexible 

algorithm that uses joint sparsity between spectral images 

to improve image quality. The proposed DL network is 

given one of the sinograms as an input and enhances image 

quality by incorporating another sinogram acquired at 

different energies. We named it the energy-flexible 

algorithm since other sinograms measured at “different” 

energy settings can go through the same network that has 

been trained using sinogram data acquired at a preset energy 

pairs and the algorithm can still enhance the image quality. 

The energy-flexible algorithm was inspired by the previous 

studies in the iterative image reconstruction framework that 

use several sparsifying transforms to find joint sparsity of 

the images obtained at different energy settings and 

improve image quality [11]–[13]. In these studies, 

minimizing the differences in sparsifying transform of 

different energy images was adopted as a regularizer in the 

iterative reconstruction algorithms. On the other hand, in 

this study, the proposed energy-flexible algorithm is learned 

not only to find the optimal sparsifying transform based on 

training data but also to minimize the differences in the 

extracted joint sparsity between the images. 

We demonstrate the feasibility of the proposed method 

by a numerical simulation study that includes the 

polychromatic nature of x-rays, and conduct quantitative 

evaluation between the ground truth and our results. 

2 Methods 
 

A. Learned Energy-Flexible Algorithm 

A schematic workflow of the proposed energy-flexible 

algorithm is summarized in Fig. 1. The framework of this 

network was inspired by Adler’s learned primal-dual 

algorithm [14]. One of the sinograms in the given pair is fed 

into the layers ‘in the projection domain’, and the other 

sinogram is first fed into image reconstruction by the 

filtered-backprojection (FBP) and then is sent to the layers 

‘in the image domain’. Both sinograms are repeatedly used 

in each subnet as shown in Fig. 1.  

In all the previous studies [11]–[13], minimizing the 

differences of a sparsifying transform has been performed 

in the image domain. Likewise in our method, the 

convolutional layers in the image-domain play a role of 

calculating the difference in sparsifying transform between 

different energy images. The batch normalizations support 

learning sparsifying transform by normalizing the scale of 
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different energy images. The output of the layers in the 

image domain at each subnet goes through forward-

projection and enters the projection domain as an input in 

the following subnet.  

A reconstructed image of the ground truth corresponding 

to the input sinogram is given as a label of the energy-

flexible algorithm. A data array, 𝑑0, having the same size 

with the sinograms is initialized with zero and is updated at 

each subnet in the projection domain. After a total of five 

subnets and the last convolutional layer, the final 𝑑6 , which 

is nothing but 𝑝1
∗  (a desirable output after all), is 

reconstructed by FBP to calculate the error with respect to 

the label during the training. Additionally, after the training 

is done, we utilize the final 𝑑6  to perform material 

decomposition in the projection domain.  

For each training pair, we swap the input sinogram and 

the reference sinogram so as to train the algorithm to be 

energy-flexible. In case the sinograms are swapped, the 

final 𝑑6 is 𝑝2
∗. 

 

B. Data description  

To examine the performance of the proposed method, we 

conducted a numerical simulation with an XCAT phantom. 

We generated a total of 600 material maps from the XCAT 

phantom, which have four materials (air, adipose tissue, soft 

tissue, and bone) indices. Using a lab-made numerical 

simulation tool, sinograms measured at 80kVp, 100kVp, 

and 140kVp were obtained. We utilized an open X-ray 

spectra simulator and the database of X-ray mass 

attenuation coefficients from the National Institute of 

Standard Technology (NIST) [15], [16]. A fan-beam CT 

system was simulated, and 180 views for each spectrum 

were acquired. The number of detector pixels in a row is 

512. The size of the reconstructed image is 256× 256. For 

all data, Poisson noise corresponding to the background 

intensity 5× 103 is added. The ground truth reconstructed 

images for the energy-flexible algorithm were made from 

the corresponding noise-free input sinogram. 

 

C. Implementation details 

Among the simulated sinograms, we used randomly 

selected 580 sinograms for training, 10 for validation, and 

the other 10 for testing. Both pairs of 80/140kVp and 

140/80kVp were used for training. Each energy of the pair 

means the input sinogram and the reference sinogram in 

order. For testing, the data corresponding to 80/140kVp and 

140/80kVp were given in the algorithm, and the 

100/140kVp pair were additionally tested. 

3 Results 
 

We visualize the reconstructed images of the proposed 

method and the other methods (FBP and SART-TV) from 

the sinograms taken at 80kVp and 140kVp in Fig. 2. The 

FBP were performed with a ramp filter, and a TV weight 

and a total number of iterations for the SART-TV were 

Fig. 1. Architecture of the proposed algorithm. The sinogram 𝑝1 is given to the layer in the projection domain, and the 

sinogram  𝑝2  is given to the layer in the image domain after reconstructed by FBP.  The small blue boxes have the same 

architecture as the layers in the area bordered by the blue lines. The arrows and layers have different meanings for each 

color and the meanings are indicated in the figure. The green arrow stands for sinogram swap. 𝑝1
∗ and 𝑝2

∗  are the results 

of the network before and after the swap, respectively. 
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empirically chosen.  The reconstructed images of the FBP 

severely suffer from noise. In case of the SART-TV, the 

noise was considerably reduced, but the reconstructed 

images were excessively smoothed. The images of the 

proposed method show the best performance among them 

in terms of both noise and resolution. The region pointed by 

the red arrow is only clearly visible in the proposed method. 

Quantitative results of the reconstructed images in Fig. 2 

are shown in Table 1. We adopted the root-mean-square 

error (RMSE) and the structural similarity index measure 

(SSMI). The proposed method outperfo rms the other 

reconstruction methods w.r.t both RMSE and SSIM. 

Additionally, we tested our algorithm with the 

100/140kVp pair and show the results in Fig. 3. The noise 

level of the reconstructed image of FBP in Fig. 3(a) is 

substantially reduced in Fig. 3(b). We also evaluated the 

RMSE and the SSIM between the reconstructed results and 

the ground truth in Table. 2. The result also convinces an 

outperformance of the proposed method over the 

conventional methods in the 100kVp data. It verifies that 

our algorithm is applicable to data taken at another level of 

energy that has not been used for training. 

Results of the material decomposition in the 

80kVp/140kVp setting reconstructed by FBP from the 

original noisy sinograms and those reconstructed by the 

proposed method are shown in Fig. 4. The material 

decomposition was conducted in the projection domain, and 

the same decomposition function and parameters were used 

for both cases. The noise level in the original sinograms was 

largely amplified in the results of material decomposition. 

On the other hand, most of the noise are removed in the 

material-specific images in the proposed method. 

 

Table 1. RMSE (in units of 1 𝒄𝒎−𝟐) and SSIM of reconstructed 

images by the proposed method and other methods at low (80kVp) 

and high (140kVp). 

 Low (80kVp) High (140kVp) 

 RMSE SSIM RMSE SSIM 

FBP 0.0284 0.966 0.0209 0.980 

TV 0.0212 0.986 0.0122 0.992 

Proposed 0.0133 0.994 0.0087 0.997 

 

Table 2. RMSE (in units of 1 𝒄𝒎−𝟐) and SSIM of reconstructed 

images at 100kVp. 

 100kVp 

 RMSE SSIM 

FBP 0.0244 0.974 

TV 0.0137 0.992 

Proposed 0.0120 0.995 

Fig. 2. Reconstructed images by (a) FBP with the ground truth, (b) FBP with the noisy sinogram, (c) SART-TV with 

the noisy sinogram, and (d) the proposed algorithm with the noisy sinogram with. (1) and (2) are 80kVp and 140kVp, 

respectively. The display windows for 80kVp and 140kVp are set to [0.0, 0.09] and [0.0, 0.06].  

Fig. 3. Reconstructed images by (a) FBP and (b) the 

proposed method with the noisy 100kVp sinogram. The 

display is set to [0.0, 0.07]. 
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4 Discussion  

 

 We have developed a data-driven energy-flexible 

algorithm using joint sparsity. The algorithm shows the 

quantitative improvement compared to the conventional 

methods in the numerical experiments. Additionally, we 

confirmed that the algorithm is applicable not only to the 

data measured at the energies used for training, but also data 

measured at different energies. We conjecture this is 

because the dependence of the network parameters on the 

energy dramatically decreases by training both 80/140kVp 

and 140/80kVp  pairs alternately or in a swapping manner.  

In the furue work, we will perform additional simulation 

studies and real experiments for further verification. Also, 

we will test wider energy range to check the flexbility on 

energy of the proposed method. 

 

5 Conclusion 
 

 In this study, we proposed a learned energy-flexible 

algorithm using joint sparsity of dual-energy images. The 

proposed algorithm greatly improves the reconstruction 

performance in terms of noise and resolution. We have 

successfully obtained the improved material-specific results 

by the algorithm. Particularly, the flexibility of this 

algorithm against energy is verified by applying data 

measured at different energy that is unused for training. 
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Fig. 4. Results of material decomposition from (a) the 

original sinograms and (b) the quality improved 

sinograms by the proposed method. (1) and (2) represent 
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the bone-only images and tissue-only images are set to [-

0.2, 1.2] and [-0.2, 1.5]. 
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Abstract High-resolution dynamic PET images are useful for detecting 
small neurophysiological changes in the brain, but often suffer from low 
acquired counts per voxel, leading to high spatiotemporal voxel noise. 
Denoising—within reconstruction and/or as post-processing—is thus 
required to bring such images to acceptable levels of accuracy and 
precision for these applications. HYPR is a denoising operator that 
reduces noise using a high signal-to-noise composite image without 
compromising resolution. Traditionally a 3D post-processing operator, 
more recently 4D iterative formulations of HYPR have been proposed 
within reconstruction (HYPR4D-K-OSEM) and for post-processing 
(IHYPR4D). Both have shown increased precision without reduced 
accuracy, yet the information used to denoise in both algorithms is 
distinct; the combination HYPR4D-K-OSEM + IHYPR4D is thus 
proposed to maximize denoising while preserving high accuracy. This is 
demonstrated through phantom, simulation, and human studies, with 
HYPR4D-K-OSEM + IHYPR4D reducing noise up to 50% more than 
HYPR4D-K-OSEM alone without affecting accuracy. 

1 Introduction 

High resolution dynamic PET images are becoming 
increasingly sought-after to identify small, often rapid 
neurophysiological changes in response to intervention or 
disease. This includes studying metabolism changes from to 
a variety of tasks (task-based [18F]FDG [1-3]) and inferring 
neurotransmitter release from changes in radiotracer 
binding [4-6]. However, high spatiotemporal resolution 
images contain a low number of acquired counts per voxel, 
leading to extremely high noise in the spatial and temporal 
dimensions when using standard image reconstruction 
methods. This in turn decreases image precision and thus 
limits the sensitivity of these applications. This motivates a 
4D denoised reconstruction and post-processing 
combination that increases image precision with little to no 
reduction in image accuracy. 

HighlY constrained backPRojection (HYPR) is a denoising 
operator that filters a target image, 𝐼, (i.e., the dynamic 
frames) to reduce noise, then uses a higher signal-to-noise 
(SNR) composite image, 𝐶, to return high frequency 
features to the filtered target. Its first application in PET was 
as a post-processing method where the composite image is 
a weighted sum of all temporal frames and thus the operator 
is 3D, applied separately to each frames (HYPR3D) [7] 

𝐼ுଷ൫𝒙, 𝑡൯ = 𝐶(𝒙)
ூ൫𝒙,௧ೕ൯∗ி(𝒙)

(𝒙)∗ி(𝒙)
   (1) 

𝐶(𝒙) = ∑ 𝑤𝐼(𝒙, 𝑡)     (2) 

where 𝑗 indexes the dynamic frames, 𝐹 is the filtering 
kernel, 𝑤 is the weight for the 𝑗th frame, and “*” denotes 
convolution. This formulation implies all temporal 

information is lost and thus only spatial high frequency 
features can be extracted from the composite. As a result, if 
there is any contrast mismatch between the composite and 
the target bias will be introduced. This is especially relevant 
for PET tracers manifesting different contrasts during tracer 
uptake, progression to equilibrium, and washout periods, 
such as [11C]raclopride (RAC). 

Recently, a 4D formulation of HYPR has been incorporated 
into a kernelized Ordinary Poisson OSEM reconstruction 
(HYPR4D-K-OSEM [8]) as well as an iterative post-
processing method (IHYPR4D [9]). By 4D we mean the 
composite and filtering kernels are 4D; 4D filtering allows 
for greater noise reduction while a 4D composite allows for 
preservation of high frequency spatiotemporal image 
features. In both HYPR4D-K-OSEM and IHYPR4D this 
4D composite is iteratively updated to better match the 
contrast between the composite and target at each frame.  

In HYPR4D-K-OSEM, the composite is constructed by 
summing over all subset images separately for each frame; 
initially one iteration of OSEM is required to initialize the 
algorithm. The subset images have unique noise properties, 
thus allowing noise to add decoherently during summation. 
The first OSEM iteration and thus the initial composite has 
relatively low noise but underestimates contrast; subsequent 
iterations improve the composite contrast by updating the 
composite to be the sum of the denoised subset images from 
the previous iteration. Consequently, HYPR4D-K-OSEM 
increases contrast recovery with a significantly smaller 
noise increment per update than OSEM. Spatiotemporal 
features from the 4D composite for the 𝑚th iteration (𝐶ସ

 ) 
are extracted using the 4D HYPR operator into a kernel 
matrix, 𝐾 

𝐾 = 𝑑𝑖𝑎𝑔[ℎ]𝐹ସ    (3) 

ℎ =
రವ



ிరವ∗రವ
      (4) 

where 𝐹ସ is the 4D filtering kernel. The OSEM algorithm 
is applied to the kernel coefficients, 𝛼 

𝛼,௦ =
ఈ,ೞషభ

()(ೞ)ଵ
⋅ ቀ(𝐾ெ)்(𝑃௦)் ௬ೞ

ೞఈ,ೞషభାೞቁ 

      (5) 

where 𝑠 indexes the subsets, 𝑃 is the system matrix, 𝑦 is the 
measured projection data, 𝑏 includes scatter and randoms 
contributions, and “T” denotes matrix transpose. The subset 
image estimates are given as 
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𝜆,௦ = 𝐾𝛼,௦     (6) 

allowing updating of the composite for the next iteration 

𝐶ସ
ାଵ = ∑ 𝜆,௦

௦     (7) 

While HYPR4D-K-OSEM produces images substantially 
less noisy than OSEM images—especially in high 
resolution PET—the spatiotemporal noise at the voxel level 
may be further decreased by post-processing denoising. The 
post-processing method IHYPR4D is an iterative 4D analog 
of (1) that uses a set of spatial regions of interests (ROI) to 
define the initial 4D composite: for a given ROI ℛ, each 
voxel time activity curve (TAC) within the ROI is set to be 
the regional TAC. The composite is then filtered with the 
system/scanner point spread function to match the 
composite and target resolution 

𝐶ᇱ൫𝑥 , 𝑡൯ =
ଵ

|ℛ|
∑ 𝐼൫𝑥 , 𝑡൯∈ℛ ,   (8) 

𝐶൫𝒙, 𝑡൯ = 𝐶ᇱ൫𝒙, 𝑡൯ ∗ 𝑃𝑆𝐹(𝒙)   (9) 

After running one iteration of HYPR, in subsequent 
iterations the composite is replaced by the denoised image 
of the previous iteration 

𝐼ுସ
ୀଵ(𝒙, 𝒕) = 𝐶(𝒙, 𝒕)

ூ(𝒙,𝒕)∗ி(𝒙,𝒕)

(𝒙,𝒕)∗ி(𝒙,𝒕)
   (10) 

𝐼ுସ
ାଵ = 𝐼ுସ

 (𝒙, 𝒕)
ூ(𝒙,𝒕)∗ி(𝒙,𝒕)

ூಹరವ
 (𝒙,𝒕)∗ி(𝒙,𝒕)

   (11) 

By averaging over the many voxels of each ROI, the initial 
composite has extremely low noise. However, any 
nonuniform image features within an ROI are evidently not 
present within the initial composite. Like HYPR4D-K-
OSEM, the contrast of these features will be initially 
reduced, but subsequent iterations improve contrast with a 
low noise increment per iteration. 

HYPR4D-K-OSEM has already been shown to offer 
substantial improvements in image precision over OSEM as 
well as some improvements in accuracy through a reduction 
of zero-trapping and being less biased to the last subset of 
the data [8]. Initial work on OSEM + IHYPR4D has shown 
improvements in image precision over OSEM + HYPR3D 
at the same the same accuracy level of OSEM [9] (unlike 
HYPR3D, which introduces bias through composite-target 
contrast mismatch). Thus, we hypothesize that HYPR4D-
K-OSEM + IHYPR4D will further improve precision over 
HYPR4D-K-OSEM while maintaining high accuracy in a 
high resolution PET setting. This will likely increase the 
detection sensitivity of task-based neurophysiological 
changes such as metabolism and neurotransmitter release.  

2 Materials and Methods 

To test HYPR4D-K-OSEM + IHYPR4D in a high 
resolution PET setting, we perform phantom, simulation, 
and human studies on the Siemens High Resolution 
Research Tomograph (HRRT), currently the highest 

resolution brain-dedicated PET scanner. For HYPR4D-K-
OSEM, we use 16 subsets, set 𝐹ସ to be a Gaussian kernel 
with a (5 mm)3, four frame FWHM, and perform 10 
iterations. This combination was found to balance contrast 
recovery and noise suppression for data acquired on the 
HRRT. For IHYPR4D, we use a segmented anatomical 
MRI image to derive the ROIs. Gaussian spatial kernel sizes 
of 1x, 1.5x, and 2x the PSF of the HRRT (i.e. (2.5 mm)3 
FWHM) were tested with a Gaussian temporal kernel size 
of four frames FWHM. For comparison, we also test 
HYPR4D-K-OSEM + HYPR3D with the HYPR3D spatial 
kernel sizes set to match those of IHYPR4D, and a simple 
4D Gaussian filtering with a 1x PSF, two frame kernel size 
to keep the bias introduced by filtering relatively low. 

Phantom study: A modified Esser phantom with 4, 6, 8, 12, 
and 16 mm hot inserts filled with 18F in a 4:1 hot-to-
background ratio was scanned. The data were binned to 
match the temporal count distribution of a RAC scan with a 
4 x 1, 3 x 2, 8 x 5, 1 x 10 min framing protocol; the short 
half-life of 11C in general produces lower SNR dynamic 
images and thus presents a greater challenge for a given 
denoising operator. The IHYPR4D “segmentation” was a 
single hand-drawn ROI encompassing the entire phantom, 
such that the hot inserts serve as nonuniform image features 
within an ROI. Percentage contrast recovery (%CRC) in 
each hot insert versus voxel noise (standard deviation 
divided by mean) in a background ROI was evaluated. 

%CRC = 100% ×
ಹ ಳ⁄ ିଵ

ಹ ಳିଵ⁄
   (12) 

where 𝐶ு and 𝐶 are the estimated concentrations in the hot 
and background regions and 𝐴ு and 𝐴 are the 
corresponding ground truth concentrations. 

Simulation study: 20 noisy realizations of a realistic HRRT 
RAC scan, based on real human data, with the same framing 
protocol as above were simulated as described in [8]. The 
simulation includes uniform RAC binding in the caudate as 
well as a small (~30 voxel) and large (~100 voxel) hot spot 
in the putamen—corresponding to elevated binding—to 
simulate nonuniform image features, not separately 
segmented, within an anatomical ROI. To evaluate 
accuracy, percentage bias was calculated across all noisy 
realizations, then averaged separately across all voxels of 
the caudate, small hot spot, and large hot spot.  

%bias = 100% ×
ଵ

ே
∑

ି


ே
ୀଵ   (13) 

where 𝐶 is the estimated concentration for the 𝑛th noisy 
realization and 𝐴 is the corresponding ground truth 
concentration. To evaluate precision, percentage standard 
deviation was calculated across all noisy realizations then 
averaged across all voxels of the cerebellum, a uniform low 
binding structure in RAC 

%std = 100% ×
ଵ

̅
ට

ଵ

ேିଵ
∑ (𝐶 − 𝐶̅)ଶே

ୀଵ  (14) 
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To jointly analyze accuracy and precision, for each region 
we take the mean of the absolute bias over all frames and 
plot it against the mean %std across frames to yield bias-
noise trajectories.  

Human study: we visually compare the images and TACs 
from the simulation study and a real RAC scan of a healthy 
volunteer on the HRRT using the same framing protocol. 

3 Results 

Phantom study: %CRC vs. 
voxel noise curves in Fig. 1 
demonstrate that adding 
IHYPR4D to HYPR4D-K-
OSEM causes a loss of %CRC 
initially since the hot inserts are 
not included in the IHYPR4D 
segmentation. With further 
iteration, the %CRC returns to 
that of HYPR4D-K-OSEM at a 
significantly decreased noise 
level, i.e. provided enough 
iterations are run, IHYPR4D 
reduces noise by ~25% without 
changing the %CRC of the 
input data. More iterations are 
required for a larger IHYPR4D 
kernel size as well as for 
smaller structures. The trajectories for different kernel sizes 
are nearly identical for all inserts except the smallest (4 mm) 
where now the 2x PSF kernel size lies systematically below 
the others. Since 2x PSF is ~(5 mm)3, this suggests 
unsegmented features smaller than the kernel size cannot be 
fully recovered. Thus, we use the 1x PSF kernel size for 
IHYPR4D going forward. 

The 4D Gaussian filter induces a small loss in %CRC. At 
equivalent voxel noise, (1x PSF) IHYPR4D has higher 
%CRC. Additionally, at equivalent %CRC IHYPR4D has 
lower voxel noise. We thus drop the 4D Gaussian from 
future analyses. Like IHYPR4D, applying HYPR3D after 
HYPR4D-K-OSEM significantly decreases voxel noise 
without a decrease in %CRC—even with increasing kernel 
size. However, in this experiment the contrast in the 
phantom is not time-dependent, so the composite and target 
contrast are perfectly matched at each frame. In a more 
realistic scenario with time-dependent contrast, any contrast 
mismatch between the composite and a particular dynamic 
frame will be amplified by a larger kernel (see simulation 
study results below).  

Simulation study: the %bias vs. %std plots of Fig. 2a are 
similar to the %CRC vs. voxel noise plots; in the 
unsegmented hot spots, adding IHYPR4D after HYPR4D-
K-OSEM increases bias, but after an appropriate number of 
iterations the bias reduces to that of HYPR4D-K-OSEM at 
a ~50% reduced noise level. In the segmented caudate, 

IHYPR4D introduces little bias initially since the 
concentration is uniform in this ROI. HYPR3D also reduces 
noise, but now—unlike the phantom study—it also 
introduces bias through composite-target contrast 
mismatch; examining the %bias at each frame in Fig. 2b, 
the composite overestimates contrast during early (uptake) 
frames—resulting in positive bias—and underestimates 
contrast during later (washout) frames—resulting in 
negative bias. These effects are exacerbated by a larger 
HYPR3D kernel size. A sample uptake frame in Fig. 3a 
provides visual evidence of the HYPR3D overestimation. 
IHYPR4D, with its 4D composite, can better match the 
composite and target contrast in each frame to yield reduced 
bias at equivalent noise as HYPR3D, or reduced noise at 
equivalent bias.  

Fig. 1: %CRC versus voxel 
noise for the three smallest 
phantom inserts. Each marker 
represents an IHYPR4D 
iteration, increasing left-to-
right. The non-iterative post-
processing methods are shown 
as single markers. 

Fig. 2: (a) bias-noise trajectories for three regions of interest in the RAC 
simulation; (b) %bias at each frame for the same three regions. In this 
case, IHYPR4D is shown after three iterations. 

Fig. 3: (a) An axial slice of a representative realization of the RAC 
simulation for an equilibrium frame and an uptake frame (focused on the 
striatum); (b) a representative putamen voxel TAC from a sample noisy 
realization; (c) the mean ± standard deviation over all realizations of the 
same voxel TAC. Both IHYPR4D (three iterations) and HYPR3D use a 
1x PSF spatial kernel size. 
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From the images of Fig. 3a and the sample voxel TACs of 
Fig. 3b, a clear reduction in spatiotemporal noise is seen 
going from the traditional reconstruction OSEM to 
HYPR4D-K-OSEM. Adding IHYPR4D further decreases 
spatial and especially temporal noise—more so than 
HYPR3D, whose noise reductions primarily manifest in the 
spatial domain. This gives IHYPR4D higher voxel-level 
precision, as seen by the smaller standard deviation in the 
TAC values over all noisy realizations (Fig. 3c). 

Human study: the human study RAC images and TACs 
appear very similar to the simulated images (Fig. 4); the 
spatiotemporal noise is noticeably less in HYPR4D-K-
OSEM versus OSEM, and the highest degree of denoising 
is achieved when IHYPR4D is added in post-processing. 
Though the ground truth is unknown, the HYPR4D-K-
OSEM + HYPR3D uptake frames appear to have higher 
contrast than HYPR4D-K-OSEM alone, which would agree 
with the simulation study finding that HYPR3D 
overestimates contrast during RAC uptake. 

4 Discussion 

While HYPR4D-K-OSEM offers substantial reductions in 
spatiotemporal noise compared to traditional PET image 
reconstruction, in high resolution PET the acquired counts 
per voxel are very low and thus the summation over subset 
images during reconstruction produces a composite image 
that may not sufficiently increase voxel-level precision for 
applications requiring sensitivity to small spatiotemporal 
signal changes. Ideally, a bias-free post-processing 
denoising algorithm should be added to further increase 
precision without affecting the high accuracy of HYPR4D-
K-OSEM. We have shown through phantom, simulation, 
and human studies that a 4D iterative HYPR-based post-
processing algorithm, IHYPR4D, approaches this ideal by 
adding little to no additional bias to the reconstructed 
images while reducing voxel noise by up to 50%. 

IHYPR4D uses regional averaging over a set of ROIs to 
generate an extremely low noise 4D composite image for a 
4D implementation of the HYPR operator. Initially these 
HYPR-denoised images are biased, but by iterating the 
HYPR operator one can essentially remove this bias—
provided the image feature of interest is not smaller than the 

kernel sized used with IHYPR4D. By comparison, the 
previously proposed HYPR3D uses a 3D composite which 
is a weighted sum of all temporal frames, thus limiting 
temporal denoising and introducing bias in frames where 
the contrast differs from that of the composite. 

5 Conclusion 

HYPR4D-K-OSEM produces images of high voxel-level 
accuracy and precision compared to traditional 
reconstruction methods. Adding IHYPR4D as a post-
processing step further improves precision without 
sacrificing accuracy. Future research will use these 
denoised images in applications where high sensitivity to 
small voxel-level signal changes is required, such as 
detecting neurotransmitter release and task-based FDG. 
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Abstract Reducing both the radiation dose to patients and the recon-
struction time is key for X-ray computed tomography. The imaging
of bone microarchitecture at high spatial resolution is all the more
challenging as noisy data can severely deteriorate structural details.
Deep Learning based algorithms are efficient for post-processing poor-
quality reconstructions obtained with Filtered BackProjection, though
MSE-trained networks hardly capture the structural information rel-
evant for bones. Instead, conditional GANs allow to generate very
realistic volumes that correspond to their corrupted FBP. Moreover,
perceptual losses are efficient to capture key features for the human
eye. In this work we combine both concepts within a new framework
called CWGAN-VGG that is designed for the reconstruction of bones
at high spatial resolution, with an emphasis put on the preservation of
their structural information. We show on simulated low-dose CT bones
data that our CWGAN-VGG outperforms state-of-the-art methods that
involve GANs and/or perceptual losses in terms of PSNR and other
metrics.

1 Introduction

Bone microstructure study with X-ray computed tomogra-
phy (CT) is a challenging task due to the complexity of the
underlying structures [1], [2]. Physical limitations of scan-
ners and the need for reducing the patient’s radiation dose
may lead to noisy data, which need to be corrected to help
practitioners get relevant parameters. When the number of
projections is sufficiently large with a reasonable amount of
noise, analytical algorithms like the Filtered Back-Projection
(FBP) can offer satisfying results. When this is no longer the
case, iterative methods [3] [4] can be considered. A major
drawback of such algorithms is the reconstruction time and
the need for tuning parameters for every reconstruction.
Deep Learning based algorithms have the potential to en-
hance the quality of images by learning patterns from ground-
truth data, while significantly reducing the reconstruction
time compared to iterative algorithms. A solution is to use
neural networks to improve a poor-quality analytically ob-
tained reconstruction [5] [6], e.g the FBP obtained from
low-dose projections.
A critical point to address is the way the network should
be trained. A Mean Squared Error (MSE) loss between
predicted images and the corresponding ground-truths as in
[7] might lead to slight oversmoothing that deteriorates some

The authors acknowledge financial support of the French National
Research Agency through the ANR project LABEX PRIMES (ANR-11-
IDEX-0007) of Université de Lyon. The authors thank Andrew Burghard
from University of California, San Francisco, USA, for providing the
experimental µCT data.

important structural details and thus affects the study of bone
microarchitecture.
Instead, the use of a generative adversarial network (GAN)
[8] allows to capture the probability distribution of the
ground-truth images. In [5], such a network is trained with
the Wasserstein distance along with a perceptual loss that
compares the network output against the ground truth in a
feature space designed to match the human eye perception,
thus preserving key structural information. The resulting
WGAN-VGG achieves impressive results on noise removal
and artifacts correction. A similar architecture was proposed
in [9] for underwater image restoration.
Nevertheless in both cases, the Wasserstein distance might be
low even if the output does not correspond to the FBP it has
been generated from. This is not the case when considering
a conditional GAN [10] where the discriminator also takes
the conditional information as an input. Such a framework
was proposed in [11] and for medical image reconstruction in
[6]. In [12], authors propose a conditional Wasserstein GAN
(CWGAN) to capture the probability distribution of some
volume conditionally to the FBP obtained from low-dose
projections.
Combining such a conditional GAN with a perceptual loss
has never been performed, though it seems to be perfectly
adapted to bone microarchitecture imaging in order to capture
their structural information. We then propose the CWGAN-
VGG network that learns a probability distribution condition-
ally to the FBP obtained from low-dose projections, with a
perceptual loss that is added to the generator loss function in
order to preserve bone microstructure information.
In section 2, we present our CWGAN-VGG algorithm. In
section 3 we detail the numerical experiments that we per-
formed on simulated low-dose projections of µCT bone data.
In section 4 we discuss the impact of both the conditioning
and the perceptual loss on the quality of the reconstructions.

2 CWGAN-VGG framework

2.1 Conditional GAN and perceptual loss

Let y be the FBP reconstructed volume from low-dose pro-
jections and x the reference volume. We recall the CWGAN
introduced in [12], where the aim is to approximate the poste-
rior distribution π(x|y) with a parametrized generator Gθ (y).
Knowing this distribution allows to generate a number of
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volumes that can be responsible for data y. To approximate
such a posterior distribution, the objective is to find θ ∗ that
minimizes d(Gθ (y),π(x|y)), with d some distance between
probability distributions. A now commonly used method
to improve neural networks convergence is to consider the
Wasserstein distance [13]. Denoting the probability distribu-
tion associated to the generator Gθ (y) by Pθ (y) - remember
that y is the condition here -, the dual characterization of this
distance writes

W (π(x|y),Pθ (y)) = sup
|| f ||L≤1

E
x∼π(x|y)

[ f (x)]− E
v∼Pθ (y)

[ f (v)] (1)

where the supremum is taken over all the 1-Lipschitz func-
tions. Since it is not feasible to cover the entire space of these
functions, they are parametrized with a neural network Dw

called a discriminator, with parameters w. Also, the genera-
tor Gθ (y) takes as input realizations z drawn from a simple
probability distribution η . We ensure the Lipschitz condition
by adding a gradient penalty term to the distance function as
in [14]. Minimizing the Wasserstein distance approximated
by neural networks finally gives the optimization problem

θ ∗ ∈ argmin
θ

sup
w

LCWGAN(D,G) = E
(x,y)∼µ

[Dw(x,y)]

− E
z∼η
y∼Py

[Dw(Gθ (z,y),y)]

−λ E
x̂∼Px̂

[(||∇x̂Dw(x̂, ŷ)||2−1)2]

(2)

where µ is the joint distribution of (x,y) corresponding to
paired low-dose FBPs and high-dose ground truths, Py the un-
known distribution of low-dose FBP data, x̂∼ Px̂ are sampled
along straight lines between samples from both π(x|y) and
the generated distribution Pθ (y), ŷ are sampled along straight
lines between the corresponding FBPs, and λ is the weighting
term for the gradient penalty. During training, expectations
are replaced by their empirical counterpart obtained with
paired data.
The resulting network generates stochastic samples condi-
tionnally to the FBP of low-dose projections, according to
a probability distribution that approximates the true distri-
bution π(x|y). Also, one can take η as a Dirac distribution.
In that case, the network is deterministic and generates a
single output from the low-dose FBP. We call this network
Det-CWGAN.
In [5], authors propose the WGAN-VGG framework which
consists in training a generator by adding a perceptual loss
to an unconditioned WGAN objective function, in order to
better fit human perception of images, given as

LVGG(Gθ ) =
1
n

E
(x,y)∼µ

[||V GG(Gθ (y))−V GG(x)||2F ] (3)

where n is the total number of voxels and V GG is the 16th

output of the pre-trained VGG-19 model [15], ||.||F is the
Frobenius norm, and in their case Gθ only takes y as input.

Figure 1: Scheme of the proposed CWGAN-VGG model. The
FBP data is taken as input of the generator Gθ . Both the FBP and
the generated image are concatenated to produce the input of the
discriminator. The network is trained according to (4).

It is shown in [16] that such a loss better suits human percep-
tion compared to pixel-wise based losses. In this framework,
the output is deterministic and the discriminator is not con-
ditioned on the FBP input, which amounts to taking η as a
Dirac distribution and x∼ π(x) instead of x∼ π(x|y) in (1).

2.2 Proposed architecture

In this work, we make use of the FBP computed from the
acquired low-dose projections, to learn a conditional prob-
ability, by adding this FBP as an input to the discriminator.
The benefits of conditioning the discriminator were already
shown in [11] for natural images. Though authors used pixel-
wise based additional losses, we propose to use the VGG
perceptual loss since retrieving structural information on
data is of major importance in bone microarchitecture imag-
ing. Thus we propose the CWGAN-VGG framework that is
trained as

min
θ

max
w

LCWGAN(Dw,Gθ )+λ1LVGG(Gθ ) (4)

with λ1 a weighting parameter. The scheme of the resulting
network is presented in Fig. 1. In WGAN-VGG, the dis-
criminator is not fed with the low-dose FBP, which results
in a different paradigm compared to conditional GANs; the
distribution that is learned is π(x), and the generator is a
mapping between the space of low-dose FBPs and the space
of high-dose images. In conditional GANs, the low-dose
FBP y is the conditional data and the generator is a mapping
between the latent space Z, where samples z are drawn from
η , and the space of high-dose images. To our knowledge
this is the first time that the CWGAN-VGG architecture is
proposed.
Moreover, both [11] and [12] pointed out the difficulties of
CWGAN to generate stochasticity, as the network tends to
ignore the input noise. Thus in our tests, we also implemented
a deterministic CWGAN-VGG (Det-CWGAN-VGG) that
only learns a Dirac distribution, for comparison.
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3 Numerical Experiments

3.1 Materials and methods

The ground-truth data consist of human bone volumes re-
constructed from acquisitions of radius and shin structures
obtained on a SCANCO µ-CT 100 with a 24-µm resolution.
We create 180 2D projections of these volumes - correspond-
ing to a low-dose acquisition - with ASTRA Toolbox [17]
in Python. To simulate counting noise, random values are
drawn from a Poisson law with mean the projections pixels.
To simulate detectors noise, we then add a zero-mean Gaus-
sian noise with standard deviation σ = 0.8% of the mean
value in the projections. We then take the FBP - with Hann
filter - as the input of the neural networks.
The dataset is composed of 13 volumes from different pa-
tients, 3 of which are only taken for evaluation. These 3 vol-
umes have respectively a number of slices, height and width
of 164×882×752, 194×466×372 and 180×824×702.
The trained networks are first evaluated with the Peak Signal
to Noise Ratio (PSNR) and the Structural SIMilarity index
(SSIM). Then, we post-process the reconstructed volumes
with Otsu segmentation [18], and we compute the DICE in-
dex between the segmented reconstructed volumes and the
segmented ground-truth data. Also we compute the ratio
between the segmented bone volume and the total volume
(BV/TV) that we compare with the one of ground-truth data.
These metrics help better reflect the capability of the net-
works to preserve bone microstructure information.
Since CWGAN and CWGAN-VGG produce stochastic out-
puts, we average each voxel of 10 generated outputs to pro-
duce the volume for evaluation. Note that in our tests, in-
creasing this number does not improve the performance.
Training is performed on 64x64 patches from 1,992 different
2D slices for a total of 297,976 patches, 20% of which are
used for validation. The evaluation is performed by averaging
metrics on the 3 test volumes.
The generator is a 16-layer Convolutional Neural Network
(CNN) with 128 3x3 filters in each layer, except for the last
layer which has only one since the output is the generated
image. We used the same discriminator structure as in [5].
For both the discriminator and the generator, Leaky ReLU
activations are used with parameter 0.3 and He initialization
[19], except for the output of the discriminator that has no
activation function. Optimization is performed with Adam
algorithm [20] with β1 = 0.9, β2 = 0.999. The learning rate
is 10−6 - except for WGAN-VGG where it is 10−5 -, with a
batch size of 128 and 7,000 epochs. We took λ1 = 10 for all
the algorithms that include a VGG loss. For one update of
the discriminator, we update the generator 4 times.
For a fair comparison, the kernel size, batch size, learning
rate, number of generator updates and λ1 have all been opti-
mized for every single network, on the validation set. Com-
putations are performed on a NVIDIA Tesla V100 GPU, and
training of one network takes approximately 30 hours.

PSNR SSIM DICE BV/TV
FBP 15.96 0.491 0.880 0.2317

Det-CWGAN 23.05 0.634 0.928 0.1951
CWGAN 25.41 0.739 0.939 0.2043

WGAN-VGG 25.10 0.739 0.952 0.2154
Det-CWGAN-VGG 25.20 0.696 0.948 0.2096

CWGAN-VGG 26.00 0.753 0.951 0.2091

Table 1: Metrics computed on the 3 test volumes. PSNR, DICE
and BV/TV were computed by stacking the 3 - potentially seg-
mented - volumes, SSIM is the average value of the metric com-
puted on each of them. The ground-truth BV/TV is 0.2077.

3.2 Results

Reconstructions of one of the three testing volumes are shown
in Fig 2, along with a region of interest. Note that the 2 other
testing volumes as well as the 10 training volumes all have a
significantly different shape, which attests for the ability of
the networks to generalize. In the second row of Fig 2, we
notice that Det-CWGAN is the only one that fails to recover
some continuous structure of the bone, which is a key feature
for bones imaging. However, for the others there is no clear
indication that one reconstruction outperforms the others.
Table 1 allows to better distinguish between the obtained
reconstructions. Results show that CWGAN-VGG performs
the best in terms of PSNR, SSIM and BV/TV ratio, which
is an important metric for bone microarchitecture. The al-
gorithm presents a DICE index that is only slightly inferior
to the one of WGAN-VGG, which outperforms the other
algorithms for this metric. We also note that both CWGAN
and CWGAN-VGG perform better than their deterministic
version for the tested metrics.

4 Discussions

Our results suggest that using a perceptual loss for training
our generator as in [5] allows the network to produce vol-
umes that are closer to the real ones, in terms of pixel-wise
metrics and structural-specific evaluation methods. Indeed,
CWGAN-VGG outperforms CWGAN, whether it is on the
deterministic or stochastic version.
We also argued that conditioning the discriminator would
produce outputs that better match the FBP they are condi-
tioned on. This is the case in our tests, where CWGAN-VGG
produced better results than WGAN-VGG for 3 out of the 4
tested metrics, and the DICE index for both methods is very
close.
We also find that it is less optimal for the network to learn a
Dirac conditional distribution. Indeed, the strategy of aver-
aging several stochastic outputs gave a significant improve-
ment compared to using a deterministic network for both
the CWGAN and CWGAN-VGG networks. Along with im-
provements on those metrics, the non-deterministic outputs
that CWGAN and CWGAN-VGG produce might be very
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Ground Truth FBP Det-CWGAN CWGAN WGAN-VGG Det-CWGAN-VGG CWGAN-VGG

Figure 2: Entire slice (first row) and zoom on this slice (second row) of the bone volume reconstructed with different architectures, with
pixel intensities between 0 and 1

useful for practitioners in order to get a level of confidence
for specific regions of interest in the reconstruction.
In order to fully show the potential of CWGAN-VGG, work
is under progress to train and test it on different noise config-
urations to get a more robust model and evaluate it on more
realistic data for even more metrics.

5 Conclusion

We proposed a new framework called CWGAN-VGG for
the task of enhancing the quality of a FBP acquired from
low-dose projections. It combines both the ability of GANs
to learn conditional probabilities and the preservation of
key structural information provided by perceptual losses.
We showed the benefits provided by both conditioning the
discriminator with the low-dose FBP and adding a perceptual
loss to train the generator. We also showed the improvement
on the evaluated metrics when using a non-deterministic
network. Our resulting architecture thus outperformed state-
of-the-art ones that rely on similar methods, for PSNR and
other metrics, on CT bones data.
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Abstract In this paper, we present an approach based on a combi-
nation of convolutional neural networks and analytical algorithms to
interpolate between neighboring conebeam projections for upsampling
along circular trajectories. More precisely, networks are trained to
interpolate the angularly centered projection between the input projec-
tions of different angular distances. Experiments show that an analyt-
ical interpolation as additional input is more beneficial than adding
more neighboring projections. Using our best model, we achieve an
x8 upsampling by repeating the interpolation three times. Though not
depending on a specific reconstruction algorithm, we show that FDK
reconstructions substantially benefit from this upsampling for remov-
ing streak artifacts. Using this FDK reconstruction as initialization for
ART is also superior to other initializations but comes with a higher
computation time and therefore cannot be considered as an option in
an interventional setting.

1 Introduction

Conebeam X-ray CT (CBCT) is a helpful tool for surgeons
to guide them during interventions. The downside is that
the patients as well as the surgeons are exposed to harmful
X-radiation. Reducing it is possible by acquiring fewer pro-
jections or applying less radiation while keeping the number
of projections high. In both cases however, the image quality
of the reconstructed volumes using the commonly used FDK
algorithm is severely impaired by streak artifacts or noise.
Many algorithms have been proposed to overcome these arti-
facts [1] but are too costly in terms of computation time to
be applicable in an interventional setting, especially iterative
methods that need to compute both forward and backprojec-
tions in each iteration for the entire 3-D volume.
Convolutional neural networks (CNNs) and deep learning
have found their way into medical imaging [2] and CT im-
age reconstruction [3]. Owing to their trainable nature, they
directly incorporate domain knowledge to approximate the
reconstruction more closely. Despite the high computational
power of modern PC systems, training CNNs on whole 3-
D data sets is usually not feasible due to the large mem-
ory requirements and is often stripped down to 2-D prob-
lems or patch-based 3-D approaches. The inherent two-
dimensionality of conebeam projections suggests using them
in combination with CNNs. The method proposed here will
be used to interpolate between these projections which en-
ables an upsampling along a circular trajectory around the
scanned subject. Since the interpolation is carried out in pro-
jection space, the method does not rely on any reconstruction
algorithm and preserves data consistency.

2 Method

2.1 Analytical Projection Interpolation

As described in [4], conebeam projections can be approxi-
mately interpolated by using (Eq. 24 in [4])

g(λ + ε∆λ ,α)' (1− ε)g(λ ,b(λ + ε∆λ ,α)−a(λ ))
+ εg(λ + ε∆λ ,b(λ + ε∆λ ,α)−a(λ +∆λ ))

(1)
for projections g(λ ,α) from source positions a(λ ) in direc-
tions α and points of interest b(λ ,α) that are closest to the
rotation axis on the line through a(λ ) with direction α . Un-
like [4], the directions α here are chosen to coincide with
the projection lines of the projection to be interpolated. This
only requires interpolating on the given projections.

2.2 CNN Approach

Assuming an equiangular sampling of conebeam projections
along a circular trajectory, the presented approach upsamples
along the trajectory by subsequently interpolating projections
angularly centered between neighboring projections. Simple
algorithms like linear interpolation are not applicable because
of the sinusoidal structure and perspective distortions caused
by the conebeam. A U-Net [5] is used to approximate this
highly complex interpolation because of its large receptive
field that is able to capture and trace larger translations in
the projections compared to flat CNN architectures. (1) Net-
works are trained to predict the projection angularly centered
between two projections from only its direct neighbors for
2°, 4° and 8° of angular distance (referred to as nn2). (2) The
number of neighboring input projections is increased from
2 to 4 and 8 neighbors to provide more angular information
(referred to as nn4, nn8). (3) Instead of increasing the num-
ber of neighboring projections, the analytical interpolation
described in Sec. 2.1 with ε = 0.5 is used as an additional
input which is supposed to guide the network closer to the
true interpolation (referred to as nn2+ana).

2.3 Datasets and Training

The data of 22 subjects from the CT Lymph Nodes collection
[6] of The Cancer Imaging Archive [7] is used, consisting
of reconstructed volumes of the abdomen with different in-
plane spacings that serve as ground truth. Conebeam projec-
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Up Method NMSE PSNR SSIM
(×10−5) [dB] [%]

x2 ana 10.88 50.28 99.26
x2 nn2 8.63 50.74 99.01
x2 nn4 11.49 49.68 98.80
x2 nn8 17.32 47.57 97.87
x2 nn2+ana 10.91 49.80 98.74

x4 ana 32.60 45.48 97.84
x4 nn2 17.15 47.56 98.24
x4 nn4 27.63 45.52 97.53
x4 nn8 40.20 44.10 96.34
x4 nn2+ana 18.24 47.44 98.01

x8 ana 93.52 41.09 94.44
x8 nn2 58.64 42.70 96.03
x8 nn4 79.94 41.32 94.39
x8 nn8 114.83 39.76 92.61
x8 nn2+ana 32.45 45.17 96.98

Table 1: Projection errors for different upsampling methods.

tions were generated using the CTL toolkit [8] equiangularly
along a circular trajectory with a source to detector distance
(SDD) of 1000 mm and a source to isocenter distance (SID)
of 750 mm. The flat panel detector consists of 256×256
elements with a pixel size of 4 mm2 (cone angle of 54.2°).
The values were chosen such that most projections were not
truncated and to enable a faster training.
The U-Net [5] has a depth of 5 and is slightly modified. The
encoder doubles the number of layers after each average
pooling, whereas the decoder halves the number of layers
after each nearest neighbor upsampling. The optimizer is
SGD with a weight decay of 1×10−4 and a learning rate
of 6×10−3 that gradually drops to 1×10−6 by a factor of
0.8 after every 10 epochs of no improvement in validation
loss. Every network was trained for 300 epochs using mean
squared error (MSE) and another 300 epochs using equally
weighted l1 and MS-SSIM loss similar to [9] to focus more
on general structures and edges. 16, 4 and 2 datasets were
used for training, validation and testing, respectively. For
faster convergence, the projections were normalized between
0 and approximately 1 by dividing by the 99th percentile of
all projections of all datasets.

3 Results

3.1 Projections

The different interpolation methods are evaluated on the pro-
jections first. Except for the analytical upsampling described
in Sec. 2.1, all methods interpolate the projection angularly
centered between the input projections, which is repeated
for x4 and x8 upsampling using the corresponding trained
networks. For the analytical upsampling, the parameter ε is

Method NMSE PSNR SSIM
[%] [dB] [%]

full 4.95 28.76 99.14
sparse 16.09 20.86 97.72

ana 7.43 25.03 98.81
nn2 6.51 26.07 98.97
nn4 6.74 25.77 98.92
nn8 7.28 25.21 98.83
nn2+ana 6.00 26.81 99.03

Table 2: Reconstruction errors of FDK reconstructions for differ-
ent upsampling methods from 45 available projections.

chosen to directly resemble the positions of the projections
to be interpolated. Tab. 1 shows the results for the error
metrics normalized mean squared error (NMSE), peak signal-
to-noise ratio (PSNR) and structural similarity index measure
(SSIM) averaged over all projections. The calculation of the
metrics obviously excludes the non-interpolated projections.
Interestingly, the results are quite different for the different
upsampling stages.
For the single interpolation (x2, angular difference of 2°),
nn2 gives the best results for NMSE and PSNR. The analyti-
cal interpolation however results in the highest SSIM.
Interpolating twice (x4, angular difference of 4°) is done best
by nn2, this time for all metrics.
Finally, the optimal method for carrying out the interpolation
three times (x8, angular difference of 8°) is using nn2+ana.
A patch of an exemplary x8 interpolation created with the dif-
ferent methods is shown in Fig. 1. Compared to the ground
truth patch, the other patches are more blurry. The patch
created with the analytical interpolation looks like the su-
perimposition of two projections. The nn4 and nn8 patches
seem to have more high frequencies than nn2 and conse-
quently look less blurry. nn2+ana is visually closest to the
ground truth and the least blurred.

3.2 Reconstructions

Evaluating in projection space only does not fully show the
benefits of the proposed method. It is also necessary to com-
pare the reconstructions. We decided for the commonly used
FDK [10] algorithm as well as ART [11] without interpolated
projections initialized with the FDK reconstruction using all
interpolated projections.
All reconstructions are created with the CTL toolkit [8]. The
ART reconstructions run for 5 iterations with enabled posi-
tivity constraint.
Since the number of projections is still relatively small and
the resolution of the detector is quite low, the reconstructions
will also be compared to the FDK reconstruction using all
360 projections to find lower bounds for the error metrics.
As described previously, though not depending on any recon-
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GT ana nn4nn2 nn2+anann8

Figure 1: Top: Interpolated projections (central part) of x8 upsampling of different interpolation methods compared to ground truth
projection (GT). Bottom: Zoomed patches around a hip implant.

struction algorithm, the interpolated projections are supposed
to increase the quality of the reconstructions by providing a
more appropriate sampling of projections.
This hypothesis is evaluated using the FDK reconstruction
algorithm, first. For brevity, only the reconstructions of the
highest upsampling (x8, 45 available projections) are investi-
gated. Tab. 2 shows the error metrics for the different meth-
ods averaged over all axial slices. For reference, the first
two rows serve as lower/upper bounds: values for the full
FDK describe the errors between the ground truth volume
and the volume reconstructed from 360 projections, whereas
values for the sparse FDK describe the errors between ground
truth and reconstruction from 45 projections. All interpola-
tion methods optimize the sparse FDK reconstruction and
are quantitatively closer to the full FDK. nn2+ana works
best, followed by nn2, nn4, nn8 and using only the analyt-
ical interpolation. This closely resembles the errors on the
projections described in the previous section.
The left column of Fig. 2 shows exemplary FDK reconstruc-
tions using the different methods. Compared to the direct
FDK reconstruction from 45 projections (sparse), every
method reduces the streak artifacts. The analytical upsam-
pling (ana), however, basically results in a radially blurred re-
construction. None of the CNN-based reconstructions suffers
from streak artifacts or radial blur, but they appear slightly
more blurred than the sparse FDK reconstruction. As ex-
pected from the quantitative analysis, nn2+ana also creates
the best visual result.
ART provides another simple reconstruction algorithm. Due
to its iterative nature, it is inherently slower than FDK but
enables simply adding additional constraints resulting in re-
constructions of higher quality. For a better convergence,
ART is initialized with another reconstruction. In our ex-
periments, we use the FDK reconstructions of the different
interpolation methods and run ART with only the 45 available
projections, which results in the best compromise between
reconstruction time and quality. Tab. 3 shows the error met-
rics. Zero-initialized ART and sparse-FDK-initialized ART
are shown for reference. In all cases, ART outperforms FDK.
Again, nn2+ana works best, followed by the other methods

sparse

ana

nn4

nn2

nn2+ana

nn8

Figure 2: Reconstructions for different upsampling methods. Left
column: FDK. Right column: ART initialized with FDK.

Init. NMSE PSNR SSIM
[%] [dB] [%]

zero 2.72 28.16 99.73
sparse 2.28 28.91 99.78

ana 2.19 29.06 99.80
nn2 1.88 29.79 99.84
nn4 1.96 29.57 99.83
nn8 2.12 29.23 99.81
nn2+ana 1.65 30.40 99.86

Table 3: Reconstruction errors of ART reconstructions for differ-
ent upsampling methods from 45 available projections.
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in the same order as in the FDK reconstructions.
The right column of Fig. 2 shows exemplary ART recon-
structions using the different methods. They are not only
quantitatively closer to the ground truth but also qualitatively
outperform their FDK counterparts. There are only slight
visual differences of the ART initialized with the different
FDK reconstructions. For the sparse case, edges are pre-
served well but tissues of the same absorption coefficient
appear noisy. nn2+ana has the best visual quality with the
least noise and the best edge preservation compared to the
other methods.

4 Discussion

Increasing the number of neighboring projections does not
increase the quality of the interpolated projections. Since the
additional projections are only provided to the CNN as input
channels and the convolutions are carried out per channel, it
is possible that (without any special weight initialization) the
information from more distant neighbors is not local enough
to be considered as helpful knowledge during backpropaga-
tion. Moreover, increasing the number of input projections
even impairs the prediction quality. Further tests need to
investigate why different interpolation methods work best for
certain upsampling stages.
The simulated projections do not contain noise, are almost
not truncated, have a low resolution and a rather large pixel
spacing. Further experiments need to focus on more realistic
detector and gantry parameters and the method needs to
be tested on real data, especially including interventional
instruments and other artifact creating influences.
The used error metrics only give a rough impression of the
quality. Due to the blurring of edges caused by the interpo-
lation, future work needs to focus on how exactly mappings
of edges are changed as well as how the reconstructions
compare to other state-of-the-art methods.
Using the neighboring projections as input channels of the
U-Net is a rather straightforward way. As with other deep
learning methods, it is conceivable that another network ar-
chitecture can extract more information from the input data
and thus improve the quality even further, which will be part
of future experiments. The code is available on Github1.

5 Conclusion

It was shown that conebeam projection interpolation using
CNNs applied to trajectory upsampling significantly reduces
streak artifacts from FDK reconstructions and provides a
strong prior for iterative reconstruction algorithms when used
for the initialization in ART. Providing further knowledge
about the interpolation to the network in terms of the analyti-
cal interpolation approach similar to [4], the quality can be
improved even further. This allows for a dose reduction by

1https://github.com/phernst/conebeam_interpolation

a factor of at least eight while still providing a good quality
of the reconstructions. Compared to an FDK reconstruction
from 45 projections, our best interpolation method increases
the PSNR by almost 6 dB. Though not applicable in interven-
tions due to time requirements, initializing an ART with the
FDK reconstruction further increases the PSNR to 30.40 dB.
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Abstract A clean and anatomically informative prior image is important 

in normalized metal artifact reduction (NMAR) method. To fully utilize 

the advantages of NMAR in terms of speed and computational cost, the 

prior image generation should desirably be fast and least case-dependent. 

In this study, we propose an efficient sinogram surgery method for 

computing prior image that does not require iteration or optimization. 

The beam-hardening corrector was employed to remove the artifact-

corrupted region in the sinogram domain. Also, the normalization was 

used to minimize the inconsistencies of the corrected-sinogram instead 

of using iterative fidelity check. The results show well-preserved 

anatomical structures while substantially reducing the metal artifacts. 

With the use of the image prior, as proposed in this work, for NMAR, it 

is expected to preserve anatomical structures and increase the soft-tissue 

contrast without compromising the benefits of NMAR. 

1 Introduction 

 

Metal artifacts in CT imaging constitute one of the major 

causes that hinder accurate diagnosis of and effective 

treatment planning of various diseases in the patients who 

have metallic inserts. Continuing research efforts have been 

exerted on reducing the metal artifacts for decades. 

Normalized metal artifact reduction (NMAR) [2] is one of 

the popularly used techniques and is in focus of this work. 

NMAR has desirable features for practical applications in 

that it is fast and effective with a relatively low 

computational cost. The key idea exists in the usage of a 

prior image for sinogram normalization. The normalization 

using this prior sinogram before interpolation can minimize 

the inconsistencies of the sinogram and prevent introducing 

additional artifacts. Also, the anatomical structures of the 

prior image such as bone can be preserved after the de-

normalization step. However, the results heavily depend on 

the quality of the prior image, which means additional 

secondary artifacts may be introduced by an inaccurate or 

artifact-corrupted prior image.  

Thus, acquiring a clean and anatomically informative prior 

image is critical in NMAR. Furthermore, the prior image 

generation should be fast and least case-dependent in order 

not to undermine the advantages of NMAR in terms of 

speed and computational cost. In the literature, the image 

fusion based approach [3, 4] and iterative algorithms [5, 6] 

were proposed for prior image generation. Recently, neural 

network based approach [7] was also investigated. However, 

they are still computationally rather expensive and time-

consuming in a relative sense to the one-shot analytic 

approaches due to the optimization or training nature.  

In this study, we propose an efficient sinogram surgery-

based method[8, 9] for computing prior image that does not 

require iterative processes or optimization. The sinogram 

surgery method enables to fully utilize the anatomical 

information of the metal-trace compared to a simple 

interpolation. A mathematically derived beam-hardening 

corrector [10] was utilized in the sinogram domain for the 

removal of the artifacts. The normalization was also used to 

minimize the inconsistencies of the corrected-sinogram 

after the surgery. 

2 Materials and Methods 

 

A. Reprojection of metal-replaced FBP image 

 

Initially reconstructed FBP image from the original 

sinogram 
origS  has severe streaks and noises due to the 

metallic objects. To create a metal-replaced FBP image, a 

smoothing filter (Gaussian used in this study) was applied 

to mitigate the noise, and the values of metal regions were 

replaced by a constant value softP  that has a similar scale 

with surrounded soft tissues. The metal region was 

segmented using threshold and softP  was chosen from 

averaged values of soft tissues. By forward projecting of 

metal-replaced FBP image, the reprojection sinogram reprojS

was obtained.   

The metal trace of reprojS  shows important differences 

when compared with the original sinogram 
origS . In 

origS , 

the metal-overlapped region oM  is the main cause of the 

beamhardening artifacts, because, the bright streaks and 

dark shade artifacts correlate with the high-frequency and 

low-frequency change of sinogram consistency in oM [1]. 

(In sigle metal case, only cupping artifacts occur inside of 

the metal [1]. In this study, only cases that considered which 

have at least two metal objects.) Also, the anatomical 

information tend to be buried due to the high attenuation 

value of the metals. However, in reprojS , the reprojected 

bright streaks relocated in the extended boundary region of 
oM , and the reprojected dark shade artifacts are centered in 
oM  (in Fig. 1). Because, the  forward projection of the 

metal-replaced FBP image just relocate the artifacts into 

more extensive position in the reprojS . More, due to the 

replacement of metal objects, the anatomical information 

could be excavated from the large metal value in reprojS  .  

289



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
  

 

(a) (b)  
Figure 1. (a) is the only metal trace image of reprojS . (b) is highlighted 

oM of (a). In (a), the green circle represents excavated anatomical data, 

and red circle represents the relocated dark shade artifacts. The red circle 

of (b) represents relocated bright streaks artifacts. 

 

B. Specifying artifact-corrupted region corruptM using the 

beam-hardening corrector ,D   

 

In section A, the relocation of the beamhardeing artifacts in
reprojS was explained. To compensate them, K.Y Jeong et al 

was proposed directional interpolation of oM , after the 

total-variation smoothing operation [8]. However, only 

interpolating oM is not sufficient to cover the invading 

artifacts without pre-iterative treatment. To cover the 

artifacts more effectively, the beam-hardening corrector 

,D   in [10] was used. The mathematically derived ,D   

can generate the modeled beamhardening artifacts for given 

metal image. It was supposed to use in the image domain 

through optimization of energy-related parameter λ. 

In this study, the metal trace of 
,

nometal

DR   was used to 

generate a mask for sinogram correction ( R  indicates 

forward projection operator, and the superscript indicates 

metal removed image). ,D   guarantees the streaks 

generation for any λ value, so it does not require 

optimization for generating a mask in the sinogram domain. 

The mask for beamhardening correction corruptM  was 

created following the equation (1). The purpose of the mask 
corruptM  is to properly cover only the neighboring regions of 
oM  for selective interpolation. corruptM was calculated by 

following equation (1). 

 

, *

1

nometal

Dcorrupt
if metal trace of R TNaN

M
else

 
= 


 (1) 

 

*T  is a threshold value. The NaN indicates regions that will 

be interpolated. corruptM was possible to cover more 

extensive areas of artifacts region more than oM (in Fig. 

2(b)).  

 

(b)(a)  
Figure 2.  (a) is the image of ,

nometal

D   , and (b) is the image of corruptM

which indicates the artifact-corrupted region that will be interpolated 

(white).  
 

C. Normalization of reprojS  

 

In the sinogram surgery approaches, directly replacing the 
orig

metalS  to reproj

metalS (subscript indicates the only metal trace part) 

will be introduced secondary artifacts, due to the mismatch 

of two different sinogram consistencies (in Fig. 3 (a)). In [8], 

they constructed a new sinogram to be transplanted using 

the high-frequency of denoised reproj

metalS  (iteration used), and 

low-frequency of linear-interpolation (LI) data of orig

metalS . 

This method may work well with iterative smoothing 

algorithms, however, noise amplification emerges as a 

problem in iteration-free cases. 

As an alternative, low-frequency normalization was used. 

By the normalization step (in eq. 2, 3), the low frequency of 

the reproj

metalS  was converged into the LI-data of orig

metalS (in Fig. 3 

(b) and (d)) .  

 

( )
orig

metal

reproj

metal

LI dataof S
N G

S
=    (2) 

( )reproj reproj

metal metalS N S=    (3) 

 

N is a normalization factor, G is a smoothing filter 

(Gaussian was used in this study), and ( )reproj

metalS indicates 

normalized 
reproj

metalS . 

 

(a) (b)
 

Figure 3. (a) is a synthesized sinogram from the sinogram surgery, (b) is 

a synthesized sinogram after normalization. The line-profile of (a), (b) 

was presented following the yellow line of (a) in the bottom-left of 

images, respectively. 
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D. Sinogram surgery and prior image generation 

 

The sinogram surgery was simply done by replacing orig

metalS  

to ( )reproj

metalS with the interpolation using corruptM  (in Fig. 

4(b)). For the smooth connection in the boundary, the 

marginal gap of the metal trace was also interpolated. The 

corrected-sinogram was reconstructed using FBP, and the 

simple flat prior image was generated by bone segmentation 

using a threshold. The over all process is shown at Fig. 5. 

 

(a) (b)

[1.0 7.6] [1.0 7.6]

 
Figure 4. (a) represents the masked sinogram after surgery by Mcurropt , 

and the boundary of the metal trace. Then, the masked region was 

interpolated for artifacts removal. 

 

E. Materials 

 

Polychromatic (80kVp) x-ray measurement data of XCAT 

phantom were acquired using fan-beam CT simulation. The 

poisson random noises were added to create beam-

hardening and photon starvation artifacts. Phantom 1 has 

two insertions of titanium with 360 views of projection data 

(SDD = 1300mm, SOD = 900mm). Phantom 2 has two 

insertions of titanium with 720 views of projection data 

(SDD = 2750mm, SOD = 2500mm). Also, a real sinogram 

of 120 kVp of helical CT projection data for monkeys with 

multiple metalic objects was rebinned and used to show the 

robustness of the proposed algorithm [11]. 

 

3 Results 

 

In Fig. 6 the reconstructed results of phantom 1 and 2 are 

shown in the first and second row, respectively. The FBP 

results in (a) and (e) are severely corrupted by beam-

hardening artifacts. The LI-MAR results in (b) and (f)  show 

reduced artifacts, whereas they lost the structure of bones 

and introduced secondary artifacts. The proposed method 

Figure 5. The overall procedure of proposed method. The green dashed lined procedure indicates the steps required for NMAR method. 

Metal- replaced 

image

Reprojection 

Sinogram

Original sinogram

Initial FBP image Metal image

Metal sinogram

Beam-hardening 
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results in (c) and (g) show reduced artifacts with well-

preserved bone. 

In Fig. 7, the generated prior images are shown. It was 

possible to successfully describe the complete shape of 

bones without artifacts using the proposed method results.  

In Fig. 8, the NMAR results of phantom 1 and 2 are shown 

in the first and second row, respectively. The results using 

FBP prior image in (a) and (d) introduced the streak artifacts. 

The results using LI-MAR prior image in  (b) and (e) lost 

the structure of bones and introduced secondary artifacts. 

The results using the proposed prior image show well-

preserved bone with the least secondary artifacts. 

In Fig. 9, the NMAR results of real monkey head data are 

shown in last row, respectively. The results using FBP prior 

image introduced the streak artifacts and highlighted by red-

dashed box. The results using LI-MAR prior lost the 

structure of bones and highlighted by red-dashed box. The 

results using the proposed prior image show well-preserved 

bone structure. 

4 Discussion 

 

As shown in Fig. 6 (c) and (g), the results of the proposed 

method contained more anatomical information than LI-

MAR. This is because the proposed surgery method enables 

to fully utilize the anatomical data of ( )reproj

metalS  than simply 

to use linearly interpolated data of the metal trace. Also, the 

proposed method greatly reduced the beam-hardening 

artifacts. It indicates corruptM  was effective to remove the 

artifact-corrupted region of the sinogram, even there are no 

additional iterative procedures. Meanwhile, the mitigated 

noises were presented in the proposed method due to the 

presence outside of corruptM . Yet, it was easily removed 

using the threshold in the prior image generation. 

Furthermore, the strong secondary artifacts of Fig. 6 (d) 

were eliminated by the proposed normalization while 

maintaining the edges of bones, because it minimized the 

mismatch between origS  and reproj

metalS by treating only the low-

frequency. Hence, these features serve as an advantage for 

computing a clean and anatomically informative prior 

image in Fig 7. 

Figure 8 shows that the artifact-corrupted FBP prior image 

and incomplete LI-MAR prior image affect NMAR results 

to have streaks or lose the anatomical information. In 

contrast, the proposed prior image affects NMAR results to 

have well-preserved bones with the least secondary artifacts. 

For that reason, the accurately estimated prior image 

contributes to a proper normalization, and it minimizes the 

inconsistency in the interpolation. As a result, they also 

have the best soft-tissue contrast by avoiding artifacts 

corruption. 

Also in Figure 9, they show similar aspects with above 

simulation studies. The NMAR result with FBP prior mage 

introduced streak artifacts and the case with LI-MAR prior 

image lose the bone structure information. However, the 

proposed method was successfully conserve the bone while 

reducing the artifacts. These results supports that the 

beamhardening corrector also works well in multiple metal 

cases. Thus, the robustness of algorithm was well described 

in this real data caes. 

Figure 6. Reconstruction results of FBP, LI-MAR, and proposed method. (a), (b), and (c) indicates the results of phantom 1. (d) is the reconstrucition 

result of proposed method without normalization. (e), (f), and (g) indicates the results of phantom 2.  

(e) FBP

[0.00 0.07]

(f) LI-MAR

[0.00 0.07]

(g) Proposed method 

[0.00 0.07]

(c) Proposed method  (b) LI-MAR(a) FBP

[0.00 0.04] [0.00 0.04] [0.00 0.04]

(d) Proposed method without 

normalization

[0.00 0.04]

Ground-truth binary image

[0.02 0.06] [0.02 0.06] [0.02 0.06]
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[0.02 0.03] [0.02 0.04]

(a) (b)
 

Figure 7. (a) is a prior image of phantom 1. (b) is a prior image of 

phantom 2. They are created from the image of Fig. 4 (c) and (g) 

 

5 Conclusion 

 

In our study, an efficient way for computing the high-

quality prior image that does not require any iteration or 

optimization was proposed. Therefore, the complementary 

use of this technique for NMAR is possible to preserve 

anatomical structures, and increase the soft-tissue contrast 

without compromising their benefits in terms of speed, and 

computational cost.  

References 
 

[1] H. S. Park, S. M. Lee, H. P. Kim, J. K. Seo, and Y. E. Chung, “CT 

sinogram-consistency learning for metal-induced beam hardening 

correction,” Med. Phys., vol. 45, no. 12, 2018, doi: 10.1002/mp.13199. 

[2] E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelrieß, 

“Normalized metal artifact reduction (NMAR) in computed tomography,” 

Med. Phys., vol. 37, no. 10, 2010, doi: 10.1118/1.3484090. 

[3] J. Wang, S. Wang, Y. Chen, J. Wu, J. L. Coatrieux, and L. Luo, 

“Metal artifact reduction in CT using fusion based prior image,” Med. 

Phys., vol. 40, no. 8, 2013, doi: 10.1118/1.4812424. 

[4] Y. Zhang and X. Mou, “Metal artifact reduction based on the 

combined prior image,” Aug. 2014, [Online]. Available: 

http://arxiv.org/abs/1408.5198. 

[5] P. Bannas et al., “Prior Image Constrained Compressed Sensing Metal 

Artifact Reduction (PICCS-MAR): 2D and 3D Image Quality 

Improvement with Hip Prostheses at CT Colonography,” Eur. Radiol., 

vol. 26, no. 7, 2016, doi: 10.1007/s00330-015-4044-1. 

 [6] R. Pua, M. Park, S. Wi, and S. Cho, “A pseudo-discrete algebraic 

reconstruction technique (PDART) prior image-based suppression of 

high density artifacts in computed tomography,” Nucl. Instruments 

Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 

vol. 840, 2016, doi: 10.1016/j.nima.2016.09.059. 

[7] L. Yu, Z. Zhang, X. Li, and L. Xing, “Deep Sinogram Completion 

with Image Prior for Metal Artifact Reduction in CT Images,” Sep. 2020, 

[Online]. Available: http://arxiv.org/abs/2009.07469. 

[8] K. Y. Jeong and J. B. Ra, “Metal artifact reduction based on sinogram 

correction in CT,” 2009, doi: 10.1109/NSSMIC.2009.5401793. 

[9] S. Jeon and C. O. Lee, “A CT metal artifact reduction algorithm based 

on sinogram surgery,” J. Xray. Sci. Technol., vol. 26, no. 3, 2018, doi: 

10.3233/XST-17336. 

 [10] H. S. Park, D. Hwang, and J. K. Seo, “Metal artifact reduction for 

polychromatic X-ray CT based on a beam-hardening corrector,” IEEE 

Trans. Med. Imaging, vol. 35, no. 2, 2016, doi: 

10.1109/TMI.2015.2478905.  
[11] S. Cho, S. Lee, J. Lee, D. Lee, H. Kim, J. H. Ryu, K. Jeong, K. G. 

Kim, K. H. Yoon, and S. Cho, "A Novel Low-Dose Dual-Energy 

Imaging Method for a Fast-Rotating Gantry-Type CT Scanner," IEEE 

Trans. Med. Imaging 40(3), (2021). 

Figure 8. NMAR results of FBP, LI-MAR, and proposed method. (a), (b), and (c) indicates the results of phantom 1. (d), (e), and (f) indicates the 

results of phantom 2.  

 

(a) NMAR(FBP)

(f) NMAR(Proposed)(e) NMAR(LI-MAR) (d) NMAR(FBP)

[0.02 0.04]

(c) NMAR(Proposed)  (b) NMAR(LI-MAR)

[0.02 0.03] [0.02 0.03] [0.02 0.03]

[0.01 0.07] [0.01 0.07] [0.01 0.07]

Ground-truth binary image

[0.02 0.04] [0.02 0.04]

293



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
  

 

FBP LI-MAR Proposed method

FBP prior image LI-MAR prior image Proposed method

NMAR-FBP NMAR-LI NMAR-proposed

Figure 9. First row indicates the reconstructed monkey projection data by FBP, LI-MAR and  proposed method. Second row indicates 

corresponding prior image with different reconstruction methods. Last row indicates NMAR results of each methods/ 
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Abstract Learning-based projection-wise scatter correction for cone-
beam computed tomography can replace previous hardware- or
software-based approaches. Recently, a learning-based approach
has been proposed that constrains the estimated scatter to bivari-
ate B-splines. While being on par with purely data-driven methods
performance-wise, this method has introduced compelling benefits
such as decreased parameter and runtime complexity, increased in-
terpretability and improved data integrity. However, issues such as
inconsistent scatter estimates among successive X-ray projections
taken along a 3D scan remained. To obtain more consistent scatter
estimates over 2D projections, this work seeks to extend the spline
constraint to trivariate ones. In a simulation study using nested cross-
validation, we show the overall feasibility. Nonetheless, quantitatively
and qualitatively, the trivariate approach falls short of the bivariate
approach, mainly due to limited training samples.

1 Introduction

X-ray cone-beam computed tomography (CBCT) is an im-
portant imaging technique in the interventional suite. It pro-
vides three-dimensional (3-D) image information, e.g., to
assess outcomes during otherwise two-dimensional (2-D)
fluoroscopically-guided procedures using flat-panel detector
angiography systems. One major drawback of such systems
is a large amount of scattered radiation due to the relatively
large field of view and consequently irradiated volume. Be-
sides the contrast deterioration in 2-D projection imaging,
3-D reconstructions may suffer from streaking or smearing
artifacts due to scatter-induced inconsistencies. To reduce
scatter-related artifacts, today’s C-arm systems are typically
equipped with a detector-side anti-scatter grid, which phys-
ically blocks large parts of the scatter. Unfortunately, such
grids inevitably attenuate the primary radiation and lead to
increased patient and, as a consequence, occupational dose.
Furthermore, anti-scatter grids need to be precisely manufac-
tured and they represent a considerable cost factor, especially
for low-budget systems.
Consequently, much research has been devoted to investigat-
ing alternative, in particular, software-based approaches to
scatter compensation [1]. Over the last decade, deep learn-
ing and, most notably, convolutional neural networks (CNN)
found their way to modeling physical effects [2, 3]. As in
many other fields, CNNs surpassed the state-of-the-art in var-
ious CBCT artifact correction tasks from a quantitative per-
spective, such as metal artifact reduction, denoising, as well
as scatter compensation [4]. However, at the same time, ques-
tions arose how much such approaches might violate data in-
tegrity [5, 6]. For projection-wise deep-learning-based scatter

compensation, we found in previous studies that constraining
the co-domain of a CNN to bivariate B-splines yields con-
siderable benefits over purely data-driven approaches [7, 8].
Besides reducing parameter and runtime complexity, the esti-
mated scatter signal is ensured to be low-frequency, making
it unlikely that the CNN introduces spurious artifacts such as
edges or new, hallucinated details. First, by estimating the
scatter for each projection independently, inconsistencies be-
tween successive projections can occur resulting in streaking
artifacts. Second, CNNs tend to overestimate the scatter in
low-intensity regions leading to highly inaccurate attenuation
coefficients after applying the log-transform.
To increase consistency, we extend our previous bivariate
B-spline based approach to trivariate B-splines in this work.
This allows us to directly estimate the scatter for each pro-
jection image in a one-shot procedure. In this simulation
study, we investigate the overall feasibility of constraining
the projection stack scatter to a trivariate spline and evalu-
ate potential pitfalls for future developments. As potential
advantages, we consider two aspects. First, by constrain-
ing each projection’s scatter to lie in the convex hull of its
supporting spline coefficients, the overall consistency of the
scatter-corrected projections is inherently increased. Second,
estimating the scatter for each projection at once lays the
foundation to tailor potentially better-suited loss functions to
train the CNN, e.g., calculating the loss in different domains.
In Sec. 2, we give a short primer on B-splines and introduce
our notation for multivariate splines before discussing the
learning-based scatter estimation and the experimental setup.
Sec. 3 summarizes the results and compares them to our
previous approach [8]. The report concludes with a discus-
sion of the main findings in Sec. 4 before pointing out future
research plans in Sec. 5.

2 Material and Methods

2.1 Image Formation Model

Neglecting typical photon shot noise, the X-ray projection
scatter signal shows low-frequency characteristics within the
2-D projections, but also along the stack assuming a small
enough angular increment. The flat-field normalized X-ray
projection stack III ∈ Rp×h×w with p projections of width w
and height h in pixels can be expressed by III = IIIp + IIIs with
its primary component IIIp and scatter component IIIs. While
the primary component can be described quite accurately by
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the Beer–Lambert law, we introduce a trivariate spline as
surrogate for the scatter component.

2.2 Trivariate B-splines

A non-uniform univariate B-spline series sn,ttt(u) of degree
d ∈ N and order n = d +1 in the parameter u ∈ R is defined
by

sn,ttt(u) =
N

∑
i=1

ciBi,n,ttt(u) , (1)

with N spline coefficients, comprising the coefficient vector
ccc ∈ RN . The knot vector ttt ∈ RN+n with ti−1 ≤ ti ≤ ti+1∀i
recursively defines the B-spline in u via convex combinations

Bi,n,ttt(u) =
u− ti

ti+n− ti
Bi,n,ttt(u)+

ti+n+1−u
ti+n+1− ti+1

Bi+1,n−1,ttt(u) ,

(2)
with

Bi,1,ttt(u) =

{
1, ti ≤ u < ti+1

0, else .
(3)

In the following, when there is no chance for ambiguity, we
reduce the number of indices to improve readability, i.e.,
s(u) = sn,ttt(u) and Bi(u) = Bi,n,ttt(u). Introducing vector no-
tation for B-splines BBBi(u) = (Bi−d(u),Bi−d+1, . . . ,Bi)

T and
the supporting coefficients ccci = (ci−d ,ci+1−d , . . . ,ci)

T , a non-
uniform univariate B-spline series can also be represented
as

s(u) = [BBBi(u)]
T ccci . (4)

Multivariate B-splines series are constructed from univariate
ones via the tensor product, e.g., a trivariate B-spline of
degree ddd ∈N3 and order nnn = ddd+111 in uuu ∈R3 series is defined
by

s(uuu) =
N1

∑
i1=1

N2

∑
i2=1

N3

∑
i3=1

ciiiBi1(u1)Bi2(u2)Bi3(u3) , (5)

with the coefficient tensor CCC ∈ RN1×N2×N3 and ciii = ci1,i2,i3 .
Similar to the univariate case, the multivariate B-spline can
also be defined in tensor notation BBBiii(uuu) via the outer product
⊗ of univariate B-spline vectors BBBi(u)

BBBiii(uuu) =BBBi1(u1)⊗BBBi2(u2)⊗BBBi3(u3) . (6)

Consequently, s(uuu) is evaluated via tensor contractions 〈·, ·〉

s(uuu) = 〈BBBiii(uuu),CCCiii〉 , (7)

where CCCiii is constructed similarly to the univariate case.

2.3 Convolutional Spline Encoders

The tensor-based representation of multivariate B-splines
can be seamlessly integrated into deep learning frameworks.
To this end, we employ a lean convolutional encoder f (k)θ :
Rw1 ⊗·· ·⊗Rwk 7→ RN1 ⊗·· ·⊗RNk , where θ comprises the
parameters to train, k is the dimensionality of the image

Figure 1: Architecture of the employed convolutional spline en-
coder with corresponding projection and spline dimensions for our
proposed approach with k = 3. As baseline, we consider the exact
same configuration with k = 2 [8]. As a consequence, for the 2-D
case, the associated spline dimensions are 8×12, but one spline is
estimated and evaluated for each projection separately.

data, wi are the dimensions of the image data, and Ni are the
dimensions of the spline coefficients. The encoder consists of
four k-D convolutional blocks of two 3k convolutional layers
with 16 feature channels followed by a rectified linear unit
activation [9]. Each convolutional block is preceded by a 2k

average pooling layer. The encoder is completed with a 1k

convolution to sum the feature channels followed by a global
weighting layer, which establishes a global context [7, 8].
The architecture is depicted in Fig. 1. The network expects
either a single 2-D X-ray projection or a 3-D projection stack
III(k) as input and outputs the corresponding coefficient tensor
CCC(k). This coefficient tensor is then evaluated to a discretely
sampled spline ĨII(k)s approximating the true scatter signal III(k)s :

ĨII(k)s = 〈BBB(k), f (k)θ (III(k))〉. (8)

The primary component is then calculated by subtracting the
scatter estimate.

2.4 Simulation Study

For training, validation, and testing, we used the same syn-
thetic data as in a previous study [8] comprising 20 head
and 15 thorax scans, respectively. The data was simulated
using MC-GPU [10] and openly available computed tomog-
raphy scans from The Cancer Imaging Archive [11]. Each
scan comprises p = 260 X-ray projections (h = 768, w =
1152) over an angular range of 200° with 785 mm source-to-
isocenter distance and 1300 mm source-to-detector distance.
Each projection image was simulated using 10×109 pho-
tons sampled from a 85 kV tungsten spectrum. To accelerate
the training procedure, and reduce simulation noise, we ap-
plied Gaussian filtering and down-sampled the projections
to 256×384 pixels. CBCT volumes were reconstructed on
a 1 mm3 spaced, isotropic 2563 voxel grid. We separately
trained the networks in a nested 4*3 or 5*4 cross-validation
for the head and thorax data, respectively. The network pa-
rameters are optimized using adaptive moments [12] with
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an initial 10−5 learning rate with respect to minimizing the
mean absolute percentage error (MAPE) εMAPE

εMAPE =
|BBB(k) f (k)θ (III(k))− III(k)s |

III(k)s

·100% . (9)

The performance of the networks is assessed based on the
structural similarity index (SSIM) with respect to the scatter-
free ground truth simulations.

3 Results

Figure 2 shows boxplots for each test fold for both datasets.
For all folds and datasets, the 3-D approach is considerably
outperformed by the 2-D one. This is confirmed by the
quantitative comparison displayed in Fig. 2, which shows
exemplary error maps for scatter estimates and reconstructed
central slices in Hounsfield units (HU). While, for the second
thorax case, the 3-D approach yields more consistent results
than the 2-D one, this is merely an exception. Even for
the overall less challenging head dataset, the 3-D method’s
inferior scatter compensation leads to a few streaking artifacts
and causes more severe HU inaccuracies.

4 Discussion

We presented an extension from bivariate B-splines to trivari-
ate B-splines to constrain learning-based scatter estimation.
This way, X-ray scatter can be inferred from the whole pro-
jection stack in a one-shot procedure. We investigated the
performance for synthetic head and thorax data in a nested
cross-validation procedure and compared the results to a bi-
variate baseline, shown to be on par with a purely data-driven
method previously [8]. While we could demonstrate the over-
all feasibility of including trivariate splines, the results fell
short of expectations. Throughout all experiments, the 3-D
approach was outperformed by the 2-D baseline. However,
we identify a likely reason responsible for these somewhat
subpar results. Since the whole projection stack is processed
in its entirety when applying the 3-D approach, it merely
represents a single data point. Therefore, the total amount
of data points is decreased 260-fold (i.e., by the number of
projections). This implies that slightly misaligned anatomies
in the test folds are perceived to lie out-of-distribution for
the 3-D network. We believe that by increasing the training
data tremendously, this issue can be resolved. However, we
hasten to add that it is difficult to generate such an amount
of training data. This is why we prefer, at least initially, the
use of more sophisticated loss or regularizing functions, such
as the absolute error in the reconstruction domain or epipo-
lar consistency conditions. Future studies will show if the
shortcoming of limited training data can be circumvented.
As a compromise, merging the 2-D and 3-D approach could
combine the advantages of both worlds. This could be real-
ized by including a forced consistency check after the 2-D

scatter estimation or using a stack of 2-D scatter estimates as
an additional input to the 3-D network.

5 Conclusion

Trivariate splines can be used to constrain learning-based scat-
ter estimation. In a first proof-of-concept study, projection-
wise bivariate splines, however, outperformed the projec-
tion stack-wise trivariate splines. A combination of both
approaches appears promising.

Disclaimer: The concepts and information presented are
based on research and are not commercially available.
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Figure 2: Quantitative results of the cross-validation for head (left) and thorax (right) reconstructions after scatter correction. The
structural similarity index (SSIM) is given with respect to the simulated scatter-free ground truth data. The vertical lines encode the
respective average values.
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Figure 3: Qualitative error map examples calculated from predictions of the 2-D and 3-D networks for scatter estimates and respective
reconstructed central slices. Below the error maps, the mean absolute percentage error (MAPE) and the absolute error in Hounsfield units
(HU) is given for the scatter and the reconstructed central slices, respectively.
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Abstract In this work, we consider the problem of C-arm geometric
calibration with the bundle adjustment (BA) method. This method was
initially developed and used in computer vision. It’s based on markers,
but with unknown geometry. We don’t know the 3D positions of the
markers from which we have to estimate the calibration parameters.
Thus, the geometric calibration is only based on the positions of the
projected markers on 2D projection images. Pollefeys et al. [1] have
shown that such calibration from BA can be performed up to a simi-
larity transformation. In our work, we present a numerical solution to
the C-arm geometric calibration with the BA method. We show the
non-uniqueness of the geometric calibration with the BA method for
cone-beam tomography. Just like in computer vision, we can’t find the
solution better than up to a similarity transformation.

1 Introduction

A C-arm X-ray imaging system is designed as a C-shaped
arm which connects a X-ray source and a X-ray detector. We
consider isocentric C-arms rotating around their isocenter.
Usually projection images of a patient placed at the isocenter
are collected. In the figure 1, we present some geometric
parameters of a C-arm in a schematic view. This geometric
model is classical in the cone-beam (CB) geometry.

Figure 1: Some geometric parameters of a C-arm in a schematic
view.

In the section 2 we recall the geometric model of a C-arm
system. This projection geometric model maps 3D patient
points to 2D detector points. The model contains geometric
parameters. In general, these parameters need to be calibrated
for each projection. The identification of these parameters is
necessary for an accurate 3D reconstruction [2]. For most C-
arms, in order to take into account mechanical vibrations over
time, it is necessary to periodically perform the C-arm geo-
metric calibration. In this work, we want to discuss bundle

adjustment (BA) geometric calibration.
This C-arm geometric calibration process is similar to the
camera geometric calibration in computer vision [3]. By
analogy with computer vision, we can divide all image-based
calibration methods for C-arms into two groups: calibration
with markers and without markers as in [4]. For the first
group, the calibration problem is solved with specific scans
of a calibration object, usually based on few opaque markers.
Either the 3D coordinates of marker centers are known in
the world coordinate system or not. In the second case, both
these 3D coordinates of marker centers and the geometric
calibration parameters need to be identified. In this work, we
consider this bundle adjustment problem and the method to
solve this problem described in [5]. Just as for the calibration
without markers, BA only uses the projection data and thus
belongs to self-calibration methods.

2 Geometric calibration of a C-arm

As we know from computer vision [3], a camera can be mod-
elled by a projection matrix P mapping Q, a 3D point in the
world coordinate system, to q, its corresponding projection
onto the image plane. We usually have the decomposition of
the projection matrix P:

P∼
(
K 0

)( R −Rt
0T 1

)
= KR

(
I −t

)
. (1)

To be more precise, we can connect homogeneous coordi-
nates of q = (u,v,1)T in the pixel coordinate system and ho-
mogeneous coordinates of Q = (Xw,Y w,Zw,1)T in the world
coordinate system with special matrices K, R and t:




u
v
1


∼ KR

(
I −t

)



Xw

Y w

Zw

1


 , K =




fx s u0
0 fy v0
0 0 1


 . (2)

The matrix K consists of intrinsic calibration parameters. For
the classical pinhole camera model the skew s = 0, fx =
fy = f is the focal length, u0 and v0 are the coordinates in
the camera image of the orthogonal projection of the optical
center. The rotation matrix R and the translation vector t are
extrinsic calibration parameters; they describe the orientation
and the position of the camera in the world coordinate system.
Let us use here a IEC 61217 standard in order to describe the
C-arm used in our simulation in the same way as cameras.
In order to do this, 9 parameters are used, see the table 1.
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Usually, we don’t know exactly these parameters, so we need
to calibrate them. We present some of these parameters in
the figure 1.

Parameter Value Noise
bounds

SDD (mm): source-detector distance 1000 ±3.5
SID (mm): source-isocenter distance 700 ±6.9
sposx (mm): x-coordinate of the posi-
tion of the source in the rotated frame

0 ±6.9

sposy (mm): y-coordinate of the posi-
tion of the source in the rotated frame

0 ±6.9

dx (mm): x-coordinate of the center of
the detector in the rotated frame

0 ±13.9

dy (mm): y-coordinate of the center of
the detector in the rotated frame

0 ±13.9

θx (degrees): orientation of the rotated
frame relative to the world frame along
the x axis

0 ±1.4

θz (degrees): orientation of the rotated
frame relative to the world frame along
the z axis

0 ±1.4

θy (degrees): angle of scan iδ ±0.7

Table 1: C-arm calibration parameters: initial values and noise
bounds used to simulate mechanical vibrations (we show in the
third column bounds for the uniform distribution, we added a
small uniform noise to initial values except the case of the SDD
parameter for which we have completely different initial value,
its realistic values for all projections are around 1300 mm). Here
i ∈ N is the projection index, δ is the angular step.

We can describe the C-arm with approximately the same pro-
jection matrix as the basic pinhole camera. As in computer
vision, we can build the intrinsic geometric calibration matrix
K with zero skew (s = K12 = 0). The rotation matrix R is
here the rotation around the isocenter defined by the position
of the rotated frame. The translation−t is the source position
in the rotated frame:

P = K
(
R t

)
, t =



−sposx

−sposy

−SID


 , K =



− f 0 u0
0 − f v0
0 0 1


 ,

(3)

f =
SDD

dimpixel
, u0 =

sposx−dx
dimpixel

, v0 =
sposy−dy

dimpixel
, (4)

R =




cz −sz 0
sz cz 0
0 0 1






1 0 0
0 cx −sx

0 sx cx






cy 0 sy

0 1 0
−sy 0 cy


 , (5)

cα = cos(−θα), sα = sin(−θα), α ∈ {x,y,z}. (6)

So, during the calibration we want to identify the elements of
the projection matrix P or the calibration parameters which
define the projection matrix.

3 Bundle adjustment

In tomographic situations, we assume that we have collected
many X-ray projections. For each X-ray projection i, we want
to estimate both projection matrices P̂i, i = 1, . . . ,Nprojections
and unknown 3D marker points Q̂ j, j = 1, . . . ,Nmarkers from
known image points qi

j. We minimize the mean of Euclidean
distances between the projected points and the measured
image points for all X-ray images, i.e.

min
x

D(x) def
= min

Pi,Q j

1
NmarkersNprojections

∑
i, j

d(PiQ j,qi
j)

2, (7)

where d(q1,q2) is a geometric image distance between ho-
mogeneous points q1 and q2, D is the cost function, x is a
vector containing the parameters of Pi, i = 1, . . . ,Nprojections,
Q j, j = 1, . . . ,Nmarkers, so in our case x contains 9Nprojections+
3Nmarkers parameters to be identified. This is the general for-
mulation of the BA problem.
In [5] authors described basic local optimization methods
for differentiable functions to solve the BA problem. Let us
try to minimize the cost function D(x) over x with the initial
estimate x0. We want to find a displacement δx which locally
minimizes D(x). This cost function can be replaced by an
approximate local model. The quadratic local model is based
on the Taylor expansion:

D(x+δx)≈ D(x)+gT δx+
1
2

δxT Hδx, (8)

where g is a gradient vector of D at x and H is a Hessian
matrix at x. In [5] authors proposed methods to optimize such
as the damped Newton methods which solve the following
regularized system:

(H +λW )δx =−g, (9)

where λ is a weighting factor and W is a positive definite
weight matrix. This is the basis for trust region methods, for
example, the popular Levenberg-Marquardt method. We use
this method in our numerical experiments.

4 Numerical experiments: calibration with BA

In order to solve numerically the optimization problem (7) we
used the C++ package Ceres [6]. We simulated data for our
numerical experiments. Firstly, we started with 20 markers,
see the 3D plot in the figure 2. We call these points true values
Q j,true. Then we fixed dimpixel = 0.5 mm, Nprojections = 181
with the angular step as 2 degrees. We computed from the
table 1 the initial values for the 9 calibration parameters f i,

300



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

ui
0, vi

0, θ i
x, θ i

y, θ i
z , t i

x, t i
y, t i

z for each projection i. These values
were used as initial estimations for our optimization algo-
rithm. In order to simulate realistic values for calibration
parameters and Pi

real which correspond to clinical situations
with mechanical vibrations of the C-arm, we added a uni-
form noise to each calibration parameter (see the table 1 for
details).
We simulated qi

j by the multiplication of Pi
real by Q j,true. We

usually don’t know exactly qi
j, because we detect these points

on X-ray images using specific algorithms. In order to simu-
late this process, we also added a uniform noise with bounds
±0.3 pix to the image points Pi

realQ j,true. Thus, as inputs for
the optimization algorithm we had noisy image points qi

j.
In order to start the minimization algorithm, we also need
initial estimations for 3D points Q j (we described before just
the initial calibration parameters). We did our first guess with
the basic triangulation algorithm of Python’s OpenCV from
two known initial projection matrices and known projections
for 0 and 90 degrees. A full description of the basic triangu-
lation algorithm could be found in [3]. After this simulation
and initialisation, the optimization algorithm was launched.
We started from the initial cost 1337. With the Levenberg-
Marquardt method we achieved the final cost 0.003.
We show in the figure 2 estimated 3D points obtained by
this algorithm. We calculated the reprojection error as

1
NmarkersNprojections

∑i, j ||P̂iQ j,true−qi
j||2. It is equal to 34.41 pix.

The maximum errors for the estimated calibration parameters
through all projections are: 9.78 pix for f , 10.28 pix for u0,
9.65 pix for v0 (1 pix is 0.5 mm), 102.09 mm for t. In order
to compare rotation matrices, we calculated the error rotation
matrix for each projection i as Ri

err = (Ri
real)

−1R̂i. According
to the Euler rotation theorem, each rotation Ri

err in three di-
mensions is defined by its axis and its angle ψi. We found the
absolute value of ψi from the error rotation matrix Ri

err for
each projection i with |ψi|= arccos tr(Ri

err)−1
2 . The maximum

error for angles |ψi| through all projections was 0.79 degrees.
We observed the high reprojection error and high errors in
calibration parameters. The same for 3D points: true and
estimated 3D points are far to be exactly the same. Thus, we
found the solution of the calibration problem and it differs
from the true solution. But what is the reason?

5 Theoretical explanation of non-uniqueness

5.1 Computer vision BA limits

Let us start with different classes of transformations of 3D
space. Let us remind that in computer vision we usually use
homogeneous coordinates of the point, so for the point in 3D
we have four coordinates. We identify each transformation
by its matrix form. Moreover, these transformations form a
hierarchy. So, we start with the general one.

Definition 5.1. A projective transformation is a transforma-

Figure 2: True and estimated 3D points for Levenberg-Marquardt
method.

tion of the form
(

A t
hT v

)
, where A is an invertible 3× 3

matrix, h is a general 3-vector.

Definition 5.2. An affine transformation is a transformation

of the form
(

A t
0T 1

)
, where A is an invertible 3×3 matrix.

Definition 5.3. A similarity transformation is a transforma-

tion of the form
(

σR t
0T 1

)
, where R is a 3×3 rotation matrix

and σ 6= 0.

Definition 5.4. An Euclidean transformation is a transfor-

mation of the form
(

R t
0T 1

)
, where R is a 3× 3 rotation

matrix.

From the literature [3] we know that we have a solution of
the BA problem up to a projective transformation. We can
take an invertible matrix H and have as a solution also P̂iH−1,
HQ̂ j. Moreover, we found in [1] that for special calibration
matrices with zero skews (s = 0) the solution could be found
up to a similarity transformation. The following theorem
from [1] is true:

Theorem 5.1. The class of transformations which preserves
the absence of skew is the group of similarity transforma-
tions.

If we have projection matrices as solutions of our calibration
problem, they differ by some projective transformation. With
this theorem, if the sequence of views is general enough and
if in decompositions of the projection matrices we have zero
skews, this projective transformation should be a similarity
transformation. We build projection matrices for the C-arm
BA problem exactly such that in decompositions they have
zero skews. In essentially all digital X-ray CB systems the
skew is zero because the lines and columns of digital X-ray
detectors are perpendicular. Unfortunately, the sequence of
C-arm positions often couldn’t be general enough, which
complicates the application of the theorem.
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5.2 Cone-beam geometric self-calibration limits

Any CB system can be also described by an integral model.
We consider cone-beam data in the form

d(~sλ ,
~ζ ) = D f (~sλ ,

~ζ ) =
∫ +∞

0
f (~sλ + l~ζ )dl, (10)

where λ ∈ Λ⊂ R is a trajectory parameter of the source,~sλ
is the 3D position of the source at λ , ~ζ is a unit vector in R3,
the direction of the integration line.

Theorem 5.2. Let fR,~t(~x)
def
= f (R~x+~t) for any ~x ∈ R3, for

any rotation R and any translation vector~t ∈ R3, then

D fR,~t(~sλ ,
~ζ ) = D f (R~sλ +~t,R~ζ ). (11)

Proof. We have D fR,~t(~sλ ,
~ζ ) =

∫ +∞
0 fR,~t(~sλ + l~ζ )dl =

∫ +∞
0 f (R~sλ + lR~ζ +~t)dl = D f (R~sλ +~t,R~ζ ).

Thus, the cone-beam data D fR,~t of fR,~t from the source ~sλ

in the direction ~ζ is nothing but the cone-beam data D f of
f from the source position R~sλ +~t toward the direction R~ζ .
Conversely, let~vλ = R~sλ +~t or~sλ = RT

(
~vλ −~t

)
, let~η = R~ζ ,

thus ~ζ = RT~η . Then for all ~vλ and all unit ~η Eq. (11) is
equivalent to

D fR,~t
(
RT (~vλ −~t

)
,RT~η

)
= D f (~vλ ,~η) . (12)

Thus, the projection data D f of f acquired from the source
position~vλ toward the direction ~η is equal to the projection
D fR,~t acquired from the source position RT

(
~vλ −~t

)
toward

the direction RT~η for any rotation R and translation vector~t.
This shows that for the cone-beam geometry the geometric
self-calibration problem can not be solved better than up to
an Euclidean transformation. Moreover, we have

Theorem 5.3. Let fσR,~t(~x)
def
= f (σR~x+~t) for any ~x ∈ R3,

rotation R, translation~t ∈ R3 and scaling σ > 0, then

D
(
σ fσR,~t

)(
~sλ ,

~ζ
)
= D f

(
σR~sλ +~t,R~ζ

)
. (13)

Proof. We have D fσR,~t(~sλ ,
~ζ ) =

∫ +∞
0 fσR,~t(~sλ + l~ζ )dl =

∫ +∞
0 f (σR~sλ +σ lR~ζ +~t)dl =

∫ +∞
0 f (σR~sλ +nR~ζ +~t)d n

σ =
1
σ D f (σR~sλ +~t,R~ζ ).

Thus, the cone-beam data D(σ fσR,~t) of σ fσR,~t from the

source~sλ in the direction~ζ is nothing but the cone-beam data
D f of f from the source position σR~sλ +~t toward the direc-
tion R~ζ . Conversely, let~vλ = σR~sλ +~t or~sλ = 1

σ RT
(
~vλ −~t

)

and let ~η = R~ζ , thus ~ζ = RT~η , then for all ~vλ and all unit
vector ~η Eq. (13) is equivalent to

D
(
σ fσR,~t

)( 1
σ

RT (~vλ −~t
)
,RT~η

)
= D f (~vλ ,~η). (14)

Thus, for the cone-beam geometry the geometric self-
calibration problem can not be solved better than up to a
similarity transformation.

6 Numerical experiments: similarity error identifica-
tion

Figure 3: Slices z = 6.5 mm of the initial 3D Shepp–Logan phan-
tom f (~x) (left), the reconstruction g(~x) from the estimated acquisi-
tion geometry (center) and | f (~x)−g(~x)| (right).

Figure 4: Slices z = 6.5 mm of the initial 3D Shepp–Logan phan-
tom f (~x) (left), the reconstruction from the estimated acquisition
geometry after the similarity correction 1

σ g
( 1

σ RT
(
~x−~t

))
(center)

and
∣∣ f (~x)− 1

σ g
( 1

σ RT
(
~x−~t

))∣∣ (right).

The numerical experiments from the section 4 provided a
scaling, a rotation and a translation, i.e. a similarity transfor-
mation, for computing the set of the true 3D marker coordi-
nates from the set of the estimated 3D marker coordinates.
Firstly, we computed the scaling factor. We computed the
barycenters btrue and best of the true and the estimated 3D
points. The mean of ||Q j,true−btrue||2

||Q̂ j−best||2
is a simple (and sufficient)

estimation of the scaling. It is equal to 0.88. Then, after the
scaling correction, we numerically found the rotation and
the translation with the algorithm described in [7]. We can
then apply to the set of scaled estimated points the rotation
approximately equal to the identity matrix and the transla-
tion (0.96,−3.14,5.18)T in mm. We show the result of such
transformation of the estimated 3D points to the true 3D
points in the figure 2.
The estimated calibration parameters from the section 4 can
be used to perform a reconstruction. We started with f (~x)
being the 3D Shepp–Logan phantom. We computed projec-
tions with the true acquisition geometry. From these data
we performed a FDK reconstruction denoted g(~x) with the
estimated acquisition geometry using the Python package
RTK [8]. According to Eq. (13), the reconstructed image
corresponds to the function σ fσR,~t(~x). In the figure 3, we
show the same slice of both f and g, and of | f −g|.
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We then computed the similarity correction applied to g. The
reconstruction g(~x) obtained from the estimated geometric
parameters should be equal to σ fσR,~t(~x) = σ f (σR~x +~t),
thus f (~x) should be equal to 1

σ g
( 1

σ RT
(
~x−~t

))
. We used

σ ,R,~t estimated at the beginning of this section from the
BA results obtained in the section 4 in order to compute
the similarity correction, thus an estimation of the original
image f . Note that an interpolation is needed for the
image grid computation: we used the linear interpolation
method interpolate.RegularGridInterpolator()
from SciPy. After such similarity correction applied to the
image g we obtained an estimation 1

σ g
( 1

σ RT
(
~x−~t

))
of the

initial image f (~x) (see the figure 4).
The widely used root-mean-square error (RMSE) between
the initial 3D image and the reconstructed 3D image after
the similarity correction was 0.08. For example, RMSE
between the initial 3D image and the reconstructed with
the true acquisition geometry 3D image was 0.09, which is
normal for the numerical reconstruction implemented in RTK.
Thus, we showed that the reconstruction with the estimated
acquisition geometry can be performed and we verified that
then the reconstructed image has the form σ fσR,~t(~x).

7 Conclusion

We have presented a numerical solution to the C-arm geomet-
ric calibration problem with the BA method. In simulations,
we have observed the following phenomena: there are high
errors in the estimated 3D marker positions and calibration
parameters, but true and estimated 3D marker points differ
almost by a similarity transformation. We analyzed the ex-
isting computer vision theory and translated it to the X-ray
cone-beam geometry. Cone-beam geometric self-calibration
problems can not be solved better than up to a similarity
transformation. In the previous section we also presented the
numerical verification of our theoretical result.
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Abstract In this paper, we propose a nonconvex L1/L2 ratio model on 

the image gradient for sparse-view CT reconstruction. Based on this 

ratio model, we design an iterative algorithm under the forward-

backward splitting framework and optimize the corresponding 

augmented Lagrangian function by minimizing each sub-problem 

alternatively. In this paper, efficient solvers are developed for each sub-

problem. Ideal numerical verification indicates that the proposed 

algorithm behaves convergent and stable for under-sampled views. The 

experimental results verify that the proposed method is promising 

compared with classical methods for sparse-view CT reconstruction.  

1 Introduction 

Computed tomography (CT) is an advanced technology in 

many fields, such as medicine, industry, materials science, 

and so on. In practical application, the projection data is 

often incomplete because of various reasons. Sparse-view 

is one of the incomplete projection problems and it has 

great significance in the reduction of radiation dose. 

However, sparse-view CT reconstruction always has high 

level of noise and artifacts and is difficult to obtain high 

quality images because of incomplete projections.  

The emergence of compressed sensing (CS) theory [1-2] 

brings a new idea to solve the incomplete projection data 

reconstruction problems and can be applied to ill-posed 

problem of sparse-view CT reconstruction. Total variation 

(TV) has become a powerful method in exploring the 

sparsity of gradient image and preserving edges [3]. Sidky 

and Pan [4] designed a TV and projection onto convex set 

based method for incomplete projection data 

reconstruction and achieved a huge success. Since then, 

many other variants of TV-based method have been 

proposed, such as the fractional-order TV [5], total 

generalized variation [6] and anisotropic TV by 

introducing direction information [7], et al.  Although 

these TV based method have many successful applications, 

they still suffer from lack of contrast and staircase artifacts 

while prefers piece-wise constant images. 

The ratio model L1/L2 is a sparse measure  to approximate 

the desired L0 norm first appeared in [8] and was further 

proved to be a scale invariant model in [9]. Motivated by 

recent L1/L2 model based works [10, 11] for sparse signal 

recovery, we utilize the ratio model of L1/L2 on the 

gradient as the regularization term and design an iterative 

algorithm for sparse-view CT reconstruction. The 

experiments illustrate the promising effectiveness of our 

proposed method when the projection views are 

insufficient.  

The rest of the paper is organized as follows. In section 2, 

we present the ratio model and explain the proposed 

algorithm in detail. In section 3, a simulation experiment is 

tested to evaluate the performance of the proposed method. 

Discussions and conclusions are given in section 4 and 5.  

2 Materials and Methods 

 

A. Preliminaries 

In this study, we consider the discreted system for CT 

reconstruction: 

                             Au f                                              (1) 

where 
2Nu R  denotes the unkonwn image to be 

reconstructed. A  is the system matrix. f  represents the 

measured projection data. However, problem (1) is usually 

ill-posed because the obtained projection data are 

incomplete in sparse-view CT reconstruction. So to solve 

this problem, we utilize the total variation (TV) as the 

regularization term that contains the prior information of 

the reconstructed image, and the model is as follows 

                   
1

min . . ,
u

u s t Au f                                 (2) 

where : ( , ),x yu u u  and the TV term, i.e., 
1

u  is 

defined by Eq. (3),  

                     
1 1 1

.x yu u u                                    (3) 

 

B. L1/L2-TV model and algorithm 

Now, we consider a constrained model of L1/L2 on the 

gradient image (L1/L2-TV) for sparse-view CT 

reconstruction as  

                1

2

min . . .
u

u
s t Au f

u
                                  (4) 

The optimal conditions of (4) are  

          

1 1

2 2

2 2

0 ,

0 ,

T
u u

u A λ
u u

Au f

                   (5) 

where λ  is some vector. By introducing
1

λ u λ , we 

further get  

         

1

1 1

2

0 ,

0 .

T
u

u u A λ
u

Au f

                     (6) 

The conditions (6) are also the optimal conditions of 

another optimization problem: 
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                min ( ) ( ),
u

g u h u                                              (7) 

where  

            
1

( ) ( ),Au fg u u δ u                                      (8) 

and the function ( )h u  satisfies 

            1

2

2

( ) : .
u

h u u
u

                                      (9) 

Note that ( )h  does not have an explicit expression from (9) 

and ( )h  represents the sub-differential of ( )h . 

And the indicator function ( )Au fδ u  is defined as 

                
0, ,

( )
, .

Au f

if Au f
δ u

otherwise
                        (10) 

From the problem (7) and its optimal conditions (6), we 

utilize the forward-backward splitting method to get the 

iterative scheme 

               ( ) ( ),k k kτu v τI g u                           (11) 

where g  is defined in (8) and ( )k kv h u . And then we 

design two descent steps according to the obtained point 
ku . The details of the proposed algorithm are summarized 

in Algorithm1. 

u -sub-problem of (11) can be written as 
2

2

2

1

2

arg min ( )
2

arg min . . .
2

k k
k

u

k k

u

τ τu v
u g u u

τ

τ τu v
u u s t Au f

τ

 

By introducing an auxiliary variable z , the augmented 

Lagrangian function is  
2

1

2

2 21 2

2 2

( , ; , ) ( )
2

( ) .
2 2

k k
T

A

T

τ τu v
L u z λ w z u λ Au f

τ

ρ ρ
Au f w z u z u

 

where ,λ w  represent the Lagrangian multipliers, and 

1 2, 0ρ ρ  are the penalty parameters. 

Then the ADMM framework is applied to solve this sub-

problem, which goes as follows 

          

1

1 1

1 1

1

1 1 1

2

arg min ( , ; , ),

arg min ( , ; , ),

( ),

( ),

j j j j

A
z

j j j j

A
u

j j j

j j j j

z L u z λ w

u L u z λ w

λ λ ρ ξ Au f

w w ρ ξ z u

                    (12) 

where superscript j  is the inner loop index, which is the 

opposite of the outer loop k .   

For the z -sub-problem in the inner loop has a closed-form 

solution via the soft shrinkage, i.e., 

                 
1

2 2

1
( , ),

j
j j w

z shrink u
ρ ρ

                    (13) 

where 
1

( , ) ( )max{ ,0}shrink v r sign v v
r

. 

Algorithm 1: The L1/L2 Minimization on Image Gradient 

Via Forward-Backward Splitting (L1/L2-TV) 

Input: , , 0A f τ  and 0ε  .  

Initialize: 0 0 0, ( )u v h u .Set 0, maxouterk k  . 

1. While maxouterk  or 
1k k ku u u ε  

2. 
1
( )k k ku τI g τu v , 

3. 
2

1

2
( )

1

k k k kτ
u u u u

τ
,  

4. 
1

2
( )

1

k k k kτ
v v u u

τ
,  

5. End while 

Output: 
1ku .  

 

We first linearize 
2

2

1

2
Au f  at the current point ju  and 

add a proximal term, i.e., 

2 22

2 2 2

1 1 1
, ,

2 2 2

j j j jAu f Au f p u u u u
β

 

where ( )j T jp A Au f  denotes the gradient of 

2

2

1

2
Au f  at ju . Then the u -sub-problem in the inner 

loop can be further reformulated as 
2

22

2

2

2

1

1 2

min
2 2

( ) ( ) .
2

k k

u

T j
T j j

ρτ τu v
u z u

τ

ρ A λ
w z u u u β p

β ρ

(14)  

Taking derivation on (14) with respect to u  and forcing 

the result to zero, we get 

           

1

2

( ) ,T j

ρ
τ

β
u c

ρ
                                  (15) 

where 

11

2 2 1 2

[ ( )] ( ).
k k T j j

j j j T jρτu v A λ w
c u β p z

ρ ρ β ρ ρ

  

Under the periodic boundary conditions for u , we utilize 

fast Fourier transforms (FFT) to solve (15). The algorithm 

for solving u -sub-problem is shown in Algorithm 2. 

 

Algorithm 2: The ADMM for Solving u -Sub-problem  

Input: 1 2, , , , , 0A f τ β ρ ρ , 0ε  and (0,1)ξ .  

Initialize: 
0 0,u z .Set 0, max erj j inn  . 

1. While max erj inn  or 
1j j ju u u ε  

2. update 
1jz  via Eq.(13), 
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3. update 1ju  via Eq.(15),  

4. update 
1 1,j jλ w  via Eq.(10),  

5. End while 

Output: 1.k ju u   

 

3 Results 

 

In this section, the performance of the proposed L1/L2-TV 

method is tested on the two-dimensional Shepp-Logan 

phantom with size 512 by 512. And  the compared 

algorithms are classical FBP and TVAL3 [12] methods. 

The peak signal to noise ratio (PSNR), the structural 

similarity index (SSIM) and the root of mean square error 

(RMSE) are choosen as the quality metrics to measure the 

reconstructed resluts among different methods. In the 

experiments, all the parameters in the three methods are 

determined empirically. We set 5τ , 1β , 
1 100ρ ,

2 10ρ , 0.55ξ and 510ε . The maximum outer and 

inner iterations are 100 and 200, respectively. What’s 

more, we further verify the performance of the algorithm 

on the three-dimensional moby data with size 

256×256×256, compared with FDK and TVAL3-3D. The 

parameters are same as Shepp-Logan reconstruction 

except for 0.95ξ  and the maximum outer and inner 

iterations are 100 and 2, respectively.  

 

A. Numerical Verification 

   

 
Fig.1 Convergence behavior of the proposed method with 

36 views under 20000 iterations. The figures at the top 

row from left to right represent the ground truth, the 

reconstructed image of the proposed method and the 

difference of the former two images with 36 views, 

respectively. 

 

We first give the numerical verification of our L1/L2-TV 

method as shown in Fig.1, whose top row consists of three 

images: the ground-truth image of Shepp-Logan phantom, 

the image of L1/L2-TV method reconstructed from 36 

projection views and their difference image, respectively. 

To visibly illustrate the convergence behavior of the 

proposed method, we draw the logarithmic curve from 36 

views with 20000 iterations which shown in the second 

row of Fig.1. It is clear that the proposed method generates 

a decreasing sequence, which is stable at the order of 

magnitude of 610 . 

 

B. Comparison with FBP and TVAL3 

The projection views in this experiment is selected as 19, 

21, 23 uniformly distributed in 0360 . The distance of 

source to object and detector are 164.86mm  and 1052mm , 

respectively. The number of detector bins is 512. The size 

of each pixel of reconstruction image is 

0.0116mm 0.0116mm .  

 

   

   

   
Fig. 2 Comparison of Shepp-Logan phantom reconstructed 

results between FBP, TVAL3 and the proposed method.  

The columns from left to right represent the results of FBP, 

TVAL3 and the proposed method. The rows from 1 to 3 

represent the views of 19, 21, 23.The display windows are 

all [0.1, 0.4]. The top figure represents RMSE values 

under 9 number of views totally from 11 to 27. 

  

We first choose the views from 11 to 27 to obtain 

corresponding reconstruction results and RMSE values, 

and set 0.02 as the maximum threshold according to the 

reconstructed image quality, whose curve is shown in the 

first row of Fig.2. When the number of views is 19, the 
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reconstruction quality is relatively better, and when the 

number of views is greater than or equal to 23, the 

reconstruction accuracy has reached 610 . As shown in the 

rest of Fig.2, whose row and column represent the 

projection views and comparison method, respectively, the 

results of FBP suffer from serious artifacts and have the 

worst quality because it is an analytic algorithm and can’t 

be accurately reconstructed with a large lack of projection 

views. The reconstructions of TVAL3 method has a better 

image quality compared with FBP in preserving shapes, 

but has a poor ability to maintain details. The proposed 

method is superior to the other methods not only in 

preserving edges but also in suppressing artifacts. 

To further evaluate the performance of the proposed 

method, we list the quantitative results in Table 1. Clearly, 

our algorithm has the lowest RMSEs, and the highest 

PSNRs under different projection views. In particular, 

when views increase from 21 to 23, the RMSE dropped 

sharply to the order of magnitude of 610 . Although the 

SSIM of our method is lower than that of TVAL3 at 19 

views, but it is close to 1 at 23 views.  

 

Table 1 Quantitative results among different methods in 

different sparse views.  

Views Methods RMSE PSNR SSIM 

 FBP 5.1758 -14.280 0.0151 

19 TVAL3 3.886e-2 28.210 0.952 

 L1/L2-TV 1.861e-2 34.604 0.838 

 FBP 4.457 -12.982 0.0126 

21 TVAL3 4.138e-2 27.767 0.948 

 L1/L2-TV 6.336e-3 43.964 0.973 

 FBP 3.949 -11.930 0.0118 

23 TVAL3 3.546e-2 29.004 0.969 

 L1/L2-TV 6.813e-6 103.334 1 

 

Additionally, Fig.3 visibly illustrate the convergence rate 

of the TVAL3 and our L1/L2-TV method under 2500 

iterations. It is not difficult to find that the latter has a 

faster descent rate. 

 
Fig.3 Convergence behaviors of TVAL3 and L1/L2-TV 

methods under  2500  iterations.   

 

C. 3D Reconstruction 

In 3D reconstruction, the distance of source to object and 

detector are 1000mm and 1536mm, respectively. The 

detector consist of 512×512 bins at size of each pixel is 

0.8mm×0.8mm. The size of each pixel of reconstruction 

image is 1mm×1mm×1mm.  

   

   

   

   
Fig.4 Comparison of 3D moby phantom reconstructed 

results, where rows represent the ground truth, FDK, 

TVAL3-3D and the proposed method, respectively. The 

columns from left to right represent x-y sections, x-z 

sections, and y-z sections, respectively and the display 

window is [0, 1]. 

 

We choose the minimal projections uniformly distributed 

in 0360 are 30 like the 2D reconstruction above to validate 

the performance of the proposed algorithm on 3D 

reconstruction.  To clearly evaluate the moby image, the 

reconstruction images of all methods are orientated 

horizontally and present as 31×220 pixels.  As shown in 

Fig.4, the rows and columns represent different methods 

(ground truth 、 FDK 、 TVAL3-3D and the proposed 

method) and three dimensional sections (x-y section、x-z 

section and y-z section), respectively. The results of FDK 

obviously have serious artifacts and lost many details in 

the image. The reconstructions of TVAL3-3D preserve a 

lot of details in three-dimensional sections, but some areas 

are over-smoothed out as shown by the red arrows. 

Compared with other methods, the reconstruction results 

of the proposed method are of the best quality and close to 

the ground truth.   
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4 Discussions 

 

There are several parameters involved in the execution of 

the proposed algorithm. The penalty parameters 
1 2,ρ ρ  are 

manually selected form a candidate set 
3 2 1 2 310 ,10 ,10 ,1,10,10 ,10 , and finally fixed as 

1 100ρ , 
2 10ρ .And the parameter τ  is choosen from 

the interval 0.1, 10  empirically and fix as 5 . Determining 

the optimal adaptive strategy of the parameters mentioned 

above might be an interesting topic for future research. As 

for the parameter β  introduced in the proximal term of 

linearized process, its choice is theoretically assured under 

the condition of  10 Tβ
A A

 , which has deduced in 

our subsequent work on the convergent proof of the 

proposed algorithm.  

The proposed algorithm consists of one forward-backward 

step and two descent steps, computational cost will 

increase rapidly as the scale of the data larger. We utilize 

graphics processing units (GPU) acceleration technology 

to speed up our algorithm and the cost time of 20000 

iterations is approximately 750 seconds. And when the 

reconstruction extended to three-dimensional, the cost 

time increases to 820 seconds approximately for 100 

iterations. These results also encourage us to make further 

improvement. 

 

5 Conclusion 

 

Sparse-view CT reconstruction has practical significance 

in the medical and industrial fields. However, reducing the 

projection views is often accompanied by poor image 

quality. To make fully use of the edge preserving ability of 

TV regularization and the characterization of image 

sparsity by L1/L2, we propose the ratio model of L1/L2 on 

the image gradient under forward-backward splitting 

framework for sparse-view CT reconstruction. Then we 

design an iterative algorithm and an efficient solvers when 

solving the subproblem alternatively. The simulation 

Shepp-Logan phantom is used to validate the effectiveness 

of the proposed method. The reconstructed results show 

that the proposed method is superior to FBP and TVAL3 

methods not only in the image quality but also in the 

descent rate when the projection views less than 30.  

Three-dimensional moby reconstructions also show that 

the proposed method is superior to other comparison 

methods at 30 projection views. 
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Abstract X-ray dark-field imaging provides information about small
angle scattering from objects that consist of micrometer-sized struc-
tures, such as fibers. The measured dark-field signal strength de-
pendents on the orientation of the fiber relative to the setup, which
prohibits the use of standard filter-based reconstruction algorithms.
Hence, existing reconstruction algorithms use complex acquisition
protocols to sample the object with multiple trajectories.
In this work, we propose a direct 3-D dark-field fiber reconstruction
algorithm for data from just one single continuous trajectory. We
describe a generic 3-D iterative reconstruction algorithm for the dark-
field fiber directions and show experimentally that the reconstruction
with a helical trajectory is possible. The results of our simulations
show an excellent agreement with the ground truth, both quantitatively
and qualitatively.

1 Introduction

The X-ray dark-field signal can provide complementary in-
formation to conventional X-ray attenuation imaging, as it
relates to small angle scattering and unresolved edges. Exam-
ples for improved diagnostic information in medicine include
structural information and fracture detection of bones [1] and
improved lung diagnosis [2]. In a tomographic setup, it can
enable the reconstruction of nerve fibers [3]. In this work,
we consider dark-field small angle scattering, which is pro-
duced by objects that consist of micrometer-sized elongated
structures such as fibers. The scattering distribution of a fiber
can be modeled with a 3-D Gaussian [4]. The eigenvalues
of the scatter distribution define the amount of scatter in the
respective direction. A fiber f surrounded by its associated
scatter spheroid is shown in the center of Fig. 1.
One prominent setup to measure the X-ray dark-field signal
is the Talbot-Lau Interferometer (TLI) [5], which is sketched
around the fiber in Fig. 1. The TLI consists of three gratings
that are placed between the source and detector. The TLI
measures changes in the X-ray wavefront. Variations in the
wavefront below pixel resolution contribute to the dark-field
signal. The dark-field signal samples the scatter spheroid
along the sensitivity direction s, i.e., perpendicularly to the
gratings (see Fig. 1). This reduces the measured signal to one
dimension.
Due to the anisotropic 3-D scattering function and the one di-
mensional sampling, the strength of the measured dark-field
signal depends on the orientation of the fiber relative to the
setup. In particular, this dependency leads to the effect that
the dark-field signal of a fiber varies under rotation. These
properties make the reconstruction of the object challenging,
such that standard tomographic reconstruction algorithms
can not be used. Moreover, the one dimensional sampling

f s

Figure 1: Sketch of a Talbot-Lau Interferometer and dark-field
measurement for one fiber. The TLI consists of three gratings
between source and detector. The 3-D fiber f has a 3-D Gaussian
scatter function shown as a spheroid. The dark-field signal is
measured in the sensitivity direction s.

imposes an additional constraint to the tomographic recon-
struction, since it requires that the object is sampled in all
three dimensions to obtain a fully three-dimensional recon-
struction.

Current dark-field reconstruction methods sample the 3-D
distribution by combining scans from several different tra-
jectories. Unfortunately, this leads to complex acquisi-
tion protocols and specially designed measurement setups.
Malecki et al. used a three-circle Eulerian cradle to measure
scatter directions along seven circular, planar trajectories [6].
Hu et al. showed that under ideal conditions, the estimation
of the 3-D fiber direction from only two 2-D reconstructions
is in principle possible [7]. However, the method requires
perpendicular trajectories and an additional object registra-
tion. Schaff et al. used the reconstructions of seven circular
2-D trajectories to represent the scatter distribution in a 3-D
ellipse [8].

In this paper, we present a proof of concept for a direct
3-D fiber reconstruction with a helical trajectory. To our
knowledge, this is the first direct 3-D dark-field reconstruc-
tion algorithm for data from one continuous trajectory. We
propose and describe a generic 3-D iterative reconstruction
algorithm for the dark-field fiber directions. The high quality
of the reconstruction is shown in qualitative and quantitative
evaluations. The superiority of a helical trajectory over a
circular trajectory is shown in an experiment that compares
both setups. Furthermore, the feasibility of a helical 3-D
fiber reconstruction is shown for a more complex phantom
that consists of two rods. Finally, we discuss the results and
conclude the paper.
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Algorithm 1: Iterative reconstruction algorithm

1 initialization
2 project volume
3 compute difference sinogram
4 normalize with mask sinogram
5 compute initial error
6 while iterations < nr of iterations do
7 iterations ++
8 backproject the differenceSinogram
9 vectorfield(t−1) + stepsize · vectorfield(t)

10 normalize vectors
11 projection of new estimate
12 compute and nomalize difference sinogram
13 compute new error
14 while new error > old error && step > 0.1 do
15 decrease stepsize
16 repeat lines 9 to 13
17 end
18 if stepsize < 0.1 then
19 iterations = nr of iterations
20 break
21 end
22 end

2 Materials and Methods

We use the 3-D dark-field projection model from [4]. The
fiber is represented as a 3-D vector f ∈ R3 and the amount of
scattering consists of an isotropic and anisotropic term. These
values are related to the eigenvalues of the 3-D Gaussian
scatter distribution. The dark-field signal for a single fiber f
measured along the sensitivity direction s ∈ R3 is

D = diso +daniso

(
s> (Rf)

)2
, (1)

where diso and daniso are the isotropic and anisotropic coef-
ficients, the rotation matrix R ∈ R3×3 encodes the rotation
angle and the fan- and cone-beam angle of a X-ray in the
given geometry. The quadratic part in the model implements
the symmetry in the scatter distributions and ensures the com-
patibility to previous 2-D scatter models. The derivation and
complete projection model can be found in [4]. In this work,
we consider the measured dark-field signal as the integral
over the dark-field signal from Eq. 1 of all fibers along a ray.
The projection model is truly three-dimensional and allows
to image arbitrary 3-D trajectories.
The general reconstruction problem is to estimate the quan-
tities diso and daniso and the fiber direction. However, the
reduction of a five-dimensional vector of unknowns (diso,
daniso and three dimensions for the fiber vector) to a one di-
mensional signal is a very difficult reconstruction problem.
Hence, we slightly relax the problem statement in this work:
we assume fixed and homogeneous isotropic and anisotropic
values and only aim to reconstruct the fiber direction.

y

z

x

Figure 2: The vector visualization is using a RGB color-coded
coordinate system in three dimensions.

The solution to this task can be formulated as a least-squares
solution, analogously to state-of-the-art iterative computed
tomography reconstruction algorithms. Hence, the objective
function is

f̂ = argmin
f

∣∣∣∣
∣∣∣∣D−diso +daniso

(
s> (Rf)

)2
∣∣∣∣
∣∣∣∣
2

. (2)

The derivative of the objective function with respect to f is

∇f

(
D−diso−daniso

(
s> (Rf)

)2
)2

(3)

= R>s 2daniso

(
s> (Rf)

)2
2
(

d−diso−daniso

(
s> (Rf)

)2
)

(4)

= R>sm , (5)

where we combined between Eqn. 4 to Eqn. 5 all scalar values
into the value m for improved readability. As a consequence,
Eqn. 5 shows that the gradient vector-direction is encoded by
the sensitivity direction and the transpose of the rotation ma-
trix that encodes the projection ray. Equation 5 together with
symmetry considerations of the scatter distribution enables
the reconstruction of the true 3-D fiber direction.
The reconstruction itself follows a state-of-the-art iterative
computed tomography algorithm, an algorithm listing as
pseudo code is shown in Alg. 1.
We use the helical trajectory, since it is a well-defined, true
3-D trajectory and commonly used in medical applications.
One general benefit of a 3-D trajectory over a circular tra-
jectory is that its central slice is not limited to in-plane fiber
rotations.

3 Experiments and Results

We perform two experiments to show the feasibility of the
direct 3-D reconstruction of fiber vectors with a helical
trajectory. All experiments are implemented in the CON-
RAD framework [9]. The helical trajectory contains seven
rotations with 270 projections along each rotation, with a
source-isocenter distance of 20 mm and a source-detector
distance of 160 mm. The rotation axis is set to the z-axis,
i.e. (0, 0, 1). The grating bars are aligned with the rotation
axis, which results in a sensitivity direction within the
xy-plane. More specifically, the sensitivity direction is set
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Figure 3: 3-D visualization of the volume and fiber directions for Experiment 1, using the color-coding of Fig. 2.

to s = (1, 0, 0). The isotropic and anisotropic parameters
are fixed and set to 2 and 1, respectively. The initial step
size for the iterative reconstruction is 0.25 with a maximum
number of 100 iterations. The vector directions in the
experiments are color-coded for an easier visual verification
of the directions in 3-D. We use for the color coding the
RGB values representing the three coordinate axes. The
color scheme is shown in Fig. 2.

Experiment 1:
This experiment shows the feasibility of a direct 3-D recon-
struction with a helical trajectory and compares the recon-
structions visually and quantitatively with a circular trajec-
tory using the same reconstruction algorithm. The circular
trajectory consists of 360 projections over 2π with the same
magnification as the helical trajectory. The object consists
of 7×7×7 voxels (voxel spacing of 1 mm), and the helical
pitch is chosen as 2 voxels per rotation.
Figure 3 shows the vector directions in the xy- and xz-plane
for the ground truth phantom, the initialization of the recon-
struction volume, and reconstructions from the circular and
helical trajectory. The homogeneous phantom has a vec-
tor direction of f = (1, 1, 1) (Fig. 3a). The dimensions of
the reconstruction volume are set identically to the ground
truth. Voxels are initialized with a constant fiber direction
of f0 = (1, 0, 0) (Fig. 3b). The reconstructed fiber directions
with the helical trajectory are very close to ground truth. The
discrepancy of the circular reconstruction can be best recog-
nized from the color-coding of the fiber direction, which is
olive to yellow instead of gray. The divergence is particularly
large in the central plane (bottom of Fig 3c).
A quantitative evaluation confirms the high-quality recon-
struction of the helical trajectory. We compute the angle in
3-D between the ground truth and the reconstructed fiber
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Figure 4: Mean and standard deviation of the angular error in 3-D
per slice.

direction as a performance metric. The mean angular error
between the fiber direction of the GT and helical reconstruc-
tion is about 2◦, whereas the circular trajectory has a mean
angular error of 25◦.
Figure 4 shows the mean angular error and standard
derivation separately for all xy-slices. The error for the
circular trajectory strongly depends on the vertical slice, i.e.,
the cone angle. The largest deviation from the ground truth
is in the central plane. The fiber directions from the helical
reconstruction are consistently accurate across all slices.

Experiment 2:
This experiment shows the feasibility to reconstruct a non-
homogeneous object with a helical trajectory. The object
consists of 15× 15× 15 voxels (voxel spacing of 1 mm),
which results in a helical pitch of 4 voxels. The object itself
consists of two rods with different vector directions defined
as (0.5, 1, 0.5) and (1,−0.5, 0) (see Fig. 5). This object
geometry is similar to the object used in [10]. The iterative
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(a) GT (b) reco

Figure 5: 3-D visualization of the volume and fiber directions for
the two rods in experiment 2, using the color-coding of Fig. 2.

reconstruction is initialized as f0 = (1, 0, 0).
The ground truth phantom and resulting reconstruction are
shown in Fig. 5. The reconstruction agrees very well with
the ground truth, which shows that a reconstruction of more
than one fiber direction is possible. Quantitatively, the mean
angular error of the non-zero voxels is 7.57◦ with a standard
deviation of 4.58◦.

4 Discussion

The experiments show that the proposed reconstruction algo-
rithm is able to estimate 3-D fiber directions from a single,
continuous helix trajectory. The reconstruction of the homo-
geneous square (Exp. 1) shows the superiority of a helical
trajectory over a circular trajectory. The reconstruction with
the circular trajectory shows that diverging cone rays can lift
the fiber out of the rotation plane. However, in the central
plane, only a rotation within the plane is possible. The fiber
directions that are reconstructed with a helical trajectory are
overall very accurate, and the result is very homogeneous,
with only minor deviations to the ground truth. Interestingly,
the reconstruction error has a minimum in the central slice.
The second experiment shows that the reconstruction of two
rods with different fiber directions is possible. While the
fiber of one rod is restricted to the xy-plane, the second rod
has fibers that point in an out-of-plane direction. The recon-
struction shows the ability to locally differentiate between
fiber directions within the same object volume. We consider
the results as a promising proof of concept and believe that
further investigations with the proposed model allow for im-
proved fine-tuning of the reconstruction parameters or update
steps to further improve the results. Furthermore, for more
complex objects, it may be beneficial to include an additional
regularization term as shown in other settings [10].
Both experiments use a large magnification to exploit large
cone angles and therefore a rotation matrix that allows to
easily rotate the fiber direction out-of-plane. One major point
that is not discussed so far is the feasibility of large cone
angles in a real TLI setup. In current real setups, the fan

angles are relatively small due to self-shadowing of rays at
the grating bars. This may be overcome in future designs,
e.g., with curved gratings. However, the cone angle is not
substantially limited along the direction of the rotation axis,
which is more important to the successful application of a
helix trajectory. Overall, this simulation study demonstrates
the feasibility of helical dark-field fiber reconstruction. Fur-
thermore, it might enable the imaging of larger objects with
a simpler setup, such that a full 3-D dark-field reconstruction
becomes feasible in medical applications.

5 Conclusion and Outlook

This paper presents a reconstruction algorithm for a direct
3-D fiber reconstruction from a X-ray dark-field signal. It
operates on a single, true 3-D trajectory, and is demonstrated
on a helical trajectory. To our knowledge, this is the first
work that enables a direct reconstruction of directional X-ray
dark-field scatter.
In future work, we will investigate the stability of the algo-
rithm itself, and its stability with respect to the trajectory
parameters. We will also investigate a combined reconstruc-
tion of fiber direction, isotropic, and anisotropic coefficients.

References

[1] C Hauke, G Anton, S Auweter, et al. “Hairline fracture detection
using Talbot-Lau X-ray imaging”. Medical Imaging 2018: Physics
of Medical Imaging. Vol. 10573. International Society for Optics
and Photonics. 2018, 105734F.

[2] S. Umkehrer, C. Morrone, J. Dinkel, et al. “A proof-of principal
study using phase-contrast imaging for the detection of large
airway pathologies after lung transplantation”. Scientific Reports
10.1 (2020).

[3] M. Wieczorek, F. Schaff, C. Jud, et al. “Brain connectivity exposed
by anisotropic X-ray dark-field tomography”. Scientific Reports
8.1 (2018), pp. 1–6.

[4] L. Felsner, S. Hu, A. Maier, et al. “A 3-D projection model for
X-ray dark-field imaging”. Scientific Reports 9 (2019), pp. 1–12.

[5] F. Pfeiffer, T. Weitkamp, O. Bunk, et al. “Phase retrieval and differ-
ential phase-contrast imaging with low-brilliance X-ray sources”.
Nature Phys 2.4 (2006), pp. 258–261.

[6] A. Malecki, G. Potdevin, T. Biernath, et al. “X-ray tensor tomog-
raphy”. Europhysics Letters 105.3 (2014), p. 38002.

[7] S. Hu, C. Riess, J. Hornegger, et al. “3-D Tensor Reconstruction
in X-ray Dark-field Tomography — The First Phantom Result”.
Bildverarbeitung für die Medizin. 2015, pp. 492–497.

[8] F. Schaff, F. Prade, Y. Sharma, et al. “Non-iterative directional
dark-field tomography”. Scientific Reports 7 (2017), p. 3307.

[9] A. Maier, H. G. Hofmann, M. Berger, et al. “CONRAD—A soft-
ware framework for cone-beam imaging in radiology”. Medical
Physics 40.11 (2013), p. 111914.

[10] S. Seyyedi, M. Wieczorek, C. Jud, et al. “A regularized X-ray
tensor tomography reconstruction technique”. International Con-
ference on Image Formation in X-Ray Computed Tomography (CT
Meeting). 2016.

312



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

Software Implementation of the Krylov Methods Based
Reconstruction for the 3D Cone Beam CT Operator
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Abstract Krylov subspace methods are considered a standard tool to
solve large systems of linear algebraic equations in many scientific
disciplines such as image restoration or solving partial differential
equations in mechanics of continuum. In the context of computer
tomography however, the mostly used algebraic reconstruction tech-
niques are based on classical iterative schemes. In this work we present
software package that implements fully 3D cone beam projection oper-
ator and uses Krylov subspace methods, namely CGLS and LSQR to
solve related tomographic reconstruction problems. It also implements
basic preconditioning strategies. On the example of the cone beam CT
reconstruction of 3D Shepp-Logan phantom we show that the speed
of convergence of the CGLS clearly outperforms PSIRT algorithm.
Therefore Krylov subspace methods present an interesting option for
the reconstruction of large 3D cone beam CT problems.

1 Introduction

Krylov subspace methods, see [1], are attractive in the con-
text of the solving tomographic problems as they do not
require direct storage of the system matrix of the correspond-
ing problem. This is especially true for 3D tomographic
problems, where the size of the system matrix prohibits its
efficient storage and the computation of the projection and
back-projection operator on GPUs or dedicated hardware
might be orders of magnitude faster than using stored pre-
computed matrix.
While most of the literature regarding algebraic reconstruc-
tion is based on Kaczmarz algorithm and related classical
iterative schemes, see [2], there is also a growing body of the
works on application of various Krylov subspace methods.
Important topics are optimal preconditioning strategies, see
[3] and the enforcing of properties such as non-negativity of
the solution [4].
Until circa 2010 the direct application of the Krylov subspace
methods to the 3D cone-beam CT operator (CBCT), was very
rare and the works regarding Krylov methods were solving
just smaller 2D problems. The block-wise algorithm to divide
the tomographic reconstruction into the smaller sub-problems
to apply CGLS and LSQR was proposed in [5]. Currently the
implementation of CGLS for CBCT operator can be found
in the two MATLAB based frameworks, see [6, 7]. The Split
Bregman algorithm for CBCT TV norm minimization using
Krylov BiCGStab was published in [8, 9]. There is however
still lack of works to systematically study Krylov subspace
methods or to compare their performance with the classical
ART based approaches.
In this work we present the software package, which contains
an open-source C++ and OpenCL implementation of the

Krylov subspace methods for the CBCT reconstruction. We
show that these methods poses a viable option for a fast and
accurate reconstruction on recent GPU hardware.
Moreover on simple test problem using CBCT we compare
performance of PSIRT, an advanced technique based on ART
like algorithms, to the CGLS, implementation of conjugate
gradients on the normal equations. We show that convergence
speed of the Krylov method is much faster and to achieve the
same accuracy, we need a lot less iterations.

2 Materials and Methods

Cone beam CT operator can be understood as a sparse matrix
A ∈ Rm×n acting on discretized attenuation data x ∈ Rn in
the volume of interest to produce projection data b ∈ Rm. In
the matrix form

b = Ax. (1)

As the matrix A is non square and often over-determined
with m > n, we typically solve the least-squares problem by
means of normal equations to find attenuation x such that

A>Ax = A>b. (2)

The matrix A>A is symmetric, positive definite and it is
possible to apply directly method of conjugate gradients on
such system. Direct method to do so is referred as CGLS.
There is also LSQR, mathematically equivalent method with
improved numerical stability, see [10, 11]. For the sake of
completeness, we include here the iterative scheme of CGLS
implemented in our software as Algorithm 1. We restructured
the algorithm in a way that at the end of each iteration we
compute the update of x and postpone the update of the
residuals to the beginning of the next iteration. By doing so,
we save one projection and backprojection at the end of the
algorithm.

3 Software

The software package was developped in C++ and OpenCL.
The project implements various CBCT projection and back-
projection operators, namely Siddon ray-caster [12], footprint
methods [13] and also so called Cutting voxel projector. Cut-
ting voxel projector uses the volume of the cuts of the voxels
by the rays to particular pixel for the computation of projec-
tions, details are yet to be published. From the reconstruction

313



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

input :Projection data b, initial vector x0, relative
discrepancy tolerance ERR, maximum number of
iterations K.

begin
allocate x, dx and rx;
allocate eb and pb;
NB0 = ‖b‖2;
x = x0;
pb = Ax;
eb = b−pb;
rx = A>eb;
dx = rx;
NR2old = ‖rx‖2

2;
pb = Adx;
NP2 = ‖pb‖2

2;
α = NR2old/NP2 ;
x = x+αdx;
eb = eb−αpb;
NB = ‖eb‖2;
i = 1;
while NB/NB0 > ERR & i < K do

rx = A>eb;
NR2now = ‖rx‖2

2;
β = NR2now/NR2old;
dx = dx +βrx;
NR2old = NR2now;
pb = Adx;
NP2 = ‖pb‖2

2;
α = NR2old/NP2 ;
x = x+αdx;
eb = eb−αpb;
NB = ‖eb‖2;
i = i+1;

end
end
Result: Vector x, number of iterations i, final norm of

discrepancy NB.
Algorithm 1: CGLS with delayed residual computation.

techniques, the software contains CGLS and LSQR imple-
mentation with the option of basic Jacobi preconditioning
and Tikhonov regularization. It is possible to select initial
vector or guess of the solution, e.g. the result of analytical
reconstruction or apriori knowledge. It is also possible to do
a off-center reconstruction, where the volume to reconstruct
can be positioned outside the center of rotation. For the pur-
pose of the comparison of the different CBCT reconstruction
methods, two classical ART like methods, SIRT and PSIRT
[2] are also implemented.
The package also contains methods to project volumes or
backproject projections without reconstruction. This could be
useful when e.g. simulating acquisition of the given volume
with particular geometry setting of a concrete CT device.
The program is distributed under the terms of GNU GPL3

license and its Git repository is available at https://
bitbucket.org/kulvait/kct_cbct. The results pre-
sented were obtained using git commit f2bf01a.

4 Results

Here we present a test to compare convergence of the Krylov
method (CGLS) with the classical scheme (PSIRT) when ap-
plied on CBCT operator. We have chosen 3D Shepp-Logan
phantom with the 256x256x52 voxels of the dimensions
0.86mm×0.86mm×3.44mm.
The geometry configuration is similar to the clinical C-Arm
CT systems for the brain tomographic scanning, where the
distance from the source to the isocenter is 749mm and the
distance from source to the detector is 1198mm. Detector
matrix have pixel size of 0.616mm×0.616mm. The trajec-
tory consists of 496 scanning angles.
We have first projected the 3D Shepp-Logan phantom using
this geometry to obtain projection data. We have used for
the projections and the reconstructions the implementation
of TT projector and backprojector, see [13]. We run the
tests to compare classical method PSIRT to Krylov subspace
method CGLS, both implemented in our software. The tests
were performed on computer with the AMD Ryzen 7 1800X
and GPU Vega 20 Radeon VII with 16GB HBM2 Memory
and 1TB/s bandwidth. Projectors and backprojectors are
implemented in OpenCL and the computations were run on
the GPU. Speed of the both methods in terms of average time
per iteration was comparable, circa 12.9s. To compare the
speed of convergence, we have measured relative norm of
discrepancy of the solution

e =
‖Ax−b‖2

‖b‖2
. (3)

during the iterative process.
Initially we run fixed number of 40 iterations of the both
methods, the relative norm of discrepancy (3) after 40 itera-
tions was then eCGLS = 0.18% versus ePSIRT = 3.64%. The
visualization in Figure 1 shows that PSIRT reconstruction
is still blurry while CGLS has converged without visible
problems.
Second, we test how many iterations every method needs
to achieve norm of discrepancy under e < 1%. For PSIRT
it is N = 112 iterations compared to CGLS with N = 20.
This means that the CGLS is circa five times faster than
PSIRT when we would like to achieve the same accuracy. In
figs. 2 and 3 can be found the graphs comparing the speed of
convergence for both methods that illustrates clear advantage
of the CGLS for the test problem.

5 Discussion

The library we present in this article was developed to test
different approaches to implement cone beam CT operator
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Figure 1: Center slice of the test volume of 256x256x52 voxels, all images have the same window [0,1], ground truth data on the left.
PSIRT reconstruction after 40 iterations in the middle. CGLS reconstruction after 40 iterations on the right.
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Figure 2: Comparison of the speed of convergence in terms of the
relative norm of discrepancy (3) for CGLS and PSIRT for the test
CBCT problem, 40 iterations.

and to test various reconstruction techniques. Focus was on
solving problems that arise from the model based perfusion
reconstructions, where we can have negative values in recon-
structed volumes and classical solvers might often diverge.
The accuracy is often prioritized over speed and many double
precision computations could be substituted by float preci-
sion counterparts to increase speed. From the nature of the
open-source solution and the C++ modular implementation
it is straightforward to extend the program for the particular
reconstruction algorithm or preconditioning strategy.
On a test problem we have demonstrated that the CGLS has
much faster convergence characteristic than PSIRT. It can be
seen from figs. 1 to 3. We have tested also SIRT as alternative
classical reconstruction method, but its convergence was
slower when compared to PSIRT.
When using Krylov methods, it is not well addressed how
to enforce conditions such as non-negativity of the solution.
While in the context of classical ART, this is an easy task, for
Krylov methods we can not simply apply the box conditions
as the regularized solution would not fit to the underlying
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Figure 3: Comparison of the speed of convergence in terms of the
relative norm of discrepancy (3) for CGLS and PSIRT on the test
CBCT problem. Y axis in logarithmic scale, 100 iterations.

Krylov subspace and we would lose the convergence proper-
ties of the Krylov methods. To address this multiple schemes
for restarted methods within this framework were introduced,
see [4]. Implementing these techniques is also one of further
goals for the development of presented software package.
Main obstacle to do so is a larger memory footprint of such
methods as compared to CGLS we usually need to store more
vectors of underlying Krylov space.
The method PSIRT could be used with the box conditions
as for the test problem values lies within a range [0,1]. The
relative norm of discrepancy after 40 iterations was ePSIRT =
3.64% without box conditions and ePSIRT = 3.62% with them.
Therefore for simplicity, we report only the results of PSIRT
without box conditions as they did not have any meaningful
effect on the convergence. In real world applications the
upper bound can be hard to estimate.
The memory footprint of SIRT and CGLS is the same. Our
implementation of CGLS, see Algorithm 1, needs to store
three times the volume data and three times the right hand
side data. It is necessary for storing the residual and Krylov

315



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

subspace vectors on which we project the error. Our imple-
mentation of SIRT has the same memory footprint as we need
to store the vectors of the row and column sums of the system
matrix and update vectors. In PSIRT we do not store column
sums vector so we need to store right hand side data only
twice. However, current GPU hardware provides enough
memory such that the memory footprint of these methods is
not an issue in practical applications even for much bigger
problems than the one presented.

There is also implemented Jacobi preconditioning strategy
in the software. It is most simple preconditioning, where
we approximate the matrix of the normal equations by its
diagonal. It seems however that this strategy alone does
not work very well especially due to the presence of very
small diagonal values in system matrix on the cone boundary.
Therefore better preconditioning strategies have to be found
in order to speed the convergence.

Although LSQR should in theory be numerically more sta-
ble than CGLS, from our experiments for the tomographic
reconstruction the two methods are producing practically
identical results. So the type of instability that makes LSQR
numerically more stable method is probably not present in
a typical CT data. Due to smaller memory footprint, using
CGLS might therefore be preferred.

In the CGLS algorithm the discrepancy and residual vectors
are not computed directly but they are iteratively updated.
Therefore it is proposed to reorthogonalize this vector once in
k iterations to avoid accumulation of errors. When we applied
such scheme, we figured out that the difference between
iteratively updated discrepancy and discrepancy computed
from solution vector is less than 0.0001% for 10 iterations.
Therefore we omit this reorthogonalization step in a default
configuration.

6 Conclusion

Analytical reconstruction methods are still a gold standard
in a CT reconstruction. Main argument for using them is
their speed. As Krylov subspace methods provide much
faster convergence when compared to the ART like methods,
together with the hardware speed improvements, their wider
application could change the speed narrative to widely adopt
algebraic reconstruction techniques in practice.

The results show on a phantom problem very high advantage
of the CGLS over PSIRT in terms of convergence and they
shall be validated for practical problems and other setups.
We believe that there will be still very strong advantage of
Krylov solvers in practice. Further development should focus
on adopting a good preconditioning strategies for Krylov
solvers as it has potential to further reduce the run time.

7 Remarks

Just before the conference, we managed to achieve a signifi-
cant speedup of some projectors and backprojectors imple-
mented in the https://bitbucket.org/kulvait/kct_
cbct, especially the so-called Cutting voxel projector, which
will be introduced in a separate article. Because of this
speedup, significantly better projection, backprojection and
reconstruction times were presented on the poster. The main
subject of this contribution, the convergence speed of Krylov
methods as a function of the number of projections and back-
projections, is not affected. However, it may significantly
improve the usability of our software for fast algebraic recon-
struction of moderate sized problems in minutes. Last stable
commit as of writing this sentence is 0d7d6.
After presenting a poster at the Fully3D 2021 conference, we
received very important feedback. Namely, Simon Rit, the
lead developer of the Reconstruction Toolkit, see [14], men-
tioned that methods derived from the Kaczmarz algorithm
using the entire projection and backprojection operator at
once are slow compared to ordered subsets methods, see [15].
This also applies to the PSIRT algorithm, which does not
use ordered subsets and which we compare Krylov methods
with. We take this criticism very seriously and have started
working on implementing OS algorithms in our package to
be able to reliably compare the methods. Unfortunately, this
comparison is not yet complete and cannot be presented here.
It is also worth mentioning that, compared to ordered subset
schemes, it is easy to add L2 regularization directly in the
problem formulation for Krylov methods. As recently shown,
L2 regularization can be a faster alternative to L1 regulariza-
tion, such as TV norm minimization, with similar results, see
[16].
The previous question however, leads to the following consid-
eration: if ordered subsets methods have yielded significant
speedups of classical CT reconstruction schemes by using
only a subset of the rows of the CT operator matrix in each
step, can a similar approach be used for Krylov methods?
A naive implementation of methods like CGLS with this
strategy would very likely suffer from a rapid loss of or-
thogonality and convergence speed. On the other hand, it is
possible that orthogonalization with respect to a larger num-
ber of vectors proportional to the number of subsets could
stabilize the method. Although this would lead to longer
recurrences and a larger memory footprint of the algorithm,
it seems promising to investigate such methods in the future.
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Abstract Sparse sampling in X-ray Computed Tomography (CT) is
an interesting option towards reducing dose. Recently, the success
of deep learning techniques in a lot of medical imaging applications
has prompted an increased interest in data-driven tomographic recon-
struction algorithms. Nevertheless, most of the proposed solutions
boil down to denoising steps performed either pre-reconstruction on
the sinogram or post-reconstruction on the reconstructed image, with
no reconstruction being performed as part of the network model. In
this work, we introduce an improved deep neural network architecture
(DNN) which combines a fine-tuned Filtered Backprojection (FBP) op-
eration with a dual domain filtering step applied on both the sinogram
and reconstructed image to produce artifact-free reconstructions from
sparse data and we present its performance potential in experiments
with clinical data.

1 Introduction

In many works on data-driven tomographic reconstruction for
sparse X-ray Computed Tomography (CT), the reconstruc-
tion part is done outside the network. Examples are using a
UNet in the context of sinogram completion from sparse data
and then applying a FBP operation to deliver an artifact-free
reconstruction [1], or first reconstructing the sparse-view CT
data and then using a UNet trained in the framelet domain (to
enforce sparsity in said domain) to perform what boils down
to a denoising step in the image domain to remove sparse
data artifacts from the reconstruction [2]. However, pre-
reconstruction sinogram completion or post-reconstruction
denoising approaches all have the disadvantage of performing
on either the sinogram or the image domain (or an equivalent
wavelet representation of said domain) such that a neural
model is unable to learn to distinguish features from both
the measurements and the reconstruction. Additionally, the
actual reconstruction step plays no role in the training or
inference process.
More recently, new methods of dealing with the inverse prob-
lem in a more controlled data-driven fashion have been in-
troduced by Würfl et al., who combined a back-projection
operation with convolutional and fully connected layers that
mimic the filtering operation of the FDK algorithm [3], or
Jin et al., who developed an unrolled loop algorithm of an
iterative reconstruction approach using a DNN [4]. The ad-
vantage of these methods is that the reconstruction step can
now be used during training, which removes the single do-
main training limitation of the methods mentioned earlier.
In this work, we are building on the works of Würfl et al. [3]
and Lin et al. [5], developing an improved architecture for a

Figure 1: (UNet) In this work we use a slightly modified ver-
sion of the UNet network. (WNet) Proposed network architecture
for concurrent dual domain filtering and filtered backprojection
as the domain transform. The domain transform block could in
theory be replaced with any inversion operation implemented as a
differentiable layer.

deep neural network that is able to learn both from the raw
data (sinogram-domain learning) and from the reconstructed
data (image-domain learning). In order to enable end-to-
end to training, we introduce a fixed differentiable back-
projection layer based on a fixed operator with an additional
filtering step as a convolutional layer, mimicking an FBP
operation in between the two denoising modules. We call the
overall architecture WNet.

2 Materials and Methods

2.1 Mathematical Background

Given a set of sparse measurements ysparse ∈ RM1 and a for-
ward operator Asparse ∈ RM1×N describing a sparse CT con-
figuration, we define the following forward model:

Asparseµ = ysparse (1)

where µ ∈RN is the voxelized volume we seek to reconstruct.
As in every tomographic reconstruction problem, starting
from a set of measurements ysparse and a known system ma-
trix Asparse, we seek to invert the forward model in eq. (1).
Therefore, we compute the solution µsparse as the result of an
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FBP operation with a ramp filter:

µsparse = Psparse
W ysparse (2)

where Psparse
W = At

sparseW with At
sparse being the equivalent

back-projection operation to the forward one (Asparse), and
W a filtering operator applying a convolution with the ramp
kernel. Nonetheless, since the FBP result is only a solution
to the inverse X-ray transform iff N→ ∞ and M1→ ∞, the
solution µsparse will not only contain sampling artifacts but
also sparse-data artifacts. Therefore, we are interested in
eliminating such artifacts by finding a denoising operator
which satisfies:

D̂ = argmin
D

d(Dµsparse−µ) (3)

given a well defined distance metric d(·). To do this, we
introduce a second operator A∈RM2×N with M2 >M1, which
describes a fully sampled CT configuration to generate a set
of measurements y ∈ RM2 :

Aµsparse = y+ ε (4)

The sampling and sparse-data artifacts, denoted as a com-
bined ε , that are present in µsparse are also contained in the
generated measurements. Thus, we need to find a pair of
operators (D1,D2) for which:

D̂µsparse = D1PW D2(y+ ε) = µ̂ ≈ µ (5)

where PW = AtW is the FBP operation working with fully-
sampled measurements. In other words, we seek to eliminate
the artifacts from the final reconstruction µ̂ in the measure-
ment domain (D2) as well as in the image domain (D1).

2.2 Model Architecture

In this work we investigate two different approaches to con-
vert a sparse reconstruction into an artifact-free one. Both
image-domain and dual-domain filtering DNN models take
advantage of a slightly modified, smaller version of the stan-
dard UNet architecture. A graphical representation of both
architectures can be seen in Fig. 1. Both networks were im-
plemented in Pytorch, while the domain transform layer is a
differentiable Pytorch module using as a backend for the for-
ward and back-projection operations of the C++ framework
elsa [6, 7].

2.2.1 Image-domain Filtering

The first approach consists of a post-processing step per-
formed after the FBP reconstruction from sparse-data sino-
grams, in which a network containing a single UNet module
(taking the role of D̂ from eq. (3)), called UNet, is trained
towards eliminating both sampling and sparse-angle artifacts
from the reconstructed image. Our version of the encoder-
decoder network only has four levels instead of the five layers

present in the original UNet architecture [8]. Instead of per-
forming the downsampling operations using max pooling
operations we used 2D convolution operations with stride
2. We also added an additional 2D convolution operation at
each downsampling and upsampling level.
In denoising operations, the output of the network has to
retain similarities to its input. Therefore, we appended a
residual branch to our UNet module implementation. Lastly,
all activation operations are leaky ReLUs.

2.2.2 Dual-domain Filtering

The second approach upgrades the FBP reconstruction into
a module containing a convolution with a fine-tuned filter
followed by a fixed back-projection operation, and combines
it with a pair of UNets for the goal of removing artifacts
pre- and post-reconstruction both in the sinogram and the
reconstructed image domain. This is equivalent to finding the
pair of operators (D1,D2) which satisfy eq. (5), for which
D2 =Us where Us is a UNet module dealing with sinogram
data, and D1 =Ur where Ur is a UNet module dealing with
the reconstruction data. Both of them have the same specifi-
cations as the one introduced in the previous section.
We propose an improved neural network architecture, WNET,
as shown in Fig. 1, which consists of the FBP operation as a
domain transform layer combined with a filtering operation
sandwiched between the two UNet modules (Us and Ur) men-
tioned before. The first UNet module (Us) takes as an input
a set of noisy fully-sampled measurements and produces a
denoised version of them. Next a convolution with a learn-
able filter combined with the back-projection operation in
a domain transform layer (T ) model the FBP operation and
yield a reconstruction which is then fed to a second UNet
module (Ur). The result of Ur is the output of the network and
consequently the sparse-angle artifact-free reconstruction.

3 Results and Evaluation

Our goal is to confirm that the proposed cascaded network
approach WNet can produce superior results compared to the
UNet used as a post-reconstruction denoising step.

3.1 Dataset Preparation

For the experiments presented in this paper we use five clini-
cal investigative high-dose full-view scans obtained ex-vivo
from two patients. Four of the five datasets where obtained
of one patient and used for training and validation purposes
while the fifth dataset was of the second patient and kept
for testing. Each dataset consists of the 150 slices contain-
ing chest scans extracted from full-body CT reconstructions
which were obtained at a resolution of 512-by-512 pixels.
Each slice was downsampled to a resolution of 256-by-256
pixels and normalized between 0 and 1. Then, to avoid over-
fitting data augmentation was carried out on the 750 images
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by flipping each image both horizontally and vertically and ro-
tating them by 90 degrees clockwise and counter-clockwise.

We used the tomographic reconstruction framework elsa [6,
7] to simulate two different sinograms in a parallel-beam
configuration for each of the 3750 images obtained after
the data augmentation step: one fully-sampled sinogram
consisting of 512 pixels by 512 views over 359 degrees and
one sparse sinogram with 512 pixels over 64 and 128 angles
over 359 degrees. No additional detector noise was added to
the sinograms.

A set of reconstructions were then obtained from these sino-
grams applying the FBP method with a ramp filter: the fully-
sampled sinogram was used to obtain the “ground-truth”
reconstruction required for training and evaluation, while
with the sparse sinogram we produced sparse reconstructions
of the original CT scan (called “64/128-view”). Furthermore,
we simulated another sinogram, of the same size and proper-
ties as the fully-sampled one, but of the sparse reconstruction.
We call this sinogram “64/128-view full-sparse”.

3.2 Training Procedure

For training and validation we had a set of 3000 data points
coming from the first patient. We use a 80%-20% split for
training and validation purposes. For both architectures we
use the same loss, the Mean Squared Error.

We train the WNet for 100 iterations on pairs of (“64/128-
view full-sparse” sinogram, “ground-truth” reconstruction)
using individual Adam optimizers (β1 = 0.9,β2 = 0.999) for
each of the three parts: Us, T , Ur. We initialize the weights
of Us using Normal Kaiming distribution, while the weights
of Ur were initialized with the normal distribution. Besides,
the convolution filter from T is initialized with the values of
the ramp filter. Both Us and Ur were trained starting from a
learning rate of 10−3 while the learning rate for the T was
initialized with 10−10, which can be viewed as a fine-tuning
step of the ramp filter. Moreover, we employed a scheduler to
exponentially decrease the learning rate of all three optimizer
by a factor of 0.95 every 5th iteration. The batch size was set
to 4 for all training stages and all models.

We use the same number of iterations to train the UNet on
pairs of (“64/128-view” reconstruction, “ground-truth” recon-
struction). As an optimizer we also use the Adam optimizer
(β1 = 0.9,β2 = 0.999), and we initialize the learning rate
with 10−4. The initialization of the weights is left the default
one, and we use a batch size of 4.

Both WNet and UNet were showing learning saturation in the
validation loss after 100 iterations. The need for a scheduler
in the case of WNet was highlighted in an earlier ablation
study we performed, and we found out that without a sched-
uler, the Us and Ur modules were learning against the T
module and convergence would not be achieved.

3.3 Evaluation of the Networks

We compare the results obtained using the two networks,
WNet and UNet, to reconstructions performed using conven-
tional FBP with a ramp filter by computing PSNR and SSIM
metrics over the test set (see Table 1) and we show example
reconstructions in Fig. 2 and 3 .
In the red boxes from Fig. 3 there is a small thin feature
located on the left side of the vertebra which in the case
of UNet for both “64-” and “128-view” reconstructions has
almost vanished. On the other hand, the WNet result matches
more accurately the ground truth label and also manages in
both “64-” and “128-view” cases to keep the blurring amount
to a minimum compared to UNet.
In the blue box, a soft tissue feature with clear delimita-
tions can be seen in the ground truth image. While for “64-
view” data both methods lack some structural similarity to
the ground truth, WNet manages to keep the blurring to a
minimum and to not introduce “fake” soft-tissue. On the
other hand, on the “128-views” data, both methods perform
at closer level, yet the WNet result tends to have more contrast
and definition compared to the UNet result.

Methods
Metrics PSNR (dB) SSIM

avg. std. avg. std.
FBP (64-view) 34.2034 1.8802 0.9419 0.0190
WNet (64-view) 40.9175 1.8999 0.9873 0.0048
UNet (64-view) 38.7319 1.7915 0.9793 0.0072
FBP (128-view) 39.2255 1.8400 0.9781 0.0078
WNet (128-view) 43.9907 1.7610 0.9937 0.0023
UNet (128-view) 42.5084 1.8967 0.9898 0.0039

Table 1: Mean and Standard deviation values of PNSR and SSIM
for the area inside the volume. (bold) best PSNR and SSIM value
pairs which correspond to the WNet results. Interestingly, the re-
sults obtained with the WNet trained on “64-view” data are superior
to the “128-view” reconstructions produced with standard FBP.

4 Conclusion

We propose an improved cascaded deep neural network com-
posed of a module containing a learnable filter combined with
a differentiable fixed back-projection operation layer sand-
wiched between two UNet modules performing denoising
in both the sinogram and the image domain. Our evalua-
tion results show that the proposed WNet performs better
than a conventional UNet applied as a post-reconstruction
denoising step and is more robust to artifacts in the case of
low-number-view sparse reconstruction. Moreover, we have
seen an increase of around 1.5− 2dB in the PSNR value
inside the volume over the UNet of the same size.
We seek to expand this architecture in the future with a com-
pound loss module based on a combination of pixel-wise and
perceptual loss functions. Part of a future study is also the
development of variational modules based on more accurate
iterative reconstruction algorithms as the domain transfer.
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Figure 2: Reconstructions obtained using the different methods applied on “64-view” sinograms (first row) and on “128-view” sinograms
(second row). (top-right) two squares (red and blue) highlighting two regions of interest which are visualized in Fig. 3. All images are
visualized with soft tissue windowing.
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Figure 3: Magnified regions highlighted in the top-right image
from Fig. 2. The first and the second row of each color correspond
to the reconstruction obtained from the “64-view” sinogram (top
row) and the one from the “128-view” sinogram (bottom row).
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Abstract: We introduce a diffusion filtering scheme called tomographic 

because it is integrated into the backprojection operation. Backprojection 

is decomposed into the sum of the images of the backprojection of each 

single projection (BSP). The BSP image is filtered in the directions 

parallel to the detector axes. The diffusion strength is simultaneously 

modulated by a priori ray-by-ray noise information and a priori edge 

information. The sum of the filtered BSP images gives the final FBP-like 

reconstruction image. The properties of diffusion make that the filtering 

is applied separately along all the directions of the tomographic 

acquisition. Simulations in cone-beam geometry illustrate how ray-wise 

statistics and an edge map can simultaneously reshape the signal-to-noise 

ratio of the output of an analytical reconstruction, providing a non-

iterative alternative to diffusion regularized weighted least-squares 

optimization. 

Introduction 

Analytical reconstruction is the most convenient way of 

reconstructing tomographic data. The processing pipeline is 

pre-filtering of the data, backprojection and post-filtering of 

the reconstructed image. There exists an infinite variety of 

ways to combine these filtering operations, based on a priori 

information about the noise of the data and of features to 

preserve in the image. Backprojection however, is an 

obstacle in-between. Backprojection at the voxel level is a 

sum of measurements (or rays) of different statistical 

quality; if the expectation of each measurement were the 

same, a weighted sum according to the noise statistics 

would be optimum. Obviously, the point of acquiring 

tomographic data is that the measurements do have a 

different expectation at each angle, and the correct 

summation is the non-weighed one; statistically weighted 

backprojection does not fit into analytical reconstruction. 

What is allowed is the translation of the noise statistics into 

a modulation of the pre-filtering of the data. The issue is 

that it cannot account for the edge information. Edge 

information is available in the image domain only, where, 

however, the filtered backprojection has created complex 

statistical correlations. To overcome these issues, one either 

combine multiple analytical reconstructions [1] or 

formulate the problem as a regularized weighted least-

squares optimization problem [2]. The first approach, while 

quite practical, does not handle the noise simultaneously 

with the edges. On the contrary, model-based iterative 

reconstruction (MBIR) brings together the statistical 

description, assuming uncorrelated noise, which is a good-

enough approximation at the detector level, with an edge-

preserving regularization term. However, handling the 

interplay between the noise model and the image 

regularization requires a complex parameterization to 

deliver the right image for a given clinical task [3].  

We propose instead to consider the case of the 

backprojection of a single projection. It is a very special 

image because it only replicates the projection over the 

image space. The ray-by-ray noise model can thus be 

propagated into the image space where the edge information 

already belongs. It becomes possible to perform a filtering 

that is guided by both noise and edge information. The 

filtering having no impact in the direction where the signal 

remains constant, it is implemented in the remaining 

orthogonal directions only. The final summation yields an 

image that is filtered over all sampled directions. Not all 

filters are separable into a sum of 1D filtering steps, but 

diffusion is, and will be considered exclusively in the 

following. Diffusion filtering is very flexible and benefits 

from a solid theoretical background regarding its 

discretization and fast computation, such as additive 

splitting schemes [4]. 

Materials and Methods 

We first expose the mathematics of tomographic diffusion 

in the 2D case of reconstructing a single slice, in parallel- 

or fan-beam geometry. We use the variational form of 

diffusion filtering. 

Noise-driven 1D-diffusion: 

Let us use coordinates (𝑢, 𝜃) for the detector and angular 

axes of the projection domain respectively. We denote Θ the 

set of the 𝑀 sampled directions and 𝑝𝜃(𝑢) = 𝑝(𝑢, 𝜃) the 

projection having direction 𝜃, i.e. such that the direction of 

the central measurement ray is 𝜃⊥ = 𝜃 −
𝜋

2
. The sinogram 

of all projections is denoted 𝑝Θ. Uniform diffusion of 𝑝Θ is 

obtained by 1D-diffusion along 𝑢 of each sinogram row 

𝑝𝜃(𝑢). We denote ∇𝜃 the gradient along 𝑢 for direction 𝜃 

(note that this is also the direction of the ramp filtering of 

the FBP process). We denote 𝐺Θ(𝑝) such filtering: 

𝐺Θ(𝑝0) = min
𝑝

{½‖𝑝 − 𝑝0‖2 + 𝑇 ∑ 𝑝𝑡(∇𝜃
𝑡 ∇θ)𝑝

𝜃

} 

The penalty weight is called the diffusion time 𝑇. The 

reason for this is that, for 𝑇 not too large, 𝐺Θ(𝑝0) is also the 

solution of the problem of uniform heat diffusion at time 

𝑡 = 𝑇 if the 𝑝0 values are taken as the temperature values at 

time 𝑡 = 0 [4]. For the same reason, diffusion filtering will 

be equivalent to a Gaussian filtering of full width at half 

maximum (FWHM) close to  3.333√𝑇. Note that time 𝑇 is 

thus homogeneous to the variance of the Gaussian while the 

FWHM is homogeneous to its standard deviation.  
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The interest of diffusion schemes with respect to Gaussian 

filtering in Fourier space is that a non-uniform filtering is 

easily obtained by inserting a diagonal matrix of diffusion 

weights 𝑊𝜃 called diffusion tensor. It modulates the 

diffusion at each sample 𝑢 for filtering direction 𝜃 

according to: 

𝐺WΘ
(𝑝0 ) = min

𝑝
{½‖𝑝 − 𝑝0‖2 + 𝑇 ∑ 𝑝𝑡(∇𝜃

𝑡 𝑊𝜃∇θ)𝑝

𝜃∈Θ

} 

with 𝑊Θ gathering the modulation 𝑊𝜃 for all directions in 

Θ. A straightforward statistical interpretation comes by 

rewriting the above equation as: 

𝐺WΘ
(𝑝0) = min

𝑝
{½(𝑝 − 𝑝0)𝑡𝑊Θ

−1(𝑝 − 𝑝0)

+ 𝑇 ∑ 𝑝𝑡(∇𝜃
𝑡 ∇θ)𝑝

𝜃∈Θ

} 

A classical choice for weights 𝑊Θ is to set them equal to the 

a priori known variances of the measurements. This fits well 

with time 𝑇 that is homogeneous to a variance, while the 

modulation of the diffusion strength in terms of FWHM will 

therefore follow the local variations of the standard 

deviation. Note that this is but one choice, made a priori. 

The output filtered image is optimal with respect to that 

choice. The optimality of the choice itself is not discussed 

in this work.  

While 𝑊Θ provides a ray-by-ray control of noise 

propagation, it is blind to the image features. 

Edge-preserving 2D-diffusion 

In the image space, we denote a voxel location �̅� = (𝑥1, 𝑥2). 
The post-filter applies diffusion along each axis 𝑥𝑖 of the 

Cartesian grid where image 𝑓 is sampled. The variational 

definition using gradient ∇�̅�= (∇𝑥1
, ∇𝑥2

) is: 

𝐺(𝑓) = min
𝑔

{½‖𝑔 − 𝑓‖2 + 𝑇 ∑ 𝑔𝑡( ∇𝑥𝑖
𝑡 ∇𝑥𝑖

)𝑔

𝑖

} 

Uniform diffusion over the data is equivalent to uniform 

diffusion over the reconstructed image. But image diffusion 

can now be modulated by a diagonal diffusion tensor 𝐸�̅� that 

modulates scalar 𝑇 according to: 

𝐺𝐸�̅�
(𝑓) = min

𝑔
{½‖𝑔 − 𝑓‖2 + 𝑇 ∑ 𝑔𝑡( ∇𝑥𝑖

𝑡 𝐸�̅�∇𝑥𝑖
)𝑔

𝑖

} 

In this context, matrix 𝐸�̅� reflects the edge information, 

locally switching in a spatially continuous manner from 1 

for full diffusion to 0 when an edge must be preserved. The 

modulation brought by 𝐸 is edge-preserving but blind to the 

noise propagation from the data. We here assume that the 

edge map is known a priori. The edge-based modulation is 

the same for all directions so that the diffusion is isotropic 

but non-stationary. 

Filtered backprojection of a single projection 

Noise in analytical reconstruction is amplified by the ramp 

filtering and propagated to the reconstructed image by 

backprojection. Let us decompose the backprojection of 

acquired data 𝑝0 through: 

𝑅𝑡𝑝0 = ∑ 𝑅𝜃
𝑡 𝑝0

𝜃∈Θ

 

We denote 𝑓𝜃(�̅�) = 𝑅𝜃
𝑡 𝑝𝜃(𝑢) the backprojection of 𝑝𝜃(𝑢). 

Image 𝑓𝜃 is a “backprojection-of-a-single-projection” 

(BSP) image. Since the BSP image is constant along 𝜃⊥, 2D 

filtering is equivalent to 1D filtering along direction 𝜃. It 

can be written in variational form as: 

𝐺𝜃(𝑓𝜃) = min
𝑔

{½‖𝑔 − 𝑓𝜃‖2 + 𝑇 ∑ 𝑔𝑡( ∇𝜃
𝑡 ∇𝜃)𝑔

𝑖

} 

Because, in parallel geometry, gradient ∇𝜃𝑓𝜃 is the same as 

∇𝜃𝑝𝜃, the filtering commutes with backprojection: post-

filtering 𝐺𝜃(𝑓𝜃) of the BSP image is equal to the 

backprojection of the corresponding projection of the pre-

filtered sinogram 𝐺Θ(𝑝0). Therefore, it can be modulated 

by the same noise model through: 

𝐺𝑊𝜃
(𝑓𝜃) = min

𝑔
{½‖𝑔 − 𝑓𝜃‖2 + 𝑇 ∑ 𝑔𝑡( ∇𝜃

𝑡 𝑊𝜃∇𝜃)𝑔

𝑖

} 

Because 𝑓𝜃 is in the same coordinate framework as the 

reconstructed image, it can alternatively be modulated by 

the edge information: 

𝐺𝜃,𝐸�̅�
(𝑓𝜃) = min

𝑔
{½‖𝑔 − 𝑓𝜃‖2 + 𝑇 ∑ 𝑔𝑡( ∇𝜃

𝑡 𝐸�̅�∇𝜃)𝑔

𝑖

} 

Most importantly, as illustrated on Fig. 1, it can be 

modulated by both: 

𝐺𝑊𝜃𝐸�̅�
(𝑓𝜃) = min

𝑔
{½‖𝑔 − 𝑓𝜃‖2

+ 𝑇 ∑ 𝑔𝑡( ∇𝜃
𝑡 𝑊𝜃𝐸�̅�∇𝜃)𝑔

𝑖

} 

Product 𝑊𝜃𝐸�̅�  brings together the angle-independent edge 

map and the angle-dependent ray-by-ray noise model. The 

resulting filter is thus a linear non-uniform 1D diffusion 

 

Figure 1: BSP image brings noise and edge information in the 

same space 

Tomographic diffusion 
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filter along direction 𝜃, driven in intensity by the noise 

model 𝑊𝜃
−1 while the edges are preserved according to 𝐸�̅�.  

Analytical reconstruction with tomographic 

diffusion 

We denote �́�𝜃 = 𝑅𝜃
𝑡 𝑝�́� the BSP image equal to the 

backprojection of �́�𝜃(𝑢), the ramp filtered version of 𝑝𝜃(𝑢). 

The filtered backprojection reconstruction is the sum of all 

BSP images:  

𝑓𝐹𝐵𝑃 =
𝜋

M
∑ �́�𝜃

𝜃∈Θ

 

Tomographic diffusion is obtained by substituting �́�𝜃 by its 

filtered version: 

𝑓𝑊Θ𝐸�̅�
=

𝜋

M
∑ 𝐺𝑊𝜃𝐸�̅�

(�́�𝜃)

𝜃∈Θ

 

The filter can be seen as an apodization of the ramp filter in 

the image space that controls noise propagation while 

preserving edges. It must be noted that there is no 

assumption regarding the angular sampling. 

Implementation 

By moving the apodization from the projection space to that 

of BSP images, the computation becomes more complex, 

especially as direction 𝜃 almost never corresponds to the 

axes of the cartesian grid. In [5-6], it was shown that the 

rows and columns of BSP image 𝑓𝜃(�̅�) are resampled 

versions of projection 𝑝𝜃(𝑢), the resampling being a 1d 

magnification in parallel geometry or a 1d homography in 

fan-beam geometry. Therefore, any convolution of 𝑝𝜃(𝑢) 

can be connected to the convolution of a row or column 

𝑓𝜃(𝑥𝑖). Within diffusion, it is straightforward to replace 

∇𝜃𝑓𝜃 by ∇𝑥𝑖
𝑓𝜃, making its implementation aligned with 

axes 𝑥𝑖 along which the edges are defined. One must not 

forget the ratio between the sampling step 𝑑𝜃 along 

direction 𝜃 and the sampling step 𝑑𝑥𝑖 along axis 𝑥𝑖 to 

properly scale the gradients and get the same filtering 

output. 

The computation may be further simplified by the linearity 

of the filtering: if 𝑊𝜃 is kept constant or averaged over a 

range of angles, one can limit the computation from 𝑀 to 

𝑀/𝐾 images made of the backprojection of K projections 

with 𝐾 ≪ 𝑀. This latter simplification was not used in the 

following experiments. 

Experiments 

A simulation was conducted for circular CBCT over 360° 

with 360 projections. The distance from the focal point to 

the center of rotation was set to 1500 voxels. The ground-

truth image was made of a CT slice of an abdomen 

supplemented with a needle-like shape set at 1000 

Hounsfield units (HU) above the background. For 

simplicity, the same slice was duplicated in the z direction 

so that FDK reconstruction remains exact along z. We used 

the same noise model and edge map for all slices. Cone-

beam forward projection was performed, and pure Poisson 

noise was generated with value 106 counts in air. After log-

transform, the variance of the data was computed per 

column as the estimate of the input noise. All 

reconstructions were performed with the same 

implementation of the tomographic diffusion filter within 

the cone-beam backprojector. The projections were first 

Fourier-filtered with a non-apodized ramp filter; then all 

cone-beam BSP volumes were computed and filtered with 

diffusion. The diffusion was thus 2D: along z and along x 

or y, depending on which one was closer to angle 𝜃. 

Gradient scaling was applied as in parallel geometry: 

according to angle 𝜃 and neglecting the small extra angular 

variation within the cone. We used the FWHM to 

parameterize the diffusion time through T = FWHM2/
11.09. The filtered BSP volumes were then summed into 

the final reconstruction. 

Four diagonal tensors were compared: 1) identity, 2) noise-

weighted, 3) edge-weighted and 4) simultaneously 

weighted by noise and edges. Only the last case cannot be 

obtained by the association of FDK with a pre- or post- 

diffusion filter.  

For diffusion with the identity tensor and diffusion with the 

edge-preserving tensors, the FWHM was set to 3 voxels. 

The edge weights were computed from the gradient of the 

ground-truth image.  Denoting 𝑛𝑔(�̅�) the norm of the 

gradient at voxel �̅�, the weight at voxel �̅� is equal to  1 −

exp (
−3.315

(𝑛𝑔(�̅�) 𝜏⁄ )
8 ) with a threshold 𝜏 = 50 HU. Uniform and 

edge-preserving tensors are independent from angle 𝜃. For 

the noise-weighted tensors, the ray-by-ray noise variances 

were used for 𝑊Θ and value 𝑇 was set so that the bulk of the 

ray-by-ray diffusion FWHM values was between 1.5 and 4 

voxels. This range of FWHM was chosen empirically as the 

one matching the output SNR of uniform filtering on 

average. The values of 𝑇𝑊Θ were then clipped to yield a 

maximum FWHM of 8 voxels for the noisiest measurement 

locations.  

For the last tensor choice, the previously described noise 

and edge tensors were multiplied by one another.  

The ground-truth image, one non-apodized FDK noisy 

reconstruction, the edge map and the noise weights are 

shown on Fig. 2 in clockwise order. 

The mean and standard deviation of the reconstructed 

volumes were computed along z, excluding the top and 

bottom slices affected by “long-object” truncation. 

Results 

Fig. 3 shows one reconstructed slice for each of the four 

different tensor choices. The images are displayed with a 

common windowing of width 100. Uniform diffusion (top 

left image) reduces noise overall but blur the needle-like 

structure. The diffusion is not strong enough to remove the  

324



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
  

 

horizontal noise streaks. With the edge information only 

(bottom left image), edges are preserved, but there is no 

improvement regarding the noise streaks. Noise-weighted  

 diffusion (top right image) allows a stronger filtering where 

the projection of the needle-like structure yields the highest  

noise, which results in the nearly complete removal of the 

noise streaks, but also into a strong blurring of the needle-

like structure. Tomographic diffusion with a tensor 

capturing both noise and edges (bottom right image) 

provides the best of both worlds. Regarding the needle-like 

structure, the noise streak artifacts are removed but the 

needle is not blurred. 

Fig. 4 shows the corresponding SNR images displayed with 

a common windowing (150-400). The SNR is greater if the 

noise in the data is comparatively lower or if it is filtered 

out. Uniform filtering of projections with non-uniform 

noise yields a radially increasing SNR from the most 

attenuated center towards the outer parts of the body (top 

left image). It also increases the SNR for thin high-intensity 

structures, at the cost of a strong bias since they are blurred. 

With the edge information (bottom left image), the noise 

properties are unchanged with respect to uniform filtering 

except where the edge map is null. There the SNR is now 

much lower: no bias is introduced but noise is high. Use of 

the noise model (top right image) decreases the filtering on 

each side of the projections which yields SNR images with 

opposite properties than uniform diffusion: the SNR now 

(slightly) decreases when moving away from the center. 

The diffusion is now stronger where noise propagation 

would be stronger. Overall, the SNR is rather uniform 

except for even stronger biases at the needle-like structure 

and at the edges of the vertebra. Tomographic diffusion 

merging noise and edge information (bottom right image) is 

also a merge of the SNR image obtained with the ray-by-

ray noise model with the edge map that avoids biases at the 

edges. 

Discussion 

Tomographic diffusion filtering is a linear multi-directional 

anisotropic non-uniform diffusion filter that accounts for a 

priori known noise and edge models that can handle ray-by-

ray noise variations. This provides an analytical alternative 

to diffusion regularized least-squares optimization that 

requires a forward projection model to achieve the same 

objective. 

 The parameterization requires an explicit translation of the 

noise information into a diffusion blur. Our setting directly 

translated the variation of the noise standard deviations into 

the modulation of the diffusion FWHM. This allowed us to 

illustrate how the SNR of the reconstructed image could be 

  

 
 

Figure 2: Top: Ground truth image (left) and non-apodized 

ramp filtered FDK reconstruction (right). Bottom: noise 

variance (left) and edge map (right) 

 

 

Figure 3: Tomographic diffusion reconstruction with 

uniform (top left), noise-modulated (top right) edge 

preserving (bottom left) and noise and edge preserving 

diffusion tensors (bottom right). 

 

 

Figure 4: SNR images of tomographic diffusion 

reconstruction with uniform (top left), noise-modulated 

(top right) edge preserving (bottom left) and noise and 

edge preserving diffusion tensors (bottom right). 
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modulated and made more uniform. It is known that FBP 

reconstruction propagates the noise uniformly yielding a 

non-uniform SNR, while Poisson statistical models can be 

a better alternative because they allocate the reconstructed 

noise so that the output has a more uniform SNR [7]. 

Tomographic diffusion, which is linear, unfortunately 

remains radically different from Poisson models, as the 

latter, which are non-linear, achieve a uniform SNR by 

modeling mean and variance as a single parameter, not 

through filtering. In our experiments, tomographic diffusion 

modulated by the standard deviations of the noise yielded a 

rather uniform SNR, away from the edges. At edge 

locations, diffusion was simply stopped and did not act on 

the SNR anymore.  

As we already mentioned, the interplay between a noise 

model and regularization is not an easy task. We believe that 

tomographic diffusion is a simple tool to make the transition 

between the input a priori knowledge and the desired 

properties of the output reconstruction. Our goal here was 

to demonstrate the flexibility and clarity of the diffusion 

parameterization, not to produce the best image. Note that 

diffusion filtering efficiency is high when the data is not 

correlated. Even if tomographic data is usually 

uncorrelated, as the diffusion goes, the signal becomes more 

and more correlated and diffusion less and less efficient. 

We therefore see tomographic diffusion as a real 

improvement over pre-filtering, to accommodate for strong 

variations, especially when concentrated on a narrow 

angular range, as illustrated by the needle-like example, 

without altering the resolution of dense but fine structures, 

whose edges would be easily detected on a prior 

reconstruction. An image with more uniform SNR is 

expected to be a better starting point for a more 

sophisticated post-filtering. In particular, in conjunction 

with deep-learning based denoising, tomographic diffusion 

may alleviate the need to retrain a network for the very 

peculiar noise patterns induced by standard filtered 

backprojection; second, tomographic diffusion happens 

over intermediate images that are not accessible to a post-

filter, it thus exploits better information than what can be 

given to a post-reconstruction network. 

Finally, tomographic diffusion filtering within analytical 

reconstruction is an alternative to iterative reconstruction 

with least-square noise models only. Forward projectors 

capturing additional physical effects [8] or subsampling [9] 

still lead to least-square formulations that have no analytical 

counterpart. The tomographic diffusion filter being a 

variational filter, a possible next step is to use it as a 

regularization. In that case, the filter modulation replaces 

the noise model, which simplifies the data fidelity term into 

a non-weighted least-square term. This simplification 

further allows for integrating ramp filtering in the data 

fidelity term to both accelerate the convergence and ensure 

that constraining the square norm of the gradient does 

behave as a diffusion filter. Note that diffusion 

regularization can also be turned into a sparse regularization 

[9]. 

Conclusion 

A diffusion filtering scheme, called tomographic because it 

is built within the backprojection process, has been shown 

to control noise propagation and preserve edges within an 

FBP-like reconstruction by taking simultaneously into 

account an a priori  ray-by-ray noise model and an a priori 

edge map. 
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Abstract Weight-Bearing Computed Tomography is gaining popular-
ity due to its ability to generate a three-dimensional reconstruction of
joints under weight-bearing condition. The major problem regarding
scanning are motion artifacts which are inevitable, because of the
standing position of the patient. State of the art methods overcome
these problems using aids, such as external tracking devices, prior
knowledge, or fiducial markers. Those methods require knowledge
which might not be existent or are tedious or computationally expen-
sive. Therefore, we investigate the possibility of using trainable CT
operators to compensate rigid motion without any kind of aids or prior
knowledge.
The motion is estimated and corrected using a TensorFlow based
API (PYRO-NN) to incorporate the learning of projection matrices
into an iterative comparison of the original sinogram with digitally
reconstructed radiographs (DRRs) obtained from the motion-corrupted
backprojected volume. The loss function used is a squared loss. This
error is then used to calculate a gradient using a finite difference,
which is used in an Adam optimizer to iteratively reduce the loss. This
approach is able to estimate and correct the shifts, although it is unable
to correct small rotations. The results of our simulation study show
that this is still sufficient to obtain a very good reconstruction with a
low level of motion artifacts.

1 Introduction

Weight-Bearing Computed Tomography (WBCT), based on
Cone-Beam CT (CBCT) geometries, has established itself as
a core modality in orthopedic imaging of the lower extrem-
ities [1]. It allows the imaging of the joints under weight-
bearing conditions and thus valuable insights in the pathology
of the bones, cartilage, and other soft tissue in proximity of
the joints [1]. The greatest challenge associated with this
imaging setup is motion artifacts. These are inevitable due to
the upright standing position of the patient during scan time.
Combined with relatively long scan times associated with
cone beam scanners this causes severe motion artifacts.
Most state of the art methods use either physical aids or prior
knowledge to reduce motion artifacts. Several approaches
use fiducial markers placed on the skin as orientation [2–
4]. However the placement of these markers is tedious and
can cause errors due to movement of the skin relative to the
bone. Thus Berger et al. proposed to use prior scans of
the respective bone structure to register the projections [5].
While this is promising, it requires prior scans which are not
always available. Algorithms based on sharpness metrics
or image consistencies have been developed for other use
cases with different approaches. One such, which originated
in emission tomography, uses subdivision of the sinogram
into almost motion-free subsets [6–8]. Other approaches use

sharpness metrics on the motion corrupted reconstruction as
a loss function [9]. Bodensteiner et al. proposed to evaluate
a least squares difference between digitally reconstructed
radiographs (DRRs) and the original projections to iteratively
reduce motion artifacts [10].
Integrating trainable trainable layers into a fixed weight
pipelines has proven it self as very beneficial [11]. We
propose to use the differential CT operators introduced by
PYRO-NN [12]. PYRO-NN implements forward and back-
ward projectors as differential layers in deep learning frame-
works. However, in the current version the weights of the
CT operator layers are not trainable. In this proof-of-concept
work we extend PYRO-NN to trainable CT operators and
therefore allow to optimize for geometrical misalignment, e.g.
occurring motion or miscalibration by learning compensated
projection matrices specific to each scan.

2 Definition of the Model

For the proof-of-concept study we propose a model very
similar to an iterative reconstruction pipeline. For this we
make use of the differentiable CT layers of PYRO-NN [12].
Their theoretical description can be introduced by the sys-
tem matrix A for the forward projection operator and by
A> for the back-projection operand. As shown in the paper,
the filtered back-projection (FBP) algorithm to reconstruct
tomographic images v from sinogram data p can be fully de-
scribed within the context of neural networks. The fundamen-
tal reconstruction problem can be described by performing
a pseudo inverse of the forward model p = Av, resulting in
v = A>FHCF, where C denotes the reconstruction filter in
Fourier domain and F,FH are the Fourier and inverse Fourier
transform, respectively. As for realistic settings the system
matrix A is infeasible to store in memory, the layers make
use of the concept of projection matrices R3×4, where one
projection matrix describes a certain projection and a set of
projection matrices forms the scanning trajectory acquiring
sinogram data for tomographic reconstruction. However, up
to now these CT operator layers are non-trainable and differ-
entiable with respect to their input. In this proof-of-concept
work we investigate the possibility to extend the CT operator
layers to trainable layers, where the projection matrices are
the weights of the layers. This can be described by A(wi) and
A>(wi), where wi are the newly introduced trainable weights.
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wi

dL
dwi

≈
L(x,wi)−L(x,wi−h)

h

projector squared loss

y sinogram

x sinogram

filtered back

projector

forward

wi

Figure 1: This model using a complete pipeline is used to train
the projection matrices.

Trainable layers allow setups to update the geometric situa-
tion of the projection process and therefore, allow to setup
pipelines for motion compensation. A naive implementation
where we learn the projections matrices directly would lead
to N× 3× 4 trainable weights for N projections in the tra-
jectory. To reduce the amount of trainable parameters we
used a static definition of the intrinsic camera parameters
and a non static description of the extrinsic parameters con-
sisting of three rotations and three translations. With this,
we define the x-axis parallel to the detector plane horizontal,
the scanner rotation is about the y-axis, and the z-axis points
towards the detector. Linear motion parallel to the central
ray is neglected based on some initial experiments and the
findings of Gullberg et al. [13]. Scaling effects caused by
this kind of motion are very small due to small cone angles.
Consequently our model for motion compensation takes a
motion-corrupted sinogram, which is reconstructed by the
first layer. The output of the first layer is directly forward
projected using the same geometric parameters as the first
layer. The resulting re-projected sinogram is evaluated by a
loss against the original sinogram. The complete model with
the loss is shown in Fig. 1. The mathematical description of
the layers results in

ŷ = A(wi)A>(wi)FHCFx . (1)

The loss is determined using a simple squared difference
L(x,wi) = (ŷ(x,wi)− y)2. For the proof-of-concept study,
we compute the gradient with respect to the weights of the
layers using a finite backward difference resulting in

∂L(x,wi)

∂wi
=

L(x,wi)−L(x,wi−h)
h

. (2)

The training is conducted using the Adam optimizer and the
stepsize for the backward difference is set to h = 0.002.

3 Experiments Description

The experiments aim to evaluate the possibility of iteratively
reducing motion artifacts in cone-beam CT data using a
PYRO-NN based trainable reconstruction pipeline. The first
experiment investigates the possibility to achieve meaningful
gradients for the layer weights. For this, the model shown

in Fig. 1 is further simplified to just do a reconstruction and
compute a loss with a motion-free label reconstruction. The
second experiment is conducted with the presented model to
be free of supervision and is inspired by iterative reconstruc-
tion methods.
The simulated scanner setup consists of a 120× 120 pixel
flat-panel detector with a pixel size of 1×1 mm2. The source
is located at a distance of 1200 mm, while the source-to-
isocenter distance measures 750 mm. The scanner simulated
30 projections obtained in a scan range of 180◦+ 2 · 2.84◦.
The data used in the experiments are simulated 3D Shepp-
Logan phantoms. The phantom measures 60×60×60 mm3

with a pixel size of 0.5×0.5×0.5 mm3. Rigid motion is mod-
eled by uniformly random shifts and rotations in the range
of −2 to 2 [mm] or [◦], respectively, for each projection with
which the Shepp-Logan phantom is forward projected to ob-
tain the motion-corrupted sinogram to reconstruct. The range
of motion is oriented at the range of motion of a standing
person [14]. To gain independence of the initial position of
the phantom, the phantom is uniformly randomly shifted and
rotated ensuring that the phantom stays within the field of
view. The learning rate for the first experiment is chosen to
be η = 9 ·10−2. The second experiment is conducted with
a learning rate of η = 1 ·10−1. The trainable variables con-
sisted of the five motion parameters wi = {φx,φy,φz, tx, ty} for
each of the 30 projections. Note that in the proof-of-concept
study we seek to find the true weights to a specific corrupted
scan and therefore only one sinogram is used for training.

4 Results

The results of the first experiment are shown in Figure 2
and show the training results for a single scan of a randomly
initialized phantom, where these results are representative of
other randomly initialized phantoms and motion. In Fig. 2a
the variance of the difference over all 30 projections of the
layer weights with respect to the ground truth parameter over
the training procedure are plotted. For all parameters, except
φy, which describes the axis of the scanner’s rotation, the
ground truth parameter can be learned. Fig. 2c indicates
that the high variance is due to a point symmetrical error
of the rotation angle. The loss (cf. Fig. 2b) correlates well
with the variance of the shifts, while the rotations do not
have a large effect on the loss.Fig. 3 shows the results of the
second experiment. While for the shifts the true parameter
could be found, this is not true for the rotations. Fig. 3c plots
the difference between the learned parameters and the ideal
ones. The shifts approach nearly zero, with a small negative
constant offset for ty. The rotations show random behaviour.
Fig. 4 shows multi-planar views of the reconstruction of the
phantom before and after the motion correction. While the
transformation of the phantom stays the same, the sinograms
used for the reconstruction differs in their type of motion
corruption. A distortion just caused by rotations does not lead
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(c) Learned variables plotted over all 30 projections.

Figure 2: All results above are obtained from training on a ran-
domly chosen single phantom, assuming a known reconstruction.

to a substantial reduction in image quality. The shifts however
cause severe motion artifacts. In general, all reconstructions
using the learned parameters are very well defined, and the
main artifacts are caused by the relatively low number of
projections used.

5 Discussion

With both experiments, we were able to show that it is pos-
sible to interpret the geometric parameters of the CT opera-
tors as trainable layers and successfully update these layer
weights in a training setting. With the learned parameters
the image quality of the tomographic can be improved, even
though the true value of all parameters could not be learned.
While we were able to learn the shifts, this is not true for the
rotations. In the first experiment, two out of three rotation
parameter could be learned, while in the second experiment
no stable solution for all three could be learned. The final
learned rotation parameters do not have a substantial effect
on the image quality of the reconstruction nor the loss. This
indicates that the gradient response of artifacts imposed by
rotation are neglected in the training process compared to
the artifacts introduced by the translation parameters. This
shortcoming could be overcome by introducing a weighted
loss, focusing more on the rotation parameters or by choosing
a composite loss function including metrics more sensitive
to the artifacts introduced by the rotation parameters, e.g.,
incorporating sharpness metrics of the reconstructed image
such as total variation. In 2017, Sisniega et al. published
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(c) Trained variables plotted over all 30 projections.

Figure 3: Results from training on a randomly chosen single
phantom, without prior knowledge. For better visualization, the
expected value are subtracted in sub figure (c).

promising results using such a metric. They also added a term
penalizing unrealistic jumps in motion parameters. Also, the
object to reconstruct has an impact on the sensitivity of the
loss function w.r.t changes in rotations, with the Shepp-Logan
phantom particularly insensitive. Another observation to dis-
cuss is that for both experiments the reconstruction with only
30 projections leads to strong sparse sampling artifacts in the
tomographic domain and therefore a substantial portion of
the loss reflects artifacts which cannot be compensated by
the proposed setup. This can negatively effects the training
process, e.g., situations where motion artifacts can cancel out
or reduce sparse sampling artifacts would lead to minima in
the cost function which do not correspond with ideal layer
weights. We are aware that this limitation is introduced by
the limited amount of data, which is due to memory limita-
tions in the context of 3D tomography and the use of finite
difference for the gradient computation. However, the gen-
eral results are promising and this does not diminish their
insights as even with the limited data, the algorithm estimated
the trajectory well enough to obtain good results. For this
proof-of-concept study we use a finite difference, which is
a computationally expensive estimation of the gradient. In
the future, approximate or analytical partial gradients, which
would utilize the back propagation algorithm, are desirable.
The robustness with respect to a low amount of data may
allow use of a Gaussian pyramid, which not only reduces spa-
tial resolution but also the number of projections to estimate
motion.
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(a) Distorted reconstruction, rotations only. (b) distorted reconstruction, shifts only (c) Distorted reconstruction, all parameters.

(d) Learned reconstruction, rotations only. (e) Learned reconstruction, shifts only. (f) Learned reconstruction, all parameters.

Figure 4: Visualized are the reconstructions before (a-c) and after (d-f) the learning of the projection matrices. All graphs are the result
of a training without any prior knowledge.

Figure 5: The randomly transformed phantom used for the results
shown in Figure 4.

6 Conclusion

We were able to show that the general concept of trainable
CT operators in neural networks are feasible. Further, an
iterative reduction of motion artifacts by defining the trajec-
tory parameters as trainable weights is possible. To make
our approach applicable to clinical use, gradient computation
needs to be improved and the loss function needs to be further
investigated. The inability of the rotations to converge did
not have a significant effect on the image quality. Still this
approach is promising since it has proven itself as robust with
respect to a small amount of data. Thus it could be combined
with multi-scale algorithms increasing the performance.
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Abstract:  In image-guided radiation therapy (IGRT), on-board cone-

beam computed tomography (CBCT) provides volumetric information of 

a patient at treatment position and localizes the target of treatment.  

However, the repeated CBCT scanning during a treatment course 

delivers an excessive dose to the patient.  Meanwhile, a planning CT is 

always available for treatment planning purposes, which has superior 

image quality.  To reduce dose, we propose a region-specific texture 

prior-based low-dose CBCT reconstruction algorithm, which explores a 

prior strategy to connect the planning CT information with the low-dose 

CBCT reconstruction.  The proposed method extracts the regional tissue-

specific textures from the planning CT images to determine the Markov 

random field (MRF) weights on the neighborhood and uses this 

constructed tissue-specific MRF prior model as priori knowledge to 

perform Bayesian reconstruction of the low-dose CBCT images with 

enhanced tissue-specific textures for improved IGRT.  It is shown that 

the proposed method can better preserve structural details while 

effectively suppressing noise. Quantitatively, our proposed method 

shows the best performance and achieves 0.0149 and 0.5822 in terms of 

root mean square error (RMSE) and structure similarity index (SSIM) 

metrics. 

1. Introduction 

 

Image-guided radiation therapy (IGRT) has been widely 

used in radiotherapy clinics.  An on-board cone-beam 

computed tomography (CBCT) in the IGRT system 

provides volumetric information of a patient at treatment 

position and localizes the target of treatment, which has 

been considered as a gold standard for IGRT.  However, 

during the treatment, over 25 times CBCT scanning are 

applied to a patient [1]. It will deliver too much dose to the 

patient.  In addition, Kan et al. reported that the repeated 

CBCT scanning for IGRT could increase the secondary 

cancer risk by 2% up to 4% [2].  Hence, the development of 

low-dose CBCT has raised a great concern in the field. 

    A simple way to achieve low-dose CBCT imaging is 

lowering the x-ray exposure level in a scan.  However, it 

would inevitably lead to increased noise in projection data, 

which degrades the reconstructed image quality.  

Tremendous efforts have been devoted to developing 

effective low-dose CBCT reconstruction methods to reduce 

the radiation dose while maintaining the clinical image 

quality.  Among them, the Bayesian theorem-based iterative 

reconstruction algorithms have been shown success to 

improve image quality for low-dose CT imaging, which 

consider the statistical properties in the projection domain 

and priori information in the image domain [3-6].  In 

particular, many types of priori model have been 

extensively studied, such as Markov random field (MRF), 

total variation (TV), dictionary learning (DL), and so on.  

The MRF plays an important role in preserving edge 

sharpness while suppressing noise, whose weights on the 

neighborhood are always fixed in traditional CT.  However, 

for different tissues of CT images, the weights are variant 

to preserve the tissue-specific textures. As tissue textures 

have been realized as important imaging biomarkers for 

various clinical tasks, Zhang et al. proposed an MRF based 

texture preserving prior to improve the low-dose CT (LdCT) 

image via learning region-specific textures, such as muscle, 

fat, bone and lung, from the same patient’s previous full-

dose CT (FdCT) scans [3,4].  After that, Gao et al. [7] 

further reported the feasibility of learning region-specific 

textures from an FdCT database, which did not require 

previous FdCT scans for the current LdCT imaging. 

    Inspired by these works, to reduce dose, we proposed a 

region-specific texture prior-based (RSTP) low-dose CBCT 

reconstruction method for IGRT.  In IGRT, a planning CT 

is always available for treatment planning purposes, which 

has superior image quality.  In this work, we would like to 

propose a prior strategy to connect the planning CT 

information with the low-dose CBCT reconstruction in 

IGRT.  Hence, we first extract the regional tissue-specific 

textures from the planning CT images to determine the 

Markov random field (MRF) weights on the neighborhood. 

Specifically, it captures the image textures of muscle, fat, 

bone and lung. Second, we incorporate this constructed 

tissue-specific MRF prior model as a priori knowledge for 

Bayesian reconstruction of the corresponding regions in the 

low-dose CBCT slice image.  Finally, the enhanced low-

dose CBCT images are iteratively reconstructed. 

    The remainder of this paper is organized as follows.  

Section 2 will describe the formulations of Bayesian 

reconstruction for CBCT, followed by an introduction to 

our proposed RSTP method and the overall workflow.  

Section 3 presents the experiment design and results.  

Discussion and conclusions are drawn in Sections 4 and 5. 

2. Materials and Methods 

2.1. Bayesian Formulation for Low-dose CBCT 

Reconstruction 
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Given a set of acquired line integral data, denoted by a 

vector 𝒚 ∈ ℜ𝐼×1, where I is the number of data elements. 

The solution 𝝁 ∈  ℜ𝐽×1, where J is the number of image 

voxels, is desired to maximizes the posterior probability 

𝑝(𝝁|𝒚). Based on the Bayes’ theorem: 

𝑝(𝝁|𝒚) =
𝑝(𝒚|𝝁)𝑝(𝝁)

𝑝(𝒚)
≈  𝑝(𝒚|𝝁)𝑝(𝝁)                (1) 

where p(y) becomes a constant when maximizing the 

posterior probability and is ignored. 

    The log data fidelity term log 𝑝(𝝁|𝒚) can be described as 

a re-weighted least squares (RWLS). And the log prior term, 

log 𝑝(𝝁) is described by a Markov random field (MRF) 

model. The desired solution can be expressed as: 

𝝁∗ = 𝑎𝑟𝑔 min
𝝁

{(𝒚 − 𝑨𝝁)𝑇𝑫(𝒚 − 𝑨𝝁) + 𝛽𝑈(𝝁)}          (2) 

where A is the projection matrix with the size I × J and its 

element 𝐴𝑖𝑗  is calculated as the intersection length of 

projection ray i with voxel j. 𝑨𝝁 denotes the mean value 

vector �̅� of the acquired y. D is a diagonal matrix, where 

each diagonal element is called a weight for its 

corresponding datum and also called the variance of the 

detecting datum in statistics. 𝛽 is a parameter that controls 

the smoothing strength or the balance between the data 

fidelity term and the prior term. 

 

2.2. Data Fidelity Term 

 

Without considering the electronic noise, the transmission 

data 𝑁𝑖 along 𝑖𝑡ℎ ray is assumed to follow the Poisson noise 

as follows. 

𝑁𝑖 ∼ Poisson(𝑁𝑖)                            (3) 

where 𝑁𝑖 denotes the mean of transmission data. Here, we 

introduce 𝑦𝑖  as a random variable describing the line 

integral ∑ 𝐴𝑖𝑗𝑗 𝜇𝑗, which is the mean of 𝑦𝑖, 𝑦𝑖 = ∑ 𝐴𝑖𝑗𝑗 𝜇𝑗. 

𝑖 = 1, . . . , 𝐼 , 𝑗 = 1, . . . , 𝐽 , where 𝐼  is the total number of 

measurements in the scan and 𝐽 is the total number of pixels. 

And 𝜇𝑗  denotes the linear attenuation coefficient at 𝑗𝑡ℎ 

pixel. 

    By Beer’s law, we have 

𝑁𝑖 = 𝑁0
𝑖exp(− ∑ 𝐴𝑖𝑗𝑗 𝜇𝑗) = 𝑁0

𝑖exp(−𝑦𝑖)       (4) 

where 𝑁0
𝑖  represents the incident radiation intensity. With 

the analysis in [9], the variance of line integral is expressed 

by, 

2 1
.

yi

iN
 =                                         (5) 

Hence, the data fidelity term becomes, 

( | ) ( ) ( ),TL = − −y μ y Aμ D y Aμ            (6) 

where 
2

1
{ } { }.

yi

idiag diag N


=D =   And it can be 

obtained by 
00

( )exp( [ ] )( )i i n

i iiNN ex y Np −= −= Aμ  with 

one-step late approximation in iterations. 

 

2.3. Region-specific Texture Prior 

 

To extract the regional tissue-specific textures from the 

planning CT images to determine the Markov random field 

(MRF) weights on the neighborhood from different types of 

tissues, a vector quantization (VQ) automatic segmentation 

algorithm [7] is applied to this study. For this study, the 

chest CT image is segmented into four tissue types 

including lung, fat, bone and muscle. Morphological 

operations are adopted to enlarge the segmented lung 

parenchyma and bone region boundaries slightly so that the 

final lung region for MRF coefficients prediction would 

include both the blood vessels inside the lung and the juxta-

pleural nodules attached to the pleural wall. The bone 

marrow with relatively lower intensities was also included 

in the refined bone region for MRF coefficients prediction 

of the bone tissue. An example for region-specific texture 

prior extraction is shown in Fig.1. Fig.1(a) shows the 

segmented regions by VQ and Fig.1(b) presents the MRF 

coefficients for each region. In this method, we extract the 

region-specific texture prior information from the planning 

CT image slice-by-slice in a 2D way. 

 

 
Fig.1 Region-specific texture prior extraction from Planning CT image. (a) 

Segmented regions. (b) MRF coefficients for each region. 
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     As stated in Hao’s paper [3], It is interesting to see that 

the MRF model coefficients of the lung and bone regions 

have some similarity while the coefficients of the fat and 

muscle regions also have some similarity, but the 

coefficients of the group of lung/bone are different from the 

coefficients of the group of fat/muscle. The former group 

has a large intensity variation while the latter group has a 

small intensity variation. All four tissue regions exhibit 

different spectral patterns corresponding to different image 

textures. 

    To preserve the tissue texture features, we proposed a 

tissue region-based texture-preserving regularization which 

can be given as: 

𝑈(𝝁) = ∑ ∑ ∑ 𝑏𝑗𝑚
𝑝𝐶𝑇_𝑝𝑟𝑒𝑑𝑖𝑐𝑡

(𝜇𝑗 − 𝜇𝑚)2
𝑚∈Ω𝑗𝑗∈𝑅𝑒𝑔𝑖𝑜𝑛(𝑟)

𝑅
𝑟=1   (7) 

where R represents the different tissue regions and the index 

r will run through all types of regions. Index j goes over 

every voxel in the specific tissue. Ω𝑗 denotes the MRF 

window (typically 48 neighbors in a 2D case) around voxel 

j. Index m runs over every voxel in the MRF window.  

{𝑏
𝑗𝑚

𝑝𝐶𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡} = 𝒃𝑟
𝑝𝐶𝑇_𝑝𝑟𝑒𝑑𝑖𝑐𝑡

 means the MRF coefficients 

of the specific tissue region r predicted from the planning 

CT scan. 

With a planning CT image and an MRF window size, a 

linear regression strategy is applied to determine the set of 

MRF model coefficients corresponding to a tissue region. 

Among all the linear regression estimation algorithms, the 

least-squares algorithm is adapted because of its 

computational efficiency. With this method, every image 

voxel inside the MRF window can be predicted from a 

linear combination of its clique-mates (the pixels that 

position around the to-be predicted pixel and are bounded 

by the MRF window). The least-squares predicted MRF 

coefficients can be formulated as: 

𝒃𝑟
𝑝𝐶𝑇_𝑝𝑟𝑒𝑑𝑖𝑐𝑡

= 𝑎𝑟𝑔 min
𝒃𝑟

∑ (𝜇𝑘
𝑝𝐶𝑇

− 𝒃𝑟
𝑇𝝁Ω𝑘

𝑝𝐶𝑇
)2

𝑘∈𝑅𝑒𝑔𝑖𝑜𝑛(𝑟)       (8) 

                                                               

where vector 𝜇𝑘
𝑝𝐶𝑇

 represents the planning CT image. It is 

expected that the sum of the predicted MRF coefficients for 

each region shall be close to one.  

    By substituting Eqs. (4), (6) into (2), the final objective 

function becomes, 

𝝁∗ = 𝑎𝑟𝑔 min
𝝁

{(𝒚 − 𝑨𝝁)𝑇𝑫(𝒚 − 𝑨𝝁) +

𝛽 ∑ ∑ ∑ 𝑏𝑗𝑚
𝑝𝐶𝑇_𝑝𝑟𝑒𝑑𝑖𝑐𝑡

(𝜇𝑗 − 𝜇𝑚)2
𝑚∈Ω𝑗𝑗∈𝑅𝑒𝑔𝑖𝑜𝑛(𝑟)

𝑅
𝑟=1 }.       (9) 

    The denoised image can be obtained by optimizing the 

Eq. (9) in iterations. 

 

2.4. Overall Workflow 

 

As shown in Fig.2, we present a workflow for 

implementation of the RTSP-based low-dose CBCT 

Bayesian reconstruction for IGRT. First, a series of 

planning CT images are available for treatment planning, 

which are introduced for RSTP extraction.  In this step, we 

segment the planning CT images into four regions (lung, fat, 

muscle, bone) and the regional MRF coefficients can be 

estimated. After that, the low-dose CBCT projection and 

RSTP are incorporated into the Bayesian reconstruction 

framework with Eq. (9). Finally, the enhanced CBCT 

images are iteratively reconstructed. 

 

 

 
 

Fig.2 Workflow of the proposed region-specific texture prior-based low-dose CBCT image reconstruction for IGRT. 
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3. Experiments and Results 

 

A full dose patient volume data under planning CT scan was 

used for numerical simulation. The volume size is 

512 512 101   with the voxel size of 0.5 0.5 1   mm3. 

We first performed a simulated CBCT scan with CT patient 

data volume by adding Poisson noise with levels of 104 

photon incidents per ray. The geometry was set to the same 

as the TrueBeam medical accelerator (Varian Medical 

System), where the source-to-axis and source-to-detector 

distances were 1000mm and 1500mm, respectively. The 

flat detector had 512 384 pixels with 0.776 0.776 mm2 

resolution. Projections were simulated uniformly in 360

by a full-fan scan.  

For the image reconstruction, we use order subsets and 

GPU to accelerate the computation. In this work, we set 6 

subsets and 10 iterations for the Bayesian reconstruction. 

To show the performance of the proposed method, we 

compared the image reconstruction quality obtained with 

the proposed RSTP-based Bayesian reconstruction method 

with those of the conventional Feldkamp-Davis-Kress 

(FDK) method and total variation (TV) based 

reconstruction method. For quantitative comparison, the 

root means squared errors (RMSE) and the structure 

similarity (SSIM) with the planning CT image were used. 

The   used in the reconstruction with each prior term is 

empirically selected to achieve the best denoising 

performance. 

Fig.3 presents a single transversal slice of the 

reconstructed images of different methods. It is found that 

both TV regularization and RSTP method can efficiently 

remove the noise in comparison with the conventional FDK 

result. To further evaluate the texture preserving 

performance of the proposed method, the zoomed-in region 

of interests (ROIs) selected by the red rectangle are shown 

in Fig.4. The fine structures of the TV method are blurred 

to some extent, and the proposed method can enhance the 

textures and preserve the details. Table I shows the 

quantitative results of the selected ROI. It is indicated that 

our proposed method achieves the best performance in all 

metrics. 

 

Table I:  RMSE and SSIM of reconstructed images of each method 

compared to the Planning CT image in Fig.4. 

Method RMSE SSIM 

FDK 0.0202 0.4770 

TV 0.0150 0.5778 

The proposed method 0.0149 0.5822 

 

 
Fig.3 A single transversal slice of the reconstructed images of different methods. 

The display window is [0,0.35] cm-1. 

 
Fig.4 The zoomed-in ROIs selected by the red rectangle in Fig.3 of different 

methods. The display window is [0,0.35] cm-1. 

4. Discussion 

 

In this study, we use a 2D slice-by-slice texture to present 

the feasibility of RSTP-based CBCT reconstruction in 

IGRT. The results indicate that our proposed method can 

reduce the noise while maintaining the clinical image 

quality, especially preserving the structural details. For the 

Bayesian reconstruction, there are different L_2 norm 

image penalty terms, such as Huber and Gaussian MRF. In 

the future, we will compare the results of the above penalty 

terms to verify the performance of our proposed method. 

Meanwhile, we will develop a 3D texture model for low-

dose CBCT reconstruction in IGRT, which brings more 

prior information and is believed more efficient to represent 

the corresponding tissue. 

In addition, the ordered subset strategy and parallel 

computing are applied to speed up the whole program in 

both segmentation and image reconstruction processing. It 
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has a great potential to make our proposed method clinically 

practical. 

Moreover, utilizing the planning CT images’ region-

specific texture prior is an effective way to improve the 

current low-dose CBCT reconstructed images in IGRT. The 

region-specific textures are modeled by the MRF theorem 

as a priori knowledge and applied adaptively as a 

regularizer to the corresponding regions in the CBCT 

reconstruction, instead of matching the patches between the 

planning CT image and the corresponding CBCT slice 

image. In the future, more clinical experiments at different 

dose levels will be implemented to verify the performance 

of the proposed method. 

5. Conclusion 

 

In summary, we proposed a region-specific texture prior-

based low-dose CBCT reconstruction algorithm, which 

explored a prior strategy to connect the planning CT 

information with the low-dose CBCT reconstruction in 

IGRT. The proposed method extracted the regional tissue 

textures from the planning CT images before treatment as 

priori knowledge to enhance the reconstructed CBCT 

images for IGRT. It is shown that the proposed method can 

better preserve structural details while effectively 

suppressing noise as compared to the conventional FDK 

reconstruction and TV-based method.  
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Abstract In this paper, we presented a self-augmented multi-stage neural 

network (Sam’s Net) for limited angle CT reconstruction. The network 

includes forward projection (FP) and filtered back-projection (FBP) 

layers as domain transformers and utilizes a feedback mechanism to 

formulate a self-augmented learning procedure. We employ two 

networks for sinogram completion and artifact reduction. Besides, a 

weighting layer is introduced to adjust the redundant weight in FBP 

reconstruction through learnable pixel-wise weights. In the training 

phase, the feedback mechanism serves as online augmentation which 

ensures information and errors can propagate between the sinogram 

domain and image domain conveniently and enhances data consistency. 

The online augmentation is a general framework which can be extended 

to other networks. In the inference phase, sinograms may run through the 

network several times to achieve better results. Numerical experiments 

under 90-degree fan-beam configuration are executed to evaluate the 

proposed method. The results indicate that Sam’s Net can significantly 

improve the image quality compared with a simple dual-domain learning 

and it is stable and robust for limited angle tomography. 

1 Introduction 

As a non-invasive imaging method, X-ray computed 

tomography (CT) has been widely used in many fields, such 

as clinical applications and security inspections. Given 

projections under complete angular coverage (180 degrees 

for parallel-beam scanning and 180 degrees plus fan-angle 

for fan-beam scanning), analytical and iterative algorithms 

can achieve high-quality reconstruction. However, in some 

practical applications, data acquisition angle is limited and 

reconstructions with conventional algorithms may suffer 

from severe artifacts and structural distortions[1].  

In recent decades, a lot of work has gone into limited 

angle tomography. There are mainly two strategies: 1) 

Improving reconstruction algorithms. Such methods 

include iterative reconstruction-reprojection[2], wavelet 

decomposition[3], and projections onto convex sets (POCS) 

[4]. 2) Employing additional prior knowledge. To enhance 

sparsity in the gradient domain, total variation (TV) 

regularized iterative reconstruction algorithm was 

proposed[5] and achieved great success. In limited angle 

tomography, the shape and orientation of streak artifacts are 

closely related to the missing angular range. Employing 

such prior information, anisotropic TV (ATV)[6] methods 

were proposed, which has been proved to be more efficient 

in reducing artifacts and recovering structures. 

The resurgence of deep neural networks has yielded 

many new approaches. Some focus on sinogram 

completion[7], while others work as image post-processing[8]. 

But the capability of such single-domain methods is limited. 

To integrate optimization in dual domains, end-to-end 

networks were proposed. Some researchers proposed 

analytical networks[9][10], which map analytical algorithms 

(such as FBP and linogram) to neural networks and learn the 

redundant weight of projections. Others presented more 

comprehensive cross-domain optimization[11][12] methods. 

However, due to the poor ability of sinogram completion, 

cross-domain methods still highly rely on the strength of 

image-domain optimization, which may be harmful to 

robustness and data consistency.  

In this paper, we proposed a self-augmented multi-stage 

neural network (Sam’s Net) for limited angle CT 

reconstruction. The network incorporates a self-augmented 

feedback procedure for consensus optimization and has the 

capability of improving robustness and data consistency for 

reliable prediction outputs.  

2 Materials and Methods 

Fig. 1 gives an overview of Sam’s Net. The input of Sam’ 

Net is pre-estimated full-size sinograms 
LA

ˆ ˆ[ , ]=p p p  

with LAp  being the acquired limited angle projections and 

ˆ
p  an estimate of missing projections. A sinogram 

completion network (SCNet) learns to map p̂  to sinogram 

labels in a supervised residual learning manner. Then, a 

pixel-wise weighting layer and a filtered back-projection 

(FBP) layer transform data to the image domain. An artifact 

suppression network (ASNet) further recovers context 

information. Besides this main branch, the recovered image 

ASNμ̂  returns to the sinogram domain by forward projection 

(FP), which forms a feedback mechanism by feeding a new 

input to SCNet in the next epoch of training. More details 

of our method are explained in following sections. 

2.1 Domain Transformer 

The FBP layer and FP layer work as domain transformers 

in our net, which enables interaction between dual domains. 

They are implemented in a matrix format based on 

analytical operations for fan-beam CT:  
T

cos redFBP Layer:

FP Layer:

=

=

Wμ H FW W p

p Hμ
             (1) 

Here, μ  refers to images and p  sinograms, redW  stands 

for redundant Parker weights, cosW  for cosine weighting, 

F for filtration, and 
T

W
H  for weighted back-projection. FP 

layer is simply a multiplication with the system matrix H . 

Inspired by [9][10], we formulated a pixel-wise learnable  
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Fig. 1 Schematic diagram of Sam’s Net

weighting layer 
redW  to adjust the inconsistency enforced 

by SCNet. It is initialized to conventional Parker weights

redW  and the weight for the data missing region will be 

updated in the learning procedure. To apply a data 

consistency constraint to the whole network, especially 

ASNet, relative root mean square error (RRMSE) between 

the forward projection FPp̂  and sinogram labels GTp within 

the data acquired region is calculated: 

FP GT 2
FP

GT 2

ˆ ( ) ( )

( )
L

 



− − −
=

−

p 1 M p 1 M

p 1 M
           (2) 

where 


M  denotes the mask of the data missing region. 

2.2 Sinogram Completion Network (SCNet) 

A five-stage U-Net with residual learning is used for 

SCNet where the number of each channel is reduced by half 

compared to the original U-Net. To reflect the full geometry 

of CT scan, SCNet takes complete size sinograms as input 

and outputs a more accurate version guided by labels. 

Initially, we set: 

 T

ini LA cos red LA
ˆ [ ,( ) ]=

W
p p HH FW W p M      (3) 

Denoting the output of SCNet as SCNp̂ . We employ 

RRMSE to minimize the difference between SCNp̂ and GTp  

in the data missing region:  

 
SCN GT 2

SCNet

GT 2

ˆ
L

 



−
=

p M p M

p M
                (4) 

To fully use the given knowledge, we formulated a 

substitution operator which sends the output sinogram 

SCNp̂ with the data acquired region substituted by LAp  as

LA SCN
ˆ[ , ]

p p M  to the next layer. 

2.3 Artifact Suppression Network (ASNet) 

To further suppress the artifacts, we incorporate ASNet 

to work in the image domain. Similar to SCNet, ASNet also 

utilizes U-Net with the number of channels reduced by 

quarter of the original U-Net. Besides, it has been proved 

that perceptual loss helps learn deep features. Our group 

proposed a CT image feature space (CTIS) loss[13] which is 

defined by an autoencoder trained on many normal dose CT 

images. The latent space in the autoencoder is used to 

represent the deep features of CT images. To integrate 

pixel-wise precision and domain property supervision, we 

chose the bottom dense layer of the autoencoder to measure 

the feature space loss and combined it with RRMSE as the 

loss function:  

ASN GT ASN GT2 2
ASNet

GT GT2 2

ˆ ˆ( ) ( )

( )
L

 




− −
= +
μ μ μ μ

μ μ
  (5) 

where   denotes the pre-trained CTIS loss model and   

is set to 0.1. 

2.4 Self-augmented Feedback Mechanism and 

Loss Function 

Theoretically, sinogram completion networks are 

designed to learn a mapping from the data acquired region 

to the data missing region directly. However, convolutional 

networks tend to learn local mapping and object features 

rather than global sinogram properties, which may lead to 

the weak capability of sinogram completion and 

generalization. Thus, artifact suppression in the image 

domain is strongly relied on. But without enough guidance 

of physical imaging processes, some context information 

and data consistency condition will be abandoned by image-

domain networks. To further enhance the consensus in 

sinogram and image domains, we proposed the self-

augmented feedback mechanism.  

Specifically, at the tth epoch in the training phase, the 

initial sinogram inip̂  (Eq. 3) and the augmented sinogram 

( )

aug
ˆ t
p  (Eq. 6) are fed into SCNet as independent samples. As 

( )

aug
ˆ t
p  originates from the output of the network at the 

previous epoch  
( 1)

FP
ˆ t−
p , it is a self-augmented sinogram.  

( ) ( 1)

aug LA FP
ˆ ˆ( )t t − = − +p p 1 M p M              (6) 

We can find that both sinograms are the same in the data 

acquired region but 
( )

aug
ˆ t
p  provides a quite different pixel-to-

pixel interpretation in the data missing region. SCNet needs 
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to map these two different samples to the same sinogram 

label, which guides it to be more attentive to the information 

from data acquired region and learn sinogram properties to 

predict the missing data. And this mechanism provides a 

more efficient channel for spreading data consistency 

information and errors through the two domains.  

The overall loss function can be interpreted as: 

Total SCNet ASNet FP

ini GT aug GT

1
(0.5 0.1 )

2

ˆ ˆ( [ ; ] [ ; ])

i i i

i

L L L L
N

i

=  + + 

  



p μ p μ

        (7) 

where  ini GT
ˆ[ ; ]p μ  refers to the training set and aug GT

ˆ[ ; ]p μ  

the augmented. N  is the number of training samples. 

3 Results 

3.1 Experimental Set-up 

We evaluated our method based on datasets from the 

American Association of Physicists in Medicine (AAPM) 

“Low Dose Grand Challenge” and The Cancer Imaging 

Archive (TCIA) “Low Dose CT Image and Projection 

Data”. In our experiments, we used CT images from 28 

patients for training, 5 patients for validation, and another 6 

patients for inference. The limited angle CT scan is 

simulated under a 90-degree equidistant fan-beam 

configuration and the detailed geometry parameters are 

shown in Table 1. Under this setting, the angular coverage 

of a complete short scan is 208 degrees with [90, 180] 

degrees used for limited angle projections. 

Table 1 Parameters of the fan-beam geometry 

Parameter Value 

Distance between the source and isocenter (cm) 100 

Distance between the detector center and isocenter (cm) 80 

Number of detector elements 640 

Size of each element (cm) 0.14375 

Dimension of reconstruction grids (pixels) 512  

Voxel size (cm) 0.0625 

Sampling interval of projection (deg) 0.5 

For quantitative evaluation, we employed structural 

similarity index (SSIM), and peak signal-to-noise ratio 

(PSNR) between the prediction x̂  and ground truth *x  as 

evaluation metrics. The SSIM is defined as 

( ) ˆ ˆ* 1 , * 2

2 2 2 2

ˆ ˆ* 1 * 2

(2 )(2 )
ˆSSIM *, =

( )( )

C C

C C

  

   

+ +

+ + + +

x x x x

x x x x

x x       (8) 

where   and   denote the mean and standard deviation of 

the vector in subscripts correspondingly, and ˆ , *
x x

 is the 

covariance between *x  and x̂ . 
2

1 (0.01 )C L=   and 

2

2 (0.03 )C L=   with L  being the dynamic range of the 

pixel intensity that was set to be || *||x . The PSNR is 

defined as  

( )
2

10
2

2

|| * ||
ˆPSNR *, 10log

1
ˆ|| * ||

dim( *)

=

−

x
x x

x x
x

     (9) 

3.2 Experimental Results 

In the training phase, the feedback mechanism enables 

Sam’s Net to be trained on both original input sinograms 

and self-augmented sinograms. To evaluate the effect of the 

feedback mechanism, we adopted the dual-domain network 

architecture from [13] plus the proposed weighting layer as 

baseline, denoted as “DD_LW”. Fig. 2 displays the result of 

sinogram completion from Sam’s Net and DD_LW. We can 

find that Sam’s Net is more capable of sinogram completion. 

It is worth noting that both Sam’s Net and DD_LW have the 

same architecture and trainable parameters. Theoretically, 

the performance of both networks should have the same 

upper limit. The difference indicates that the feedback 

mechanism can significantly help networks to converge to 

a better stage and achieve better performance. 

 
Fig. 2 Comparison of the performance on sinogram completion 

between DD_LW and Sam’s Net: (a) Ground Truth, (b)(d) DD_LW 

(residual), and (c)(e) Sam’s Net (residual). The display window is [0,7] 

for sinograms and [-1.5,1.5] for residuals. 

In the inference phase, Sam’s Net operates in a multi-

stage way, where input sinograms go through the whole 

network for several iterations and achieve different outputs. 

Fig. 3 shows the result of one slice from the test set. We can 

find that predictions get refined and more context 

information is recovered as the number of iterations 

increases. Obvious progress is achieved between the first 

two iterations, suggesting the gap between the training and 

inference data after the first iteration is smaller than that of 

initial inputs. After that, data consistency enhancement 

helps for detail promotion, and no significant improvement 

after 5 times. Thus, we chose Iter 4 for subsequent 

experiments. 

To provide more comprehensive evaluations, we 

compared Sam’s Net (Iteration=4) with ART regularized by 

ATV[6] (ART-ATV), FBPConvNet[15], DD_LW and dual-

domain method[13]. The same loss function and parameter 

setting is utilized. Two test slices are displayed in Fig. 4 and 

the corresponding evaluation metrics are shown in Table 2. 

We may find that ART-ATV failed to handle such a severe 

ill-posed problem, while FBPConvNet can suppress 

artifacts to some extent. However, images generated by 

FBPConvNet are still with obvious artifacts and structural 

distortions. Incorporating optimization in the sinogram and 

image domains, the dual-domain method can further reduce 

artifacts. But detailed information is not well recovered. 

With enhanced data consistency and multi-stage interaction,  
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(a) 

 

(b) 

 
Fig. 3 Images (a) and residual images (b) after different iterations from Sam’s Net. The display window is [0.016, 0.024] for images and [-0.01,0.01] 

for residuals. 

 
(a) Ground Truth (b) Sam’s Net (c) DD_LW (d) Dual-Domain (e) FBPConvNet (f) ART-ATV 

Fig. 4 Comparison among the five different methods. The display window is [0.016,0.024]. 

Table 2   Quantitative Evaluation 

Method 
Slice 1  Slice 2 

SSIM PSNR RRMSE  SSIM PSNR RRMSE 

ART-ATV 0.7701 22.03 0.2631  0.7812 25.00 0.2680 

FBPConvNet 0.8728 27.38 0.1422  0.8978 30.36 0.1468 

Dual-Domain 0.9071 28.18 0.1297  0.9301 33.35 0.1041 

DD_LW 0.9037 28.08 0.1311  0.9406 34.85 0.0876 

Sam’s Net 0.9122 29.73 0.1085  0.9496 36.42 0.0731 
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more context information and tiny structures are disclosed 

by Sam’s Net. From quantitative evaluations, it is also 

confirmed that Sam’s Net outperforms the other methods in 

all metrics. 

4 Discussion 

Limited angle tomography is a challenging ill-posed 

problem. By bringing in data-driven prior knowledge, 

neural networks may improve reconstructions significantly. 

However, generalization caused by the bias between 

training data and test data is a big problem. Sam’s Net 

presents two enhancements in this matter: 1) In the training 

phase, the self-augmented learning procedure feeds both 

original sinograms and self-augmented sinograms to SCNet. 

The two types of sinograms are with same acquired data in 

the data acquired region. In the data missing region, they 

provide different interpretations of the pixel-to-pixel 

relationship with the ground truth. SCNet learns to map 

these two versions of sinograms to the same sinogram label, 

which promotes it to utilize the data acquired region more 

and learn more about the true sinogram properties (see Fig. 

2) instead of local mapping. 2) In the inference phase, multi-

stage processing narrows the gap between the training data 

and test data, especially after the first iteration. It is because 

the whole network may encode original inputs from both 

datasets to more similar distributions and achieve 

continuous improvement after each iteration (see Fig. 3). 

Besides, the specially designed self-augmentation generates 

augmented sinograms from the model updated in the 

previous epoch. This is beneficial to promoting interaction 

and information propagation between the two domains. 

Additionally, the weighting layer adjusts the bias enforced 

by SCNet to improve the data consistency. Moreover, we 

introduced supervision on forward projection and CTIS loss, 

which give ASNet further guidance in data consistency and 

imaging processes. From the preliminary results from 90-

degree fan-beam scanning, Sam’s Net has shown great 

potential of artifact suppression and structure recovery with 

enhanced data consistency and robustness. Sam’s Net 

presents a general framework for limited angle tomography. 

Yet more carefully designed network architectures may 

further improve the performance. Theoretical framework 

needs to be established to enable Sam’s Net to work in a 

more general manner. And more experiments under 

different configurations and datasets are also needed. 

5 Conclusion 

We presented a general framework (Sam’s Net) for 

limited angle tomography. Sam’s Net adopts a self-

augmented learning mechanism to improve generalization 

and robustness. Unlike single-domain or dual-domain 

methods, it works in a multi-stage manner with convenient 

propagation of information and errors between the 

sinogram domain and image domain. Preliminary 

evaluation has shown that Sam’s Net outperforms other 

state-of-the-art methods without increasing the network 

scale. In the future, the theoretical framework will be 

established and more experiments will be conducted. 
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Abstract
Typical reconstruction algorithms assume monochromatic attenuation,
while the X-ray beam used in CT scanners are polychromatic, giving
rise to beam hardening (BH) artifacts in the reconstructed image (e.g.
dark streaks and cupping artifacts). In this work a novel, physics-rich
beam-hardening (BH) correction algorithm was developed for X-ray
computed tomography. This method uses the spectrum information,
the detector response, the filter geometry and a calibration curve.
The correction, which does not require prior material knowledge, is
applied in an iterative reconstruction algorithm, and simulates the
beam-hardening by estimating the X-ray spectrum at each voxel in
the forward projection step. As a result, BH artifacts are inherently
reduced in reconstructed images. Processing times of roughly 10
minutes per volume (or less depending on the number of projections),
are achieved by using multiple GPUs. This method was also compared
to the dual-energy beam-hardening correction method proposed by
Alvarez and Macovski, which it outperforms when high-Z elements
are involved.

1 Introduction

X-ray Computed Tomography (CT) is now ubiquitous in
medicine for diagnosis purposes. This technology is also
increasingly used for non-medical purposes in several fields,
notably for high-resolution, non-destructive analysis [1].
The presence of high-density materials in scanned objects
causes deterioration of CT image quality, where the poly-
chromatic nature of the X-ray beam used in CT scanners
is at the origin of image artifacts (e.g. streaks and cupping
artifacts) [2]. Physical and non-physical models for beam
hardening correction (BHC) were proposed to tackle this
problem. This includes: the use of physical filters to pre-
harden the beam, X-ray absorption considerations in the iter-
ative reconstruction (IR) algorithm [3], effective energy shift
of the X-ray spectrum in each voxel in the forward projector
step of the IR algorithm [4] and dual-energy (DE) methods
which inherently corrects for such artifacts [5, 6]. This lat-
ter method is known for producing images with amplified
noise [5] in the CT energy range due to the nature of the
photoelectric effect. Most methods require the knowledge of
the material composition, which is not ideal for non-medical
applications, since characterization is often the main objec-
tive. The heterogeneity of most samples requires physics-rich
algorithms, capable of modelling the X-ray attenuation in
the image formation process, without having to rely on prior
material information.

In a clinical environment, filtered back-projection algorithms
such as the one described by Feldkamp, Davis, and Kress [7]
are often used. Advances in computing power have driven
the development of iterative reconstruction algorithms (IR),
which allow acquisitions with reduced dose, noise and num-
ber of projections [8]. This class of reconstruction algorithms
are numerically intensive, typically requiring GPU comput-
ing to get results in reasonable time [9]. In principle, the
inclusion of physics phenomena into the reconstruction algo-
rithm would allow incorporating beam hardening correction
in the reconstruction process by simulating the polychromatic
behavior of the X-ray beam in the forward projector step [4].
A polychromatic reconstruction model that uses spectrum
information, detector response, filter geometry of the CT
scanner and a calibration curve to properly model the physics
in the IR algorithm was developed, requiring no prior knowl-
edge of the material composition. The numerical burden as-
sociated with such advanced modeling is offloaded by the use
of multiple GPUs. With this approach, we aim at inherently
reduce beam-hardening artifacts in the reconstruction process
through a polychromatic forward projection model. We com-
pared this approach with the dual-energy beam-hardening
correction method of Alvarez and Macovski (DE-AM) [10].

2 Materials and Methods

2.1 Polychromatic forward projection

For a polychromatic beam traversing a heterogeneous mate-
rial, the projection value Pi in the sinogram is given by the
following expression [11]:

Pi =− ln
{∫

s(E)d(E)exp{−∫L µ(E,r)dr}dE∫
s(E)d(E)dE

}
, (1)

where s(E) is the X-ray spectrum of the source, d(E) is the
energy-dependent detector response, µ(E,r) the linear atten-
uation coefficient at position r along the path L evaluated
at the energy E of the X-ray spectrum. In the forward pro-
jector step of most IR algorithms, a much simpler model is
generally used, where the total attenuation is calculated as
follows:
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Pi = ∑
j∈i

li jµ j, (2)

where µ j is the linear attenuation coefficient in voxel j, tra-
versed by the ray i, and li j is the intersection length.
We posit that the total attenuation can be transformed from
monochromatic to polychromatic by introducing the attenua-
tion coefficient averaged over the local spectral response [12]:

µs j =
∑K

k=0 s′jkµ jk

∑K
k=0 s′jk

(3)

where k is the energy index, K the total number of energies,
µ jk the linear attenuation coefficient in pixel j at energy k,
and s′jk is the spectral response (s′jk = dk · s jk) in pixel j at
energy k. The local spectral response in j is attenuated by
j−1 voxels, and is calculated by the following expression:

s′jk = s′0k exp

{
−

j−1

∑
j′∈i

li j′µ j′k

}
, (4)

where s′0k is the unattenuated spectral response at energy k.
Thus, a polychromatic projection have the following form:

Pi = ∑
j∈i

li jµs j . (5)

For simplification purposes, the linear attenuation coefficient
at energy Ek can be decomposed into the photoelectric effect
and Compton scattering [10, 13]:

µk = apE−3
k +ac fKN(Ek), (6)

where ap and ac are constants related to each attenuation
effect, fKN is the Klein-Nishina function and Ek corresponds
to the energies of the discretized spectrum. If we suppose that
the uncorrected linear attenuation coefficient µ j is evaluated
at the effective energy of the X-ray spectral response

E0 =
∑K

k=0 s′k0Ek

∑K
k=0 s′k0

, (7)

we can estimate the attenuation in voxel j at any energy k
using the following relation:

µ jk ≈

(
ap
ac

)
j
E−3

k + fKN(Ek)
(

ap
ac

)
j
E−3

0 + fKN(E0)
µ j = f jk ·µ j, (8)

where f jk is the conversion factor. If the spectral response
is known, the only quantity yet to be determined is the ratio
(ap/ac) j, which gives the contribution of each physical effect
in each voxel. This quantity can be estimated through a
calibration curve of the form:

(
ap

ac

)

j
= ∑

m
bmµm

E0
≈∑

m
bmµm

j (9)

where µE0 is the linear attenuation coefficient evaluated at E0,
which is roughly equal to the uncorrected µ j in our approxi-
mation. The curve is calibrated against µE0 , however, during
the reconstruction, (ap/ac) j is determined by applying µ j in
Equation 9.

2.2 Implementation strategies

The strategy used to implement our polychromatic projection
model is summarized in Figure 1. Within the forward pro-
jection step of an IR algorithm, and for each energy Ek of
the X-ray spectrum, given an arbitrary voxel j, where j ∈ i,
the estimated and uncorrected attenuation µ j is used first
to calculate the Compton and photoelectric coefficients by
using the calibration curve given by Equation 9. Once these
terms are defined, one can obtain the conversion factor f jk,
which can be used to estimate µ jk (see Equation 8). The total
attenuation for the energy Ek, henceforth defined as T , is
then accumulated over j−1 voxels and used to calculate the
spectrum response for each energy bin at the voxel j. Once
all energy bins are processed, one can calculate the local
attenuation coefficient by applying Equation 3 and so the
total attenuation, given by t(n)i = ∑ j∈i li jµs j .

2.3 Dual-energy decomposition

Following the DE-AM method [10], with two scans acquired
with different tube voltages, one obtains two sets of logarith-
mic projections, PL and PH . In order to calculate Ap = ∑apli j

and Ac = ∑acli j, the photoelectric absorption and Compton
scattering line integrals, the Multivariate Newton-Raphson
method was used to minimize the following system of Equa-
tions [5, 6]:

fL =− ln∑
k

sLkdk exp
[
−ApE−3

k −Ac fKN(Ek)
]
+

+ ln∑
k

sLkdk−PL, (10)

fH =− ln∑
k

sHkdk exp
[
−ApE−3

k +Ac fKN(Ek)
]
+

+ ln∑
k

sHkdk−PH , (11)

where sLk and sHk are the low- and high-energy X-ray spec-
trum. With the line integrals, Ap and Ac, calculated from
PL and PH , the iterative algorithm OSC-TV, a combination
of Ordered Subsets Convex (OSC) algorithm and the Total
Variation minimization (TV) regularization technique [8], is
used to reconstruct the photoelectric and Compton images,
ap and ac, respectively. This algorithm runs on multiple
GPUs, which delivers a computation time of a few minutes
(or seconds).
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Figure 1: Flowchart depicting the strategy used to implement the polychromatic forward projection in the IR algorithm.

2.4 Detector dependent spectrum

The methods detailed in Sections 2.1 and 2.3 require the prior
knowledge of the X-ray spectrum. Given that the spectrum
is typically "pre-hardened" by the bowtie filter in medical
CT scanners, one must take into account such effect. By
modelling the bowtie filter, one can calculate the spectrum as
a function of the CT fan angle θ , and incorporate the detector
dependent spectrum into the previous models through the
following equation:

sk(θ) = sk exp [−x(θ)µAl(Ek)] , (12)

where x is the thickness of aluminum traversed by the beam
and µAl is the linear attenuation coefficient for aluminum.
The spectra and the detector response used in this work, both
necessary for applying our BHC method and the DE-AM
method, are the ones provided by the manufacturer.

2.5 Scanning process

The scans were performed using a Siemens SOMATOM
Definition AS+ 128 CT scanner, installed at INRS Eau Terre
Environnement in Quebec City [14]. In this work, we used
vendor-provided binaries to remove the proprietary beam-
hardening correction (BHC) preprocessing and to convert
raw data into convenient image file format. All samples were
scanned in sequential mode.

2.5.1 Numerical simulations

In order to validate the proposed method, simulations of
sequential acquisitions were conducted for 100 and 140 kVp
with a virtual phantom, taking into account the geometry of
the Siemens SOMATOM Definition AS+ 128 CT scanner
as well as the same X-ray spectra and detector response
provided by the manufacturer. The bowtie filter was not
considered for this case and neither any noise model. The

Ti

CaCO
3

Al

Mg

Water

Figure 2: Virtual phantom.

material Ze f f ρe (
electrons·mol

cm3 ) ρ ( g
cm3 )

Water (H2O) 7.42 0.555 1.000
Titanium (Ti) 22 2.071 4.506
Magnesium (Mg) 12 0.858 1.738
Aluminum (Al) 13 1.301 2.700
Marble (CaCO3) 15.08 1.354 2.711

Table 1: Composition of the virtual phantom.

virtual phantom, illustrated in Figure 2, is composed of a
water cylinder of 200 mm of diameter, with 4 cylinder rods
of 30 mm of diameter. The material properties of the virtual
phantom are reported in Table 1.

2.5.2 Real-samples application

Three samples were used to illustrate the performance of
both algorithms in a real scenario (see Figure 3): (i) a water
phantom with a diameter of 200 mm; (ii) an aluminum cylin-
der with a diameter of 75 mm; (iii) a sodium iodide solution
(NaI) with at 50 % concentration in a 13.5 mm diameter
recipient. For the first sample, we show how the medical
CT scanner can produce images presenting ’capping’ arti-
facts [2] when beam hardening preprocessing is removed
and how both BHC methods with detector dependent spectra
can correct such effects. This artifact is due to the bowtie
filter. At last, we show the cupping artifact generated in the
aluminum sample and in the 50 % NaI solution, as well as
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Figure 3: Samples used to test the proposed beam-hardening
correction algorithm: (a) Water phantom for Definition AS, (b)
aluminum sample and (c) 50 % NaI solution.

their respective corrections using both algorithms.
Each sample was scanned with a tube voltage of 100 and
140 kVp, so that the dual-energy method (DE-AM) can be
applied.
We used the OSC-TV both with and without our polychro-
matic projection model, henceforth called OSC-TV-poly
(Section 2.1), to reconstruct the images of the virtual phan-
tom and the real samples acquired at an X-ray tube voltage of
140 kVp. For the dual-energy method, the 100 and 140 kVp
projections were transformed into photoelectric and Comp-
ton components (see Equations 10 and 11), which are later
reconstructed with the OSC-TV algorithm. Finally, these
dual-energy images were combined (see Equation 6) to pro-
duce a virtual monoenergetic image (VMI) at the effective
energy E0 of the 140 kVp beam.
The OSC-TV-poly is computationally intensive. Hence, in
order to evaluate the applicability of our method, reconstruc-
tions with both OSC-TV and OSC-TV-poly were performed
on a computing node with four nVidia V100 Volta GPUs.
In order to evaluate potentially cupping and capping artifacts
generated in the reconstructed images, a beam-hardening
ratio is defined as [5]:

BHR =

∣∣Pedge−Pcenter
∣∣

Pedge
×100%, (13)

in which Pedge and Pcenter are the pixel values at the edge and
at the center of the reconstructed image, obtained from the
line profiles illustrated in Figs. 6, 7 and 8.

3 Results and discussion

3.1 Calibration curve

Equation 6 was used to fit, with the least square method
and data from the NIST XCOM database [15], the linear
attenuation coefficient of a large list of materials (e.g. 3,000
materials and constrained by Ze f f ≤ 27 and ρ ≤ 5.2 g/cm3),
considering the energy range from 20 to 140 keV, thus obtain-
ing each pair (ap,ac). Only those fits where the coefficient
of determination R2 was higher than 0.999 were used. This
constraint removes elements that present K-edges within the
energy range of the CT scanner (outliers). Finally, the ratio
ap/ac is fitted against µ(E0 = 83 keV ), where E0 is the ef-
fective energy of the 140 kVp beam, using a polynomial of
order 6, with b0 = 0, so ap/ac ≥ 0 for low values of µ(E0),
obtaining R2 = 0.893 (Figure 4).

Figure 4: Calibration curve used to estimate ap/ac from the un-
corrected linear attenuation coefficient.

3.2 Simulation results

Figure 5 shows the comparison between the reconstruction
of the virtual phantom with no BHC (a), the DE-AM method
(b) and the proposed BHC method (c). As the X-ray spec-
tra and the detector response are well known in the simula-
tion framework, the dual-energy method efficiently removes
beam-hardening artifacts, such as dark streaks and cupping.
The OSC-TV-poly method also produces images with re-
duced BH artifacts, for both water and other materials. These
results suggest that the OSC-TV-poly algorithm can handle a
wide range of Ze f f and ρe.

Figure 5: Virtual phantom: (a) OSC-TV (140 kVp), (b) virtual
monoenergetic image (100/140 kVp) for E = 83 keV , (c) OSC-TV-
poly (140 kVp). Window: [0.160, 0.200] cm−1.

3.3 Real-samples application

Figures 6, 7 and 8 show line profiles of the water phantom,
the aluminum sample and the 50 % NaI solution, without
any BHC (a), the VMI for E = 83 keV , which is a linear
combination of the photoelectric and the Compton images,
both reconstructed with OSC-TV (b), and finally, the recon-
struction with the BHC from the proposed model (c). Due
to the presence of the bowtie filter, an important ’capping’
artifact is produced in the water phantom. The modelling of
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Figure 6: Water phantom: (a) OSC-TV (140 kVp), (b) virtual
monoenergetic image (100/140 kVp) for E = 83 keV , (c) OSC-TV-
poly (140 kVp). Window: [0.180,0.185] cm−1.

Figure 7: Aluminum sample: (a) OSC-TV (140 kVp), (b) virtual
monoenergetic image (100/140 kVp) for E = 83 keV , (c) OSC-TV-
poly (140 kVp). Window: [0.50,0.59] cm−1.

this filter implemented in the DE-AM and the in the poly-
chromatic algorithms were able to significantly reduce this
effect. For higher density, higher Z samples, an important
cupping artifact is observed in the uncorrected image of the
aluminum sample and the 50 % NaI solution. Both BHC
methods were able to reduce it.
Along the solid lines shown in Figure 6, one can see that
the maximum and minimum value for the water phantom,
when no BHC is applied (a), is 0.185 cm−1 and 0.182 cm−1,
respectively. The correspondent BHR is only 1.6 %. Both
BHC methods reduced the BHR to only 0.3 %, meaning the
capping artifact was greatly reduced.
Concentric ring artifacts appears in the water phantom in Fig-

Figure 8: 50 % NaI solution: (a) OSC-TV (140 kVp), (b) virtual
monoenergetic image (100/140 kVp) for E = 83 keV , (c) OSC-TV-
poly (140 kVp). Window: [1.25,1.50] cm−1.

ure 6 for all the cases studied, but mainly on the VMI image.
These artifacts are the result of TV regularization, and so they
can be reduced or removed by decreasing the regularization
constant, at the expense of images reconstructed with more
noise. The magnitude of these artifacts is increased by the
level/window width used, which is the same for all figures.
For the aluminum sample, the variations are more important,
going from 0.52 cm−1 to 0.58 cm−1 in the image with no
BHC, which represents a BHR of 10.3 %. The dual-energy
and the OSC-TV-poly methods led to variations ranging from
0.53 cm−1 to 0.55 cm−1, equivalent to a BHR of 3.6 %.
The OSC-TV-poly approach was able to reduce the cupping
artifact importantly for the NaI solution (BHR of 3.6 %),
even if the sample has an effective atomic number higher
than the ones used to define the calibration curve, and a K-
edge at 33.2 keV leading to a poor fit through Equation 6
(R2 = 0.45). This result is much better than the BHR =
14.9 % obtained without correction, and also lower than the
dual-energy approach (BHR = 5.9 %). This last method led
to an over-correction, as it can be seen in Figure 8 (b), where
a capping artifact is produced. The presence of a K-edge is
poorly compatible with the two basis functions of the Alvarez
and Macovski attenuation model (see Equation 6), leading to
this type of behavior [6, 16].

3.4 Pre-processing time

For the Siemens detector grid of 736 x 64, and a total of
2,304 projections, the developed Python script, allied with
the Numba compiler [17], is able to perform the dual-energy
decomposition (Section 2.3) of such configuration in half a
minute. That is, once the low- and high-voltage sinograms
are acquired, it takes roughly 30 seconds to generate the
Compton and photoelectric pair. For the 50 % NaI solution
protocol, where twice the number of projections are used, the
decomposition takes around 80 seconds.

3.5 Processing time

The OSC-TV-poly is computationally intensive. Hence, in
order to evaluate the applicability of our method, we calcu-
lated the reconstruction time (min) of the ordinary OSC-TV
against the OSC-TV-poly, using the 140 kVp images for
benchmarking. As reported in Table 2, OSC-TV-poly is able
to reconstruct the same images in a few minutes. For the
water phantom, the reconstruction takes roughly 20 times
longer than the OSC-TV, where it takes 3.3 and 8.3 times
longer for the aluminum sample and the virtual phantom,
respectively. This difference is more important for the water
phantom due to its larger size (200 mm), where the X-ray
spectrum needs to be estimated for more voxels compared to
the aluminum sample. The reconstruction time of the virtual
phantom takes longer compared to the water phantom and
the aluminum cylinder due to the high number of subsets
used in the reconstruction, which increases the number of
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Sample
Reconstruction time (min) Time

increase
factorOSC-TV OSC-TV-poly

Virtual phantom 1.86 6.13 3.30
Water phantom 0.21 4.36 20.76
Aluminum 0.47 3.87 8.23
50 % NaI 6.97 113.99 16.35

Table 2: Comparison of reconstruction time using 4x nVidia Tesla
V100 16 GB.

iterations within a full OSC step.
For the 50 % NaI solution, processing time is longer due
to its reconstruction matrix size (four times larger): almost
two hours for the OSC-TV-poly and roughly 7 minutes for
the OSC-TV. Such issue with the reconstruction time could
be easily solved by making use of strategies to reconstruct
regions-of-interests (ROI) through iterative reconstruction
algorithms [18], hence, a smaller grid size could be used to
avoid including the whole FOV into the image matrix and at
the same time set smaller voxels sizes.

4 Conclusion

In this paper, we presented a novel, physics-rich algorithm
to reduce beam hardening artifacts. The modelling of the
physics allows the correction of beam hardening artifacts
(capping, cupping and streaks) with no prior knowledge of
the material information. The code can be implemented
in the forward projection of an IR algorithm. Reasonable
processing times were achieved by using multiple GPUs (less
than 10 minutes). Both the dual-energy method and the IR
algorithm with a polychromatic acquisition model are able
to deliver satisfactory results, where our approach was able
to outperform when it comes to high-Z elements.
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Abstract Deep learning has shown great promise for CT image re-
construction, in particular to enable low dose imaging and integrated
diagnostics. These merits, however, stand at great odds with the low
availability of diverse image data which are needed to train these
neural networks. We propose to overcome this bottleneck via a deep
reinforcement learning (DRL) approach that is integrated with a style-
transfer (ST) methodology, where the DRL generates the anatomical
shapes and the ST synthesizes the texture detail. We show that our
method bears high promise for generating novel and anatomically
accurate high resolution CT images at large and diverse quantities.
Our approach is specifically designed to work with even small image
datasets which is desirable given the often low amount of image data
many researchers have available to them.

1 Introduction

One of the key challenges in unlocking the full potential of
machine and deep learning in radiology is the low availability
of training datasets with high resolution images. This scarcity
in image data persists predominantly because of privacy and
ownership concerns. Likewise, publicly available annotated
high resolution image datasets are also often extremely small
due to the high cost and small number of human experts who
have the required amount of medical knowledge to undertake
the labeling task. With insufficient data available for model
training comes the inability of these networks to learn the
fine nuances of the space of possible CT images, leading
to the possible suppression of important diagnostic features
and in the worst case making these deep learning systems
vulnerable to adversarial attacks. We present an approach
that can fill this void; it can synthesize a large number of
novel and diverse images using training samples collected
from only a small number of patients.
Our method is inspired by the recent successes of Deep Rein-
forcement Learning (DRL) [1, 2] in the game environments
of Atari [3], Go and Chess [4] which all require the explo-
ration of high-dimensional configuration spaces to form a
competitive strategy from a given move. It turns out that
this is not too different from generating plausible anatomical
shapes in medical CT images. Our methodology combines
the exploratory power of Deep Q Networks [5] to optimize
the parameter search of geometrically defined anatomical or-
gan shapes, guided by medical experts via quick accept and
reject gestures. This need for feedback eventually vanishes,
as the network learns to distinguish valid from invalid CT
images.

During the generation, once the anatomical shapes for a novel
CT image have been obtained from the DRL module, we use
a style transfer module, designed for the texture learning
of component organs and tissues [6], to generate the corre-
sponding high resolution full-sized CT image. To the best of
our knowledge, our proposed approach is the first attempt to
incorporate DRL networks for the synthesis of new diverse
full-sized CT images.

2 Methods

We adopt a two-step approach for synthesizing the full-
resolution CT images. The first step consists of creating
an anatomically accurate semantic mask (SM) for the im-
age; this is the focus of this paper’s discussion. The second
step uses our existing style transfer network [6] to render
anatomically accurate texture into the different portions of
the generated SM.
As shown in Figure 1 (next page), step 1 consists of two
phases. The first phase includes data pre-processing and train-
ing of a classifier following a traditional Convolutional Neu-
ral Network architecture [7] for classifying images. The data
pre-processing stage produces the SMs of the high-resolution
CT training images; it represents the annotated segmentations
of the various anatomical features, such as organs and skeletal
structures, as a set of 2D curves which are then geometrically
parameterized as B-splines of order n for n+1 control points
{(xi, yi)}n

i=1. The control points of the anatomical features
are stored as sequences of coordinates into vectors and then
embedded into a lower dimensional space obtained via PCA.
PCA is attractive since it preserves the spatial relationships
of the SMs, has a linear inverse transform, and identifies a
reduced orthogonal basis that approximates the shape of the
SM statistical distribution well. Next, to train the classifier
sufficiently, we generate a large number (on the order of
10,000) new semantic masks by interpolating in this PCA
space and group these images into clusters via k-means. The
clusters are then manually labeled by experts as good and bad
image sets and the classifier is then trained on these clusters.
The classifier thus represents an approximation of control
points that could serve as valid semantic masks.
Phase 2 uses this trained classifier as the reward predictor
in our Reinforcement Learning Environment (RLE). DRL
networks learn by optimizing on results via a reward mech-
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Figure 1: Two-Phase box diagram for training RL agents. The pre-trained classifier in Phase 1 is used as reward predictor in Phase 2.
Segment refers to the resulting SM from agents’ actions. Preference refers to the user preference of one segment (SM) over other.

anism that derives from the rules of the environment. This
environment serves to stimulate the learning of an effective
strategy for exploring the anatomical shape space to facilitate
a diversified yet accurate image generation. Our specific
environment for DRL involves a user-feedback interface that
consists of a front-end where linear interpolations between
the semantic masks of two distinct valid SMs are corrected
by the agents of the RLE followed by the expert user marking
them as good or not. This feedback is then used to further
train the classifier/reward predictor such that it can give bet-
ter predictions of the actual rewards to the agents as they try
to correct future interpolations. Hence the agents in RLE
and the reward predictor are trained asynchronously. As the
reward predictor gets better, so do the actions of the agents
and consequently we gain more semantic masks representing
valid plausible anatomy.
Our contributions are as follows:

• We discuss a robust way of learning anatomical shapes
via their geometrical representations of B-splines and
their interpolations / samplings in PCA space.

• We define an environment where the true image space
of the anatomical shapes could be discovered without
the supporting dataset via Reinforcement Learning.

• We build a visual user-interface where users can con-
trol and guide the generation process. Once sufficiently
trained, users have the option to add the generated im-
ages to the training dataset.

2.1 General Interpolation Framework: B-Splines and
PCA Interpolation

Curvature is a central morphological feature of organs, tis-
sues, cells, and sub-cellular structures [8]. Hence we rep-
resent the curve shapes by the set of control points with

strongest curvatures between some predefined distances
across the whole curves depicting organs, skeletal structures,
etc., we shall refer to it as anatomical shapes. These control
points also integrate easily with B-spline curves to decode
them back into full curves. B-spline curves provide flexibil-
ity to represent these anatomical curves [9] since the degree
of a B-spline curve is separated from the number of con-
trol points. Hence lower degree B-spline curves can still
maintain a large number of control points and the position
of a control point would not change the shape of the whole
curve (local modification property). Since B-splines are lo-
cally adjustable and can model complex shapes with a small
number of defined points, they are an excellent choice to
model anatomical shapes with control points selected based
on strong curvatures.
Since each semantic mask (SM) is expressed as a set of
control points, we embed the training data SMs in a lower
dimensional space via Principal Component Analysis (PCA).
The PCA model is used to reconstruct the anatomical shapes
of the training dataset giving us a repository of coefficients for
eigen-vectors that make plausible anatomy for lung CT SMs.
We can then reconstruct new anatomy curves by sampling
these coefficients. Each type of anatomical shape, such as
left lung, right lung, torso, spinal cord, esophagus, and heart,
forms a dedicated subspace of SM vectors and is represented
as a multivariate Gaussian with mean (for each coefficient of
the corresponding eigen-vector) and co-variance matrix. The
set of anatomical shapes for a specific SM are interlinked
so they can be jointly used in the interpolation procedure.
In our initial implementation we represented all anatomical
shapes of the training SMs as a single vector to form a single
multivariate Gaussian. In practice, however. this approach
does not work well and fails to generate SMs with correlated
anatomical shapes.
One way to generate a novel SM is to take any two available
SMs and linearly interpolate between the two. One problem
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Figure 2: The first row shows linearly interpolated SMs for a lung CT image. The second row shows their improved counterparts from
RL agents. In the first three columns, the agents tries to make them more symmetric and remove intersections. For anatomically accurate
interpolated SMs, agents don’t make much change as seen in the fourth column. The fifth column represents the anatomical space in our
PCA for which agents have not yet been trained on and would improve with incoming user feedback

with this approach is that with small training datasets there is
not enough variety to construct an accurate PCA decomposi-
tion. leading to noise and subsequently to erroneous features
in the generated SM. Also, accurate anatomical shapes do
not occupy a perfectly linear space even in heavily reduced
dimensions and the interpolation on the eigen-vectors still
limits the number of novel anatomical shapes that can be
generated since the set of images between which the interpo-
lation is being done is small. To overcome these limitations,
we introduce the powerful mechanism of DRLs within our
environment which we describe in the next section.

2.2 User Assisted Deep Reinforcement Learning

We propose to solve the aforementioned problem with PCA
space exploration using Deep Reinforcement Learning, ob-
taining user feedback via a dedicated user interface. We ask
a user to interpolate between two generated anatomies by
moving a slider. We then present small perturbations made
by the agents in the Deep Q Learning environment to the
linear interpolation and present these to the user as alterna-
tive results. The user picks which ones are better and which
ones are worse and submits his or her feedback via the inter-
face. The submitted preferences train a CNN (Convolutional
Neural Network) based image classifier that is simultane-
ously used as a reward predictor for training the agents in the
Deep-Q Learning algorithm. Our approach of using a reward
predictor to predict rewards based on user feedback mainly
borrows from the work of Christiano et al.[10] who utilize
user feedback on video clips of game play to train a reward
predictor.
As shown in Figure 1, we pre-train the reward predictor dur-
ing the data processing stage. By modifying the parameters in
the clustering (via k-means), we can visibly alter the quality
and anatomical accuracy of the generated SMs when inter-
polating in PCA space. These groups of SMs can be used to
pre-train the reward predictor that is used in our DRL envi-
ronment where it is further fine-tuned with the help of user
feedback. The trained reward predictor on submitted user

preferences then help the agents in learning the perturbations
that need to be applied to the coefficients of eigen-vectors
representing a SM while interpolating in between any two
random SMs. Note that because of this setup once agents are
trained, they can also be used to "fix" any generated SM inter-
polated on the PCA space. With the help of user verification,
we add perfectly generated SMs in the training dataset that
are then used to interpolate more novel SMs hence expanding
the known PCA space representing valid anatomy. This helps
our SM generating interface get better with the usage by the
users.

2.3 Loss Function, Input/Output and Network Archi-
tecture of Deep-Q Agents

We follow the Deep-Q DRL algorithm used by the authors of
Atari [3]. We maintain a policy π that takes the observation
state O as input and gives an action A to be performed; π : O
−→ A. The reward predictor takes the resulting image as input
and gives a reward estimate R; r̂ : O x A −→ R. For training
our policy π we use the traditional Deep-Q loss:

yi = Es′∼ε [r̂+ γmaxa′Q(s′,a′;θi−1))
2] (1)

Li(θi) = Es,a∼ρ(·)[(yi−Q(s,a;θi))
2] (2)

where yi represents the discounted reward estimate from
iteration i and ρ(s,a) represents the distribution of all states
and actions applicable on those states. Since our states are
sequences of coefficients for representing the control points
of every organ (thereby representing the set of anatomical
shapes constituting SMs), we use a neural network using six
fully connected layers to estimate the second term; Q(s,a;θi)
in equation (2). The parameters from the previous iteration
θi−1 are held fixed when optimising the loss function Li(θi)
and are estimated via stochastic gradient descent.

350



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

Figure 3: Some stylized CT images, generated by linear SM pair interpolation, and corrected with the RL framework.

2.4 Loss Function, Input/Output and Network Archi-
tecture of Reward Predictor

Once the agents modify the contributions of the eigen-
components, the resulting anatomical shapes are assembled
into a SM and sent to a six layer CNN with batch normal-
ization layers and relu activations [7]. The CNN classifies
the SM image in one of five or six categories indicative of
their anatomical accuracy according to which a reward is
assigned to the action of agent. The policy π interacts with
the environment to produce a set of trajectories {τ1...τ i}. A
pair of such trajectory results (SMs) are selected and are sent
to our front-end for user feedback. To fine-tune the reward
predictor further we use the cross entropy loss between the
predictions of the reward predictor and user feedback ν [10].

loss(r̂) = ∑
τ1,τ2,ν

ν(1)logP̂[τ1 � τ2]+ν(2)logP̂[τ2 � τ1]

(3)

where under the assumption that user’s probability of prefer-
ring a SM over other should depend exponentially on the true
total reward over the SM’s trajectory; P̂[τ1 � τ2] could be
expressed as:

P̂[τ1 � τ2] =
exp∑ r̂(s1

t ,a
1
t )

exp∑ r̂(s1
t ,a1

t )+ exp∑ r̂(s2
t ,a2

t )
(4)

As evident from figure 1, the above two networks are trained
asynchronously. With increasing data from the user’s feed-
back, the reward predictor gets better which helps better train
the RL agents.

3 Results, Future Work and Conclusion

Figure 2 shows corrected SMs via RL agents from badly
formed counterparts which were interpolated linearly be-
tween two generated SM images. In most cases, our RL
agents are able to correct the obvious errors like the intersec-
tions between the organ curves or the sharp unnatural bends
in the boundaries of torsos, but as evident from the example
in the last column of the figure, for some badly formed SMs
the agents are unable to make better SMs. That’s because
we need more user feedback for training the reward predictor

enough to make agents respond to a wide range of generated
SMs. With more feedback that the reward predictor would
receive, the agents could be trained better for responding to
the generated SMs. Figure 3 shows stylized CT images on
corrected SMs.
For future work, we intend to modify the user-interface to
enable faster user interaction hence enabling larger feedback
collection quickly for more efficient training of the reward
predictor and the RL agents. We also plan to make the texture
learning more robust on varied SMs and not just lung CT
SMs. We also intend to extend our framework for learning
and generating pathology which should integrate well with
our two step approach. At the current time, we generate
volumes slice by slice. For better continuity across slices, we
plan to learn anatomical curves directly in 3D volumes, using
B-spline patches.
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Abstract Accurate nodule location identification is a cornerstone in
the diagnostic yield of transbronchial needle biopsy procedures. Due
to the overlapping structures, depiction of lung nodules is challenging
with chest radiography (CR). While cone-beam computed tomography
(CBCT) might provide exact 3D information, its use in real practice is
limited by the radiation dose involved and by the space restrictions in
the operating room. Since digital chest tomosynthesis (DCT) provides
a compromise between image quality and space requirements, it ap-
pears as a potential candidate for guiding bronchoscopy procedures.
To mitigate the limited depth resolution in conventional linear DCT,
the use of a spherical ellipse scan trajectory for interventional DCT
is proposed in this work. The proposed trajectory is evaluated using
numerical simulation of real chest CBCT volumes and is compared
to CR, linear DCT and circular DCT. Analytic (FBP) and algebraic
(ART) reconstructions are evaluated qualitatively and quantitatively.
Compared to CR and linear DCT, the proposed trajectory demonstrates
an improved visualization of the tool-in-lesion and the different chest
structures. With respect to circular DCT, the proposed orbit provides a
good compromise between image quality and workspace requirements.

1 Introduction

Lung cancer is one of the most common and fatal cancers
worldwide [1]. Since a higher likelihood of successful treat-
ment is linked to an early-stage diagnosis [2], improved
screening methods and subsequently an increased rate of
minimally invasive nodule biopsies are expected. One of
the common methods for lung biopsies is transbronchial
needle biopsy (TBNbx) [3]. Using this method, the bron-
choscopist relies on pre-procedural CT images and on chest
radiography (CR) to navigate the needle to the target nodule.
Several limitations of this method have been reported. First,
the location of the nodule in the prior CT may be different
than its actual location, known as CT-to-body divergence
[4]. Second, nodules are obscured in the radiographic image
by the overlapping anatomical structures, only the needle
and the ribs can be resolved. Consequently, poor position-
ing and inaccurate diagnosis are highly probable. While
intra-operative cone-beam CT (CBCT) may seem as an ideal
candidate to overcome the aforementioned issues, its use as a
real-time image guidance tool is limited due to many barriers.
Many hundreds of projections are required to reconstruct a
non-ambiguous image with the standard reconstruction algo-
rithms. Therefore, the patient as well as the bronchoscopist

will be exposed to a high dose of excessive ionizing radiation.
In addition, to perform a scan during the intervention, the
C-arm has to be fully rotated around the patient (∼200°), thus,
some considerable logistic efforts are required. In the operat-
ing room, the available space is limited: a robotic arm holding
the bronchoscope and many entangled cables block the C-
arm trajectory and need to be rearranged before performing
the scan. Moreover, these operations are time-consuming
and time is a critical factor during interventions.
Recently, Aboudara et al. [5] proposed digital chest tomosyn-
thesis (DCT) technology as a potential alternative for navi-
gational bronchoscopy guidance. During this procedure, the
C-arm performs a fluoroscopic sweep over a limited angular
range and a limited set of projection images are acquired.
The reconstruction of these images provides quasi 3D infor-
mation and captures the location of both the needle tip and
the nodule. However, these boundaries cannot be resolved
in 3D using the conventional linear tomosynthesis due to the
limited depth resolution. Multi-directional scan orbits might
improve the depth resolution, nevertheless, some devices,
in particular robotic bronchoscope holders, are placed in a
way that the angulation in the cranial/caudal direction are
limited. To avoid collision, either a small circular trajectory
or a spherical ellipse trajectory obtained by stretching the
small circle into a certain direction where space is not limited,
could be applied. Therefore, this paper investigates which of
the two options is more appropriate.

2 Materials and Methods

2.1 Proposed source-detector motions

In this study, three classes of source-detector trajectories
are investigated using numerical simulations. A flat-panel
detector composed of 616×480 pixels with a 0.616 mm pixel
pitch is used. An X-ray source and the flat-panel detector are
mounted on a robotic C-arm. For all the tested trajectories,
the source to iso-center distance d is constant by design and
is set to 785 mm. The source to detector distance is fixed
to 1200 mm. The detector mounted in opposite to the X-ray
source performs an in-plane rotation in a way its rows are
kept tangential to the scan trajectory. N projection views
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were acquired on each of the proposed trajectories.
The three candidate scan orbits are shown in Figure 1:

• a linear scan trajectory "⌢" where the source and the
detector rotate around the patient in one axial plane with
a limited angular range of ±α . The source positions
are evenly spaced on the linear trajectory. The source
sampling locations are defined by:

T⃗ l
i = (d sinθ l

i ,d cosθ l
i ,0) (1)

where

θ l
i = −α + i∆θ l i = 0, ...,N −1 (2)

and ∆θ l = 2α
N−1 ,

• a circular scan trajectory where the source and the detec-
tor rotate each in one coronal plane along a circular path.
For this orbit, two cases with different limited angular
ranges are considered: a small circle "○" with an angu-
lar range of ±β and a large circle "◯" with an angular
range of ±α (α > β ). The source sampling locations are
defined by:

T⃗ c
i = (d sinγ cosθ c

i ,d cosγ,d sinγ sinθ c
i ) (3)

where γ =α for the "◯" and γ = β for the "○", θ c
i = i∆θ c,

i = 0, ...N −1 and ∆θ c = 360°
N ,

• a spherical ellipse scan trajectory "○" where the
source and the detector rotate each along a spherical
ellipse path defined by two angles ±α and ±β . To con-
struct this orbit, the source positions are evenly spaced
per arc length on a 2D ellipse located in a coronal
plane. The ellipse has a = d tanα as a large radius and
b = d tanβ as a small radius. Since a fixed iso-center
is preferred, the equally spaced source points are then
projected on the surface of a sphere with radius d. The
source sampling locations on the 2D ellipse are given
by:

T⃗ s
i = (r(θ s

i )cosθ s
i ,d,r(θ s

i )sinθ s
i ) (4)

where

r(θ s
i ) = b√

1−(ecosθ s
i )2 (5)

and e =√1− b2

a2 is the ellipse eccentricity. To find θ s
i

at position i, the circumference C of the ellipse is com-
puted by:

C = 4aE(e) (6)

where E is the complete elliptic integral of the second
kind. The arc length between each two consecutive
source locations on the plane ellipse is given by:

∆l = C
N

(7)

Figure 1: (a) Linear "⌢", (b) small circular "○", (c) large circular
"◯" and (d) spherical ellipse "○" DCT scan orbits. The source
trajectory is shown below the patient and the detector trajectory is
shown above the patient.

The arc length from the source at position 0 (situated on
the large radius) to the source at position i is given by:

L(θ s
i ) = i∆l = aE(e)−ε(r(θ s

i )cosθ s
i

a
,e) (8)

where ε is the incomplete elliptic integral of the second
kind. Using (8), one can write:

ε(r(θ s
i )cosθ s

i

a
,e) = aE(e)− i∆l (9)

θ s
i can be found by computing the inverse of ε . The

iterative procedure proposed by Boyd in [6] was used
to compute this inverse.

Different number of projection views are investigated in this
work, ranging from 36 to 180 views. The small tomographic
angle β was fixed to 15°and the large tomographic angle α
was fixed to 23°.

2.2 Numerical simulation studies

All the tomosynthesis scan trajectories discussed above have
been implemented in the Computed Tomography Library
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Figure 2: DCT coronal slice reconstructions with the different scan trajectories. (a), (b), (c) and (d) show the FBP reconstructions
respectively with "⌢", "○", "◯" and "○" (displayed gray-scale window of [0.03,0.53] after a min-max normalization). (e), (f), (g) and (h)
show the ART reconstructions respectively with "⌢", "○", "◯" and "○" (displayed gray-scale window of [0.00,0.05]). For comparison,
(i) and (j) show respectively the radiographic image and the corresponding reference CBCT coronal slice.

CTL1 [7]. In order to take the complex chest anatomy into
account, real chest CBCT images acquired using a C-arm
(Axiom Artis dTA, Siemens Healthcare GmbH, Erlangen,
Germany) during an interventional bronchoscopy procedure
(held at MD Anderson Cancer Center, Houston) were used
in this study. The images show a bronchoscope and a trans-
bronchial needle inserted within a target lesion into a patient
lung. The DCT projection images were simulated by forward
projecting the CBCT volumes. Poisson noise was added to
the projection data. The photon flux was set to 4.75×108

photons per cm2. Analytic and algebraic reconstructions
were adopted in this study. A filtered backprojection (FBP)
reconstruction using a Hann apodized ramp filter (cutoff at
the Nyquist frequency) was used. The ramp filter was applied
in the direction tangential to the detector motion trajectory.
Moreover, an iterative algebraic reconstruction (ART) with
an ordered-subsets scheme [8] was tested as well. Only a
positivity constraint was incorporated into the ART recon-
structions with no further regularization. ART iterations
were stopped once the normal equation was numerically sat-
isfied [7]. The size of the reconstructed images was set to
512×512×382 voxels with a voxel size of 0.50033mm3. To
evaluate the different orbits, visual inspection as well as quan-
titative assessment have been conducted. Pearson correlation
was computed in different regions of interest (ROI), focus-
ing on the ability of the different orbits to detect the biopsy
needle and the target lung nodule (ROI#2 in Figure 2(j) com-
posed of 90×9×96 voxels) and to resolve the different spine
details (ROI#1 in Figure 2(j) composed of 149× 31× 300
voxels).

1code available at: https://gitlab.com/tpfeiffe/ctl

3 Results

Figure 2 shows one coronal slice of the reconstructed DCT
images using the "⌢" (a,e), the "○" (b,f), the "◯" (c,g), and
the proposed "○" (d,h) orbits. FBP (top row) and ART
(bottom row) reconstructions are shown for each case. 72
projection views were used in these reconstructions. For com-
parison, the corresponding CBCT coronal slice (j) is shown
as a reference image and the conventional radiograph (i) is
shown as well. Overall, DCT shows an improved visibility
of the chest structures (normal pulmonary vasculature, spine)
compared to plain radiography. In the radiographic image (i),
the target nodule, the intervertebral disks and the pulmonary
vasculature are completely obscured by the overlapping ribs
and the bronchoscope. Compared to FBP, ART shows a better
removal of out-of-plane artifacts (yellow arrows). Compared
to the multi-directional orbits, the out-of-plane ribs are more
visible with the uni-directional orbit ("⌢") due to the poor spa-
tial resolution. Figure 3 shows an enlarged region of the spine
(ROI#1 in Figure 2(j)) for the various scan orbits. Horizon-
tal structures are better recovered with the multi-directional
orbits. The horizontal edges of the intervertebral discs ap-
pear sharper in "○", "◯" and "○", but are hidden by some
shading artifacts in "⌢" (black arrows). Despite the larger
angular range with the "◯", strong ripple artifacts appear
along the spine (red arrows). This is mainly due to a lower
projection density on the "◯" compared to the other trajecto-
ries. Strong out-of-focus artifacts (white arrows) produced by
the high-attenuation object (bronchoscope) appear in the "⌢"
and the "○" as multiple ghosting copies of the bronchoscope
(especially at the edge).
Figure 4 illustrates the enlarged regions around the needle
and the target nodule (ROI#2 in Figure 2(j)). The nodule is
better distinguished from the lung background with "○", "◯"
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Figure 3: Enlarged views around the spine (ROI#1) corresponding
to the images shown in Figure 2.

Figure 4: Enlarged views around the needle tip and the target
nodule (ROI#2) corresponding to the images shown in Figure 2.

and "○" orbits compared to the "⌢" orbit. However, out-
of-focus artifacts coming from the bronchoscope are slightly
stronger with the "○" trajectory. For a quantitative assessment
of the results, Figure 5 and Figure 6 show the plots of the
Pearson correlation (PC) between the reconstructed DCT
images and the reference CBCT image as a function of the
number of projection views in ROI#1 and ROI#2 respectively.
ART reconstructions show higher PC than the FBP ones
for all the four trajectories. Just for clarity of illustration
and due to space limitations, only the ART reconstruction
results are shown in the plots. In accordance with the visual
inspection and for the different number of views tested, the
"◯" reconstruction has the highest PC in both the regions
of interest. PC is higher in the "○" than in the "⌢" and the
"○". Interestingly, PC in the "○" is just slightly smaller
than the PC in the "◯" for ROI#1. In ROI#1, PC is higher in
the "○" than in the "⌢" but the opposite occurs in ROI#2. PC
could be object-dependent. There are more horizontal edges
in ROI#1 which cannot be resolved with the "⌢".
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Figure 5: Pearson correlation in ROI#1 as a function of the num-
ber of projection views computed for the different scan orbits.

0 50 100 150 200
0.46

0.54

0.62

0.7

Number of projection views

Pe
ar

so
n

co
rr

el
at

io
n

"⌢" ART
"○" ART
"◯" ART
"○" ART

Figure 6: Pearson correlation in ROI#2 as a function of the num-
ber of projection views computed for the different scan orbits.

4 Discussion and Conclusion

In this paper, the benefits of a spherical ellipse scan trajectory
"○" for tomosynthesis-guided navigational bronchoscopy
are investigated. It is compared to linear "⌢", small circular
"○", and large circular "◯" scan orbits. Moreover, its benefits
compared to conventional chest radiography (CR) are shown.
Digital chest tomosynthesis (DCT) yields improved bony
and soft structures visibility compared to CR. This is highly
crucial in navigational bronchoscopy in order to confirm the
tool-in-lesion and to collect the biopsy samples from the ac-
curate positions. Compared to the "⌢" and the "○", the "○"
shows an improvement in the mitigation of out-of-focus ar-
tifacts. The "◯" demonstrates a very slight improvement
in terms of image quality, however this tiny benefit is at the
cost of a much more larger space required to perform the
scan. In the operating room, the available space is highly
limited, performing a "◯" is impractical and requires many
logistic efforts. If one is restricted to circular trajectories,
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just the "○" can be used, however having the "○" at hand,
it can be used for an improved image quality. In addition, it
provides flexibility: the larger aperture of the "○" can be
chosen in the direction where more space is available. While
intra-operative CBCT might provide better image quality,
it is at the cost of a much larger radiation dose and space
requirements. Therefore, the "○" appears to be potentially
suitable and optimized for interventional DCT. Further in-
vestigations will focus on the impact of the angular range
and the projection density on the reconstruction. Moreover,
reconstructions in more challenging conditions (e.g. nodules
in the periphery of the lungs) will be addressed.
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Abstract Non-circular acquisition orbits for cone-beam CT (CBCT)
have been investigated for a number of reasons including increased
field-of-view, minimal interference within an intraoperative environ-
ment, and improved CBCT image quality. Fast reconstruction of the
projection data is essential in an interventional imaging setting. While
model-based iterative reconstruction can reconstruct data from arbi-
trary geometries and provide superior noise suppression for a wide
variety of non-circular acquisitions, such processing is particularly
computationally intensive. In this work, we present a scheme for fast
reconstruction of arbitrary non-circular orbits based on Convolutional
Neural Networks (CNNs). Specifically, we propose a processing chain
that includes a shift-invariant deconvolution of backprojected measure-
ments, followed by CNN processing in a U-Net architecture to address
artifacts and deficiencies in the deconvolution process. Synthetic train-
ing data is produced using orbital specifications and projections of a
large number of procedurally generated objects. Specifically, attenua-
tion volumes are created via randomly placed Delaunay tetrahedrons.
We investigated the reconstruction performance for different sets of
acquisition orbits including: circular, sinusoidal and randomized para-
metric trajectories. Our reconstruction scheme yields similar image
quality when compared to simultaneous algebraic reconstruction tech-
nique (SART) reconstructions, at a small fraction of the computation
time. Thus, the proposed work offers a potential way to utilize sophisti-
cated non-circular orbits while maintaining the strict time requirements
found in interventional imaging.

1 Introduction
The advent of robotic interventional x-ray systems has
opened the door to dramatically increased flexibility in the
design of CBCT acquisition trajectories. Such orbits have
been used to increase the imaging field-of-view and to mini-
mally interfere with the other equipment in the interventional
suite; but also to improve image quality. For example, a
large variety of non-circular orbits has been investigated to
improve data completeness, metal artifacts, and task-based
detectability [1, 2, 3, 4]. Typically, reconstruction algorithms
for non-circular data have relied on both analytical and model-
based methods. Analytical solutions exist for specific classes
of non-circular orbits such as saddle trajectories [5]. Model-
based iterative reconstruction (MBIR) implicitly handles ar-
bitrary geometries (providing a “best” estimate based on the
available data). These algorithms, however, are computation-
ally expensive, which poses a major limitation particularly
for interventional applications. The recent proliferation of
data-driven and machine-learning-based reconstruction meth-
ods provides opportunities for superior reconstruction speed
and image quality comparable to MBIR.
In this work, we propose a reconstruction scheme that lever-
ages Convolutional Neural Networks (CNNs). In particular,
we develop a processing chain where data backprojection
is followed by a shift-invariant deconvolution step followed
by CNN processing. The deconvolution is based on the or-

bital trajectory and the intrinsic system response but is only
approximate. The CNN step is trained to mitigate deficien-
cies in this approximate deconvolution. Each of these steps
is computationally efficient and non-iterative leading to a
fast processing chain. The following sections detail this
processing chain and its application to five different sets of
orbit geometries. For comparison, an iterative reconstruction
scheme, the simultaneous algebraic reconstruction technique
(SART), is also applied and quantitative performance mea-
sures (relative to truth) are computed.

2 Materials and Methods
2.1 The Tomographic Reconstruction Problem
Presuming log-transformed projection data, tomographic re-
construction seeks to solve the following inverse problem:

y = A(Ω)µ, (1)

where y denote the measured line integrals of attenuation
(e.g., projections) and µ is the distribution of attenuation
values in the object. Here, we identify the dependence of
the projection matrix, A, on some parameterization of the
acquisition orbit Ω. Classic inversion approaches often seek
to find the pseudo-inverse:

µ = (AT A)−1AT y. (2)

The pseudo-inverse has the advantage that solutions can be
found for non-square and rank-deficient A that are possible
for arbitrary trajectories.
We note that AT represents a backprojection operation. Thus,
the operator (AT A)−1 represents a kind of generalized filter-
ing operation. In fact, under idealized imaging conditions
(parallel beam, sufficient sampling, etc.) and a circular acqui-
sition geometry, (AT A) represents the operator that applies
the well-known intrinsic response of tomography - a 1/r blur
function. Thus, in the ideal case, (AT A)−1 is the inverse
filter that removes 1/r blur. For non-circular orbits, diver-
gent beams, etc., the blur induced by (AT A) is not generally
shift-invariant nor of the form 1/r. However, these observa-
tions suggest a potential scheme for fast reconstruction using
similar processing stages.

2.2 Proposed Reconstruction Pipeline
Motivated by the above observations, we propose a new
reconstruction pipeline using neural networks but leveraging
what we already know about the required reconstruction
process. Specifically, we maintain the backprojection step
and address the operator (AT A)−1.
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Figure 1: Flow chart illustrating the proposed reconstruction pipeline. We first deconvolve an approximation of the system response then
deploy a CNN to remove residual artifacts.

Figure 2: U-Net in the last step of the propose pipeline. Numbers
over feature channel blocks indicate the number of channels. Max
pooling halves the size of each dimension, whereas transposed
convolution with stride two doubles the size of each dimension.

While one could develop a neural network to learn this inverse
transform, there is an opportunity to provide a better network
input. We will presume that the geometry, and hence A
and AT of non-circular acquisitions are known a priori. We
can therefore devise network inputs to leverage such prior
information. Specifically, if we can first deconvolve (in the
case of a shift-invariant system) the system response, AT A,
from the backprojection, AT y, we can effectively remove the
dependency on geometry in the reconstruction process. Of
course, such deconvolution procedure is noise amplifying and
prone to artifacts. We therefore deploy a post-deconvolution
CNN to remove residual artifacts.
Towards this end, we developed a processing chain illustrated
in Fig.1. For initial investigation in this work, we assumed
the system response to be approximately shift-invariant (true
for small objects and/or long geometries) and approximated
the system response as AT Ae j where e j denotes an impulse
at the center of the image. We first deconvolved AT Ae j from
AT y via direct Fourier inversion, i.e.:

F−1

{
F
{

AT y
}

bF
{

AT Ae j
}
c

}
. (3)

We adopted several techniques to mitigate artifacts associ-
ated with the deconvolution process. First, a threshold oper-

ator was used in the denominator to avoid division by zero.
(Specifically, a value of 0.0025 was applied.) Second, the
backprojection volume was expanded to approximately four
times the reconstruction volume to mitigate spurious frequen-
cies as a result of the fast Fourier transform of signals with
discontinuities at the boundaries. Third, to mitigate artifacts
in F

{
AT Ae j

}
due to the combined effect of voxel sampling

and ray-based projector, we computed AT Ae j at eight voxel
locations around the central voxel of the image and averaged
the responses.
After the deconvolution, we additionally corrected for sam-
pling density by performing an element-wise division of the
volume by AT A1, where 1 denotes a volume of 1s. We trun-
cated the image to the same size as the reconstruction image
volume to save memory. The resulting image volume was
used as input to the CNN. In summary, the input to the CNN
is represented mathematically as:

x = F−1

{
F
{

AT y
}

bF
{

AT Ae j
}
c

}
1

AT A1
. (4)

For the CNN processing step, we chose a U-Net architecture
consisting of seven convolutional blocks illustrated in Figure
2. The U-net architecture was chosen due to its successful
application in image deconvolution and CT reconstruction.
The input of the network detailed above consists of
128x128x128 voxel volumes. The network is trained to pre-
dict the ground truth phantom images of the same size. For
training, the root-mean-square error (RMSE) between the
prediction and the ground truth image was chosen as the
loss function. Optimization was performed using an Adam
optimizer with a learning rate of 0.001 and terminated after
100 training epochs. Among the 1000 phantom images, 800
images were used for training, 100 for validation, and 100
for testing. Details of the training and evaluation data follow.

2.3 Phantom and Data Generation
For imaging phantoms used in training and evaluation, we
procedurally generated 1000 random realizations of Delau-
nay tetrahedrons. We randomly sampled 40 vertex locations
in 3D, then created a tetrahedron mesh by connecting these
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vertices using the 3D Delaunay triangulation algorithm in
MATLAB. Within each tetrahedron, a uniform attenuation
coefficient was randomly assigned based on the distribution
of voxel values in an abdomen CT scan (sans background).
The phantoms were then formed by voxelizing the meshes on
a 128x128x128 grid with 0.5x0.5x0.5 mm3 voxel spacing.
Data were simulated using the ASTRA toolbox [6, 7]. The
imaging geometry used a source-axis distance and source-
detector distance of 1 m and 0.5 m, respectively. The re-
construction volume matched the voxel size and spacing
of the ground truth. The projection data were simulated
on a 256x256 detector with pixel size 0.75mm x 0.75mm.
The detector size was large enough to avoid data truncation.
Noiseless projection data were simulated.

2.4 Experimental Design
We exercised the proposed reconstruction pipeline on five
different sets of acquisition geometries. For each geometry,
512 rotation angles, θ , are evenly distributed between 0° and
360°. The elevation angles, φ , are parameterized as sinu-
soidal functions of θ at varying frequencies. The amplitude
has been set to 25° for all cases (except the circular geome-
try). Four networks were trained on data of only one orbit,
while one network was trained on data with two different
geometries in a common pool. This was done to investigate
if our proposed approach is able to reconstruct data of more
than one geometry.
The five acquisition geometries are as follows:

• circular, φ = 0 for all θ
• φ = sin(2θ ),
• φ = sin(3θ ),
• φ = sin(2θ ) and φ = sin(3θ ),
• one linear combination of sinusoidal basis functions

with randomly generated coefficients.

2.5 Evaluation Metrics
Reconstruction performance was evaluated in terms of the
the normalized RMSE (nRMSE), the feature similarity index
(FSIM) and the structural similarity index (SSIM) between
the network output and the ground truth phantom images. To
compare the proposed reconstruction pipeline with state-of-
the-art algorithms, we additionally performed reconstructions
using 50 iterations of the SART algorithm (using the GPU-
based TIGRE toolkit for arbitrary trajectories [8, 9]).

3 Results

Intermediate images and final reconstruction outputs from the
proposed reconstruction pipeline are illustrated in Figure 3.
Note the residual artifacts in the deconvolved volumes. The
calculated evaluation metrics are compared in Table 1. The
CNN-based approach consistently outperforms the SART
reconstructions in terms of nRMSE and FSIM. This is also
the case for SSIM except for the network trained on two si-
nusoidal geometries. While SART performs comparably for
all geometries with only slight deviations, the performance
of the CNNs show noticeable differences for the different ge-
ometries. Specifically, reconstruction performance decreases

with increasing orbital complexity (possibly due to increased
shift-variance). This is apparent in the slightly decreasing
evaluation metrics as well as in the magnified areas and the
difference images in Figure 3. The magnified region in partic-
ular contains fine-grain details, which every CNN struggles
to reconstruct accurately.
The majority of the computation time for the proposed
method is spent on the calculation of the impulse response (5
minutes), the ray density (30 seconds), and ultimately for the
deconvolution operation (20 seconds). The CNN prediction
takes around 1 second. In comparison, SART reconstructions
take approximately 50 minutes for 50 iterations on a work-
station with comparable specifications. Aside from the CNN,
the mentioned implementations have not been optimized for
runtime.

4 Discussion and Conclusion

In this work, we proposed a novel pipeline for fast reconstruc-
tion of non-circular geometries. The pipeline consists of an
initial deconvolution step to remove an approximation of the
system response followed by an artifact removal step using a
CNN. We tested the pipeline in five sets of imaging geome-
tries of single and mixed sinusoidal orbits. Our proposed
method offers ∼ 90% reduction in computation time and is
comparable or superior to SART in terms of the nRMSE,
FSIM, and SSIM. These results suggest that the pipeline of-
fers a promising approach to reconstruct data acquired with
non-circular orbits when time is of the essence.
This work has several limitations that are being addressed
in ongoing work. First, the pipeline was only trained and
assessed on piecewise-constant phantoms. Extending the
reservoir of phantoms to include non-piecewise-constant
phantoms will help to improve the generalizability of the
proposed approach. Second, the case where two sinusoidal
orbits were trained simultaneously illustrates some capacity
of the method to accommodate multiple geometries within
the same class. We plan to extend the reconstruction capa-
bility of the method to arbitrary orbits within classes (e.g.,
sinusoids).
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Figure 3: Intermediate image volumes and final reconstruction outputs from the reconstruction pipeline. Each column corresponds to a
set of imaging geometries. Rows from top to bottom: elevation angle φ as a function of rotation angles θ ; backprojected volume; volume
after deconvolution; CNN reconstruction (axial slice); zoomed in ROI within the slice; difference image between the reconstructions and
ground truth phantom images.

circular sin(2θ ) sin(3θ ) sin(2θ )&sin(3θ ) random

Pr
op

os
ed nRMSE ↓ 0.033±0.005 0.048±0.007 0.060±0.008 0.062±0.007 0.061±0.009

FSIM ↑ 0.991±0.005 0.983±0.010 0.979±0.010 0.977±0.013 0.979±0.013
SSIM ↑ 0.994±0.002 0.987±0.004 0.984±0.003 0.944±0.013 0.985±0.007

SA
R

T nRMSE ↓ 0.116±0.013 0.105±0.016 0.109±0.015 0.107±0.016 0.108±0.015
FSIM ↑ 0.937±0.019 0.943±0.015 0.940±0.015 0.942±0.015 0.941±0.015
SSIM ↑ 0.941±0.011 0.963±0.011 0.956±0.011 0.960±0.011 0.958±0.010

Table 1: Evaluation metrics for the propose pipeline compared with SART. All metrics were evaluated between the reconstructions and
ground truth phantom images. The better of two values is marked bold.
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Abstract We propose a Noise Entangled GAN (NE-GAN) for sim-
ulating low-dose computed tomography (CT) images from a higher
dose CT image. First, we present two schemes to generate a clean CT
image and a noise image from the high-dose CT image. Then, given
these generated images, an NE-GAN is proposed to simulate different
levels of low-dose CT images, where the level of generated noise can
be continuously controlled by a noise factor. NE-GAN consists of a
generator and a set of discriminators, and the number of discriminators
is determined by the number of noise levels during training. Com-
pared with the traditional methods based on the projection data that are
usually unavailable in real applications, NE-GAN can directly learn
from the real and/or simulated CT images and may create low-dose CT
images quickly without the need of raw data or other proprietary CT
scanner information. The experimental results show that the proposed
method has the potential to simulate the realistic low-dose CT images.

1 Introduction

An excess of x-ray exposure from computed tomography
(CT) examinations could lead to the development of cancer,
and thus optimizing CT protocols according to the as low as
reasonably achievable (ALARA) principle has become im-
portant. Low-dose CT (LDCT) simulation techniques have
developed as an effective tool to help determine the lowest
dose in accordance with the ALARA principle, thereby cir-
cumventing the repetition of CT examinations with different
exposure conditions for the same patients. However, reduc-
ing the radiation dose will inevitably increase the noise level
in the reconstructed CT images and may compromise the
accuracy of a radiologist’s diagnostic decision. To this end,
a lot of LDCT denoising methods have been proposed to
improve the image quality. Recently, deep-learning-based
denoising methods have been shown a potential to achieve
the superior denoising performance, if properly trained with
a large number of CT images. In this context, the results with
LDCT simulation methods can help train and test the robust-
ness of denoising methods or other image analysis models
applied to the LDCT images.
Traditionally, LDCT simulation tools insert random noise
to the raw sinogram data and reconstruct the noisy data to
simulate LDCT images [1]. However, neither raw data nor
the precise parameters of a CT imaging system are generally
accessible without an established collaboration with the CT
vendor. To circumvent the use of raw data, projection data
can be approximated by forward projecting from the CT
image, which are then added with noise and reconstructed

using CT simulation software [2]. However, these sinogram-
based methods are usually time-consuming and the simulated
projection data may not truly reflect the real conditions so
the simulated LDCT noise is likely still not perfect. Recently,
Shan et al. designed a specific GAN with a conditional batch
normalization layer to simulate LDCT noise from a random
2-dimensional Gaussinan noise vector in the latent space [3].
However, it is difficult for this method to generate realistic
LDCT images from the Gaussian noise without explicit prior
information of the LDCT noise.

In this work, we treat the LDCT simulation as a transfor-
mation from a higher dose CT (HDCT) image to the LDCT
images. Specifically, we first generate a clean CT image and
a high-dose noise image from the HDCT image, and then
train a noise entangled GAN (NE-GAN) to generate different
levels of LDCT images via entangling the high-dose noise
image scaled by different noise factors into the clean CT
image. The advantages of the proposed framework for LDCT
simulation are: 1) The generated high-dose noise image ex-
plicitly contains the prior of noise and imaging system. 2)
The NE-GAN can learn from both the simulated and real CT
images, so that it has the potential to generate realistic LDCT
images. 3) Once the model has been trained, the simulation
speed for LDCT images is very fast.

2 Methods

Ideally, before simulating the LDCT image from the HDCT
image, the noise component should be removed from the
HDCT image and then low-dose noises are simulated and
added to the denoised image. In practice, the HDCT images
are usually regarded as the clean image and the high-dose
noises are ignored. Although the magnitudes of high-dose
noises are low, they do contain the prior information of CT
noises and the imaging system to some extent. Based on
above observations, we propose to simulate an LDCT image
through two steps: the fist step is to generate a clean image
and a high-dose noise image from the HDCT image, and the
second step is to generate different levels of LDCT images
by entangling the high-dose noise component scaled with a
specific noise factor into the clean CT image.
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Figure 1: Generation of noise image.

Figure 2: A denoising network trained using HDCT as input and
LDCT as target. The predicted "LDCT" is a cleaner CT image
rather than a noisier.

2.1 Generation of high-dose noise image

For generating the high-dose noise image that preserves the
prior information of the CT noise and imaging system, we
present two schemes, i.e., through a denoising network or
through CT simulation, as illustrated in Fig. 1. For the
denoising scheme, the HDCT image is first forwarded into a
denoising model to obtain a clean CT image, which is then
subtracted from the input HDCT image to generate the high-
dose noise image. The denoising model is trained by directly
mapping high-dose CT image to the low-dose CT image,
as shown in Fig. 2 . By doing this, the trained model can
generate the denoised image instead of the images with more
noises, which is consistent to the findings of Noise2Noise [4].
The denoising scheme can extract the real prior information
from the real HDCT images, which are then transformed to
LDCT images with specific noise level by NE-GAN. The
CT simulation scheme is to use traditional sinogram-based
methods to simulate a set of higher-dose noise images by
virtually scanning the real HDCT image, and the real HDCT
image is regarded as the clean CT image, as shown in Fig.
1. Then, NE-GAN takes the simulated noise image and the
HDCT image as inputs to generate a set of LDCT images with
different levels of noise. In this scheme, the sinogram-based
method is only used to simulate a single dose of images, and
other lower dose of images can be generated by NE-GAN to
save computation time.

2.2 Noise Entangled GAN

In this Subsection, we describe the details of the proposed
noise entangled GAN (NE-GAN). As shown in Fig. 3, NE-

Figure 3: Framework of NE-GAN.

GAN consists of a generator G and a set of discriminators
D = {D j}, j = 1, · · · ,S, where the number of discriminators
S is equivalent to the number of lower-dose levels in the train-
ing set. Specifically, the generator G is a encoder-decoder
network that takes a clean CT image and a noise image scaled
with a noise factor as inputs, and outputs a LDCT image cor-
responding to the input noise factor. All discriminators share
the same network architecture. Each discriminator is to de-
termine whether the generated image of a predefined level is
real.
To train NE-GAN, we need a set of training samples
{x0

i ,n
0
i ,k

j,x j
i }, i = 1, · · · ,N, j = 1, · · · ,S, where x0

i and n0
i

denote the clean CT image and high-dose image respectively,
N is the total number of HDCT images, x j

i denotes the cor-
responding LDCT image, and S is number of noise levels or
discriminators, k j denotes the noise factor that is a positive
real number and a larger value corresponds to a higher noise
level or lower image quality. The loss function is:

L =
S

∑
j=1

EX j [logD j(x j)]+EX0

[
log(1−D j(G(x0,n0 · k j)))

+|x0−G(x0,n0 · k j)|+ |x0−G(x0,0)|
]
.

The first two items in the loss function are the adversarial
losses that train D to maximize the probability of assigning
the correct label to both real LDCT images and the generated
ones from G and train G to minimize probability of assigning
the correct label for D, the third item is a data fidelity loss
to constrain the generated LDCT images to keep the same
contents as those in the input images, and the fourth item is a
reconstruction loss to ensure that the generated CT images
are exactly the clean images when the noise factor is zero.
After training, only the generator G is retained to simulate
different levels of LDCT images given the clean CT image,
the high-dose noise image, and the specific noise factor, i.e.,
x̂ j = G(x0,n0 · k j). It is noted that although the noise factor
in the training stage is predefined as a limited number of
fixed values according to the training dataset, it could be any
value in the testing stage beyond the predefined values in the
training stage. With increasing the value of noise factor, the
noise level of the simulated LDCT image will increase.
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2.3 Implementation details

We adopted the same generator and discriminator networks
as those in CycleGAN [5]. The architecture of the denoising
network was the same as the generator network. During
training, we used the Adam method to optimize the NE-GAN
model with a batch of 8 128×128 randomly cropped image
patches. The initial learning rate was set to 0.0002 during the
first 200 epochs and the learning rate was linearly decay to
zero in the following 200 epochs. The momentum terms of
Adam were set to 0.5 and 0.999. The noise factor k j is set to
the ratio of the input dose level to the target dose level, see
Subsections 3.2 and 3.3 for details.

3 Experiments and results

3.1 Dataset

In this study, we used a multi-dose of real CT image dataset
from [6], in which the CT images were collected from anony-
mous cadavers and each of them was repeatedly scanned four
times using four different radiation doses. In our experiments,
we selected a sub-dataset that contains 261 groups of CT im-
ages for training and 251 groups of CT images for testing,
each group includes four 512 × 512 FBP reconstructed im-
ages that have the same contents but different noise indices
of 10, 20, 30, and 40. Here the noise index is approximately
equal to standard deviation of CT number in the central re-
gion of the image of a uniform phantom, and used to define
the image quality.

Figure 4: Results of NE-GAN on simulated dataset.

Figure 5: Results of NE-GAN on simulated dataset with addi-
tional noise factors beyond training.

3.2 Results on simulated dataset

In this subsection, we used the simulation scheme as de-
scribed in Subsection 2.1 to generate high-dose noise images.
Specifically, we used the CatSim [7] simulator to simulate
LDCT images of four different dose levels corresponding
to X-ray tube currents of 90 mA, 70 mA, 50 mA, and 30
mA, as shown in Fig. 4. The simulated CT image of 90
mA is used as the HDCT image and the real CT image with
noise index of 10 is regarded as the clean CT image, thus
the high-dose noise image is the difference between them.
With these images, NE-GAN was trained and noise factors
corresponding to 70 mA, 50 mA, and 30 mA were set to 1.3,
1.8, and 3.0 respectively. The results in this setting are shown
in Fig. 4, we can see that the proposed method can simulate
the different levels of LDCT images and the learned noise
levels are similar to those simulated with CatSim. The NE-
GAN simulated results with different noise factors that were
not used in the training stage are shown in Fig. 5, where the
number indicates the noise factor. Particularly, NE-GAN-0
means that the scale factor is zero and in this case no noises
are added, consistent with the constraint in the loss function
as described in Subsection 2.2. Also, when increasing the
noise factor, the noise magnitude of simulated LDCT image
increases and the image looks more noisier.

Figure 6: Results of noise power spectrum.

In addition, we evaluated the statistical property of noise
power spectra (NPS) of the NE-GAN generated LDCT im-
ages [8]. Specifically, we repeatly generated HDCT noise
image with CatSim and simulated the LDCT images with
NE-GAN by 50 times. Then, the 64× 64 image patches
(green box) were cropped to calcuate the NPS, as shown in
Fig. 6. The NPS of the NE-GAN generated LDCT images
is similar to that of the targets, which indicates the proposed
deep-learning-based method has the ability to preserve the
statistical properties of noise.

3.3 Results on real dataset

In this subsection, the proposed NE-GAN model was directly
trained on the real dataset. Here the denoising scheme was
firstly used to decompose the high-dose CT image with noise
index of 10 to a clean CT image and a high-dose noise image.
Then the NE-GAN was trained to map these decomposed
images to the LDCT images with specific noise indices. The
noise factors corresponding to noise indices of 20, 30, and
40 were set to 2.0, 3.0, and 4.0 respectively. The results on
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Figure 7: Results of NE-GAN on real dataset.

Figure 8: Results of NE-GAN on real dataset with additional
noise factors beyond training.

this real dataset set are shown in Fig. 7, where the first row
shows the denoised clean image and the high-dose noise im-
age decomposed from the real HDCT image with noise index
of 10, the second row presents the real LDCT images with
different noise indices, the third row gives the corresponding
NE-GAN generated LDCT images with the same noise in-
dices, and the last row shows the reference results by directly
adding the scaled noise image with the same noise factors
into the clean image. By comparing the second and the third
row, we can see that the simulated images of different noise
indices are similar to the corresponding real LDCT images.
The results in the last row demonstrates that simply scaling
the extracted noise image and adding it back to the clean
image cannot generate images matching with the real LDCT
images, while the proposed NE-GAN has the ability to si-
multaneously transfer and merge the high-dose noise image
into the clean image to simulate more realistic LDCT images.
More simulation results with NE-GAN with different noise
factors beyond training are also shown in Fig. 7. Similarly,
noise level increased continuously with the noise factors.

4 Discussion and Conclusion

We presented a low-dose CT simulation method based on
deep learning. Visual comparison and NPS-based noise prop-
erty evaluation have demonstrated the effectiveness of the
proposed method. One main advantage of the proposed NE-
GAN is the high speed for simulation, which is extremely
important when simulating a large number of LDCT images.

Figure 9: Virtual CT workflow for robustness evaluation of LDCT
denoising algorithms.

For example, NE-GAN could be applied into a virtual CT
workflow for robustness evaluation of LDCT denoising algo-
rithms by generating a large number of LDCT images with
the ground-truth, as shown in Fig. 9. Specifically, a CT
generation method [9] is first used to generate many phan-
toms, which are forwarded to Monte Carlo (MC) simulation
tools [10] to simulate the HDCT images. Then, NE-GAN
can simulate a large number of LDCT images with a fast
speed. Finally, the large number of LDCT images with the
ground-truth can be used to test the robustness of the LDCT
denoising algorithms. In the future, we will further improve
the simulation quality by adding some statistical constrains
in the NE-GAN loss function, such as those based on the
noise variance map and the noise power spectra.
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Purpose: Contrast resolution beyond the limits of conventional cone-

beam CT (CBCT) systems is essential to high-quality imaging of the 

brain for image-guided neurosurgery. We present a deep learning 

reconstruction method (dubbed DL-Recon) that integrates physically 

principled reconstruction models with DL-based image synthesis based 

on the statistical uncertainty in the synthesis image. 

Methods: A synthesis network was developed to generate a synthesized 

CBCT image (DL-Synthesis) from an uncorrected filtered back-

projection (FBP) image. To improve generalizability (including accurate 

representation of lesions not seen in training), voxel-wise epistemic 

uncertainty of DL-Synthesis was computed using a Bayesian inference 

technique (Monte-Carlo dropout). In regions of high uncertainty, the DL-

Recon method incorporates information from a physics-based 

reconstruction model and artifact-corrected projection data. Two forms 

of the DL-Recon method are proposed: (i) image-domain fusion of DL-

Synthesis and FBP (denoted DL-FBP) weighted by DL uncertainty; and 

(ii) a model-based iterative image reconstruction (MBIR) optimization 

using DL-Synthesis to compute a spatially varying regularization term 

based on DL uncertainty (denoted DL-MBIR). A high-fidelity forward 

simulator was developed to provide physically realistic simulated CBCT 

images over a broad range of exposure conditions as training and testing 

data for the synthesis network. The performance of DL-Recon was 

investigated using CBCT images with simulated and real low-contrast 

lesions in the brain.  

Results: The error in DL-Synthesis images was correlated with the 

uncertainty in the synthesis estimate. Compared to FBP and PWLS, the 

DL-Recon methods (both DL-FBP and DL-MBIR) showed ~50% 

reduction in noise (at matched spatial resolution) and ~40-70% 

improvement in image uniformity. Conventional DL-Synthesis alone 

exhibited ~10-60% under-estimation of lesion contrast and ~5-40% 

reduction in lesion segmentation accuracy (Dice coefficient) in simulated 

and real brain lesions, suggesting a lack of reliability / generalizability 

for structures unseen in the training data. DL-FBP and DL-MBIR 

improved the accuracy of reconstruction by directly incorporating 

information from the measurements in regions of high uncertainty. Both 

maintained the advantages of DL-Synthesis. DL-FBP offered the runtime 

efficiency of FBP, and DL-MBIR offered a further ~10% improvement 

in contrast resolution compared to DL-FBP.  

Conclusion: The image quality and robustness of CBCT of the brain 

were greatly improved with the proposed DL-Recon method 

incorporating uncertainty estimation with physically principled 

reconstruction models. Translation to clinical studies is underway.  

1 Introduction 

Cone-beam CT (CBCT) is increasingly prevalent in image-

guided neurosurgery. Many implementations, however, are 

only suitable to visualization of high-contrast bone or 

surgical instrumentation. Challenges to imaging of low-

contrast soft tissues are well established, including artifacts 

(e.g., x-ray scatter, beam-hardening)1,2 and quantum and 

electronic noise that further limit contrast resolution.2   

Recent advances in deep learning (DL) based reconstruction 

have opened the possibility for improved contrast resolution 

in CBCT.3,4 A popular approach to DL-based reconstruction 

involves generation of a post-processed image from input 

given by conventional reconstruction [e.g., filtered 

backprojection (FBP) or model-based iterative 

reconstruction (MBIR)].3,4 While DL methods provide a 

powerful tool for image synthesis, their accuracy and 

generalizability may not be guaranteed. Inaccuracy can 

arise especially when the input deviates strongly from the 

training cohort (e.g., pathology or imaging conditions not 

included in the training dataset). This is especially true for 

image-domain post-processing methods3,4 that do not 

explicitly enforce fidelity to the projection data.   

Important gains in the performance of DL reconstruction 

can be achieved by means of a principled approach that 

invokes understanding of mechanistic physical models 

underlying the data and/or the reconstruction method. Some 

researchers incorporate physical models by using the DL 

synthesized image as a prior (regularization) term in 

MBIR.5,6 Such an approach permits deviations from the 

prior, as enforced by the data fidelity term, although 

conventional spatially invariant weighting of the 

regularization could underweight contributions of the prior 

in some regions and overweight the prior in regions in 

which the prior deviates from the image data due to 

inaccuracies in the DL synthesis image. 

In this work, a DL reconstruction method (denoted DL-

Recon) is presented. The method integrates physical models 

with image synthesis in a spatially varying manner. A 

Bayesian inference technique7 is used to compute voxel-

wise uncertainty in the DL synthesis image. In regions 

where the uncertainty is high, the method leverages more 

contribution of the measured data, using either (i) FBP 

reconstruction (denoted DL-FBP); or (ii) a physics-based 

optimization model as in MBIR (denoted DL-MBIR). Thus, 

the contributions of both DL and physics model-based 

methods are leveraged in a physically principled manner for 

improved overall performance and reliability. The 

performance of the DL-Recon methods was validated in 

studies with CBCT images involving simulated and real 

low-contrast lesions in the brain.   

2 Materials and Methods 

As illustrated in Fig. 1, the proposed DL-Recon method 

involves three steps: (i) With an uncorrected FBP image 

(𝜇𝑖𝑛𝑖𝑡) as input, the synthesis network generates a synthetic 

CBCT image (denoted DL-Synthesis, 𝜇𝑠 ) and an 

uncertainty map (𝜎); (ii) Input projections 𝑦 are corrected 

for artifacts. In this work, 𝜇𝑠 is taken as the object model for 

correction of x-ray scatter and beam-hardening effects;1,2 

and (iii) Information from the corrected projection data and 

a physics-based reconstruction model (FBP or MBIR) is 

integrated with 𝜇𝑠 in relation to the uncertainty map (𝜎) to 

yield the final reconstruction output, 𝜇 (DL-Recon).  
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Figure 1. Illustration of the proposed DL-Recon method incorporating 

DL-Synthesis and uncertainty information with a physics-based model. 

The DL-Recon result combines the performance of DL image synthesis 

with the reliability of physics-based models (FBP or MBIR). 

2.1 Uncertainty Estimation in DL Image Synthesis 

Following the work of Gal et al.,7 the variance of the 

network output is taken as a proxy for predictive 

uncertainty. Predictive uncertainty is interpreted in two 

forms that separately describe epistemic uncertainty due to 

noise in the network parameters (weights) and aleatoric 

uncertainty due to noise in the training data. The work 

reported below focuses on epistemic uncertainty which is 

associated with a lack of information available in the 

training data (e.g., previously unseen pathology).  

 
Figure 2. CNN architecture for image-domain synthesis. Epistemic 

uncertainty is estimated via Monte Carlo (MC) dropout layers (dropout 

rate = 0.2) inserted in the downsampling and upsampling branch.  

The synthesis network used in this work is a residual U-Net8 

type of network as shown in Fig. 2. During network 

training, dropout is used to fit an approximate distribution 

over the weights of the CNN (Bayesian inference).7 Then, 

during inference, dropout is applied in a MC manner to 

draw samples of the weights from the fitted approximate 

distribution. Inference is then performed multiple times, 

each with a different weights sample from the MC dropout. 

The variance of the network output (epistemic uncertainty) 

is then estimated from the sample variance: 

𝜎2 = Var(𝜇𝑠) ≈
1
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where 𝑁 is the number of weights samples (i.e., number of 

inferences, 16 in this work), and 𝜇𝑠 = 𝑓(𝜇𝑖𝑛𝑖𝑡 , P𝑛)  is the 

network output for input 𝜇𝑖𝑛𝑖𝑡 and weights sample P𝑛.   

2.2 The DL-Recon Methods 

2.2.1 DL-Recon Method #1: DL-FBP  

First, a straightforward approach is presented to integrate 

physics-based information with DL-Synthesis as a function 

of the (spatially varying) uncertainty via weighted fusion 

with an FBP reconstruction in the image domain:  

𝜇 = 𝛽 ⊙ 𝜇𝑠 + (1 − 𝛽) ⊙ 𝜇𝑓𝑏𝑝 (2) 

𝛽 = (
[𝜎𝑚 − 𝐷(𝜎)]+

𝜎𝑚
)

𝑝

(3) 

where 𝜇𝑓𝑏𝑝  is an (artifact-corrected) FBP reconstruction, 

and ⊙ represents voxel-wise multiplication. The relative 

contribution of 𝜇𝑠 and 𝜇𝑓𝑏𝑝 to each voxel is controlled by 

the spatially varying map 𝛽 [Eq. (3)] ranging 0 to 1. The 𝛽 

map is shaped by the scalar exponent 𝑝 [with 𝑝 = 2 in this 

work]. The uncertainty (𝜎) of the synthesis (𝜇𝑠) thus yields 

a normalized 𝛽  map, where 𝜎𝑚  is the maximum allowed 

uncertainty (i.e., 𝛽 = 0 for 𝜎 > 𝜎𝑚). A dilation operator 𝐷 

(5-voxel dilation in this work) was used to promote over-

estimation of the uncertain region and ensure smooth-

transition of the 𝛽 map. In this way, contributions from the 

physics-based / analytical reconstruction image (𝜇𝑓𝑏𝑝) are 

greater where DL-Synthesis is less reliable (high 

uncertainty).  

2.2.2 DL-Recon Method #2: DL-MBIR 

Second, we propose integration of the DL synthesis result 

with a physically principled model via MBIR9 – for 

example, iterative optimization of an objective combining 

the uncertainty-weighted DL-Synthesis based prior with a 

penalized weighted-least squares (PWLS)9 estimate:  

�̂� = arg min
𝜇

 
1

2
‖𝐀𝜇 − 𝑙‖W

2 + 𝜆 ‖𝜳(𝜇)‖1 + 𝜆𝐷𝐿𝛹𝐷𝐿 (4) 

 𝛹𝐷𝐿 = 𝛽 ⊙ ‖𝜇 − 𝜇𝑠‖1 (5) 

The first two terms in Eq. (4) are recognized simply as 

PWLS with an image roughness penalty (quadratic penalty 

in this work), where the system matrix 𝐀 denotes the linear 

forward projection operator, 𝑙 is the (artifact-corrected) line 

integral, W is the estimated variance for each measurement, 

and ‖𝜳(𝜇)‖1  is the roughness penalty based on 

neighborhood differences with a scalar weighting 𝜆 . The 

third term (i.e., the “deep learning” term) serves as an 

additional penalty on differences between the DL-Synthesis 

and the current estimate (𝜇). The global contribution of this 

penalty is controlled by a constant scalar 𝜆𝐷𝐿 , and – 

importantly – the spatially varying penalty strength is 

controlled by the uncertainty map via 𝛽 [Eq. (3)]. Thus, the 

penalty strength is inversely proportional to the uncertainty 

of DL-Synthesis, allowing greater contribution from the 

physics-based data fidelity term where DL-Synthesis is less 

certain. Compared to DL-FBP, DL-MBIR allows 

incorporation of an explicit projection domain data fidelity 

constraint and more accurate physics models.  
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2.3 Training Data Generation 

A high-fidelity forward simulator (Fig. 3) was developed to 

simulate realistic CBCT projection data from high-quality, 

helical multi-detector CT (MDCT) volumes. The simulator 

contains highly accurate, physics-based models of the full 

imaging chain and image formation process, comprising the 

following four main steps: (i) First, MDCT volumes were 

segmented to provide image-domain object models (e.g., 

soft-tissue, bone), which consist of voxel-wise fraction of 

each material. The object model was then used to estimate 

scatter and primary signal through MC simulation1,2 and 

polyenergetic forward projection, respectively. These 

calculations included models of the system geometry, 

incident spectrum, focal spot blur, beam modulation, patient 

motion, antiscatter-grid, and detector response. (ii) An 

energy-dependent cascaded systems analysis model10 was 

used to inject correlated quantum noise in the projection 

domain. The amount of injected noise was based on the 

number of photons and the incident spectrum (calculated 

based on the line integral for each material) at the surface of 

the detector for each pixel. (iii) Third, detector-domain 

artifacts including veiling glare and detector lag were added 

in the projection domain through spatial-temporal 

convolution with their associated kernel functions;1,2 (iv) 

Finally, realistic CBCT projection data were obtained by 

downsampling the projections to the specified readout 

binning mode and injecting uncorrelated electronic noise.  

2.4 Experiments: CBCT of Low-Contrast Lesions 

The synthesis network was trained using paired real MDCT 

and simulated CBCT images, which were the input and 

output of the simulator described in §2.3. Parameters for the 

simulation were adjusted to emulate the characteristics of a 

CBCT system common in image-guided surgery (the O2 O-

arm, Medtronic; head scan protocol: 120 kV, 93 total mAs, 

370 projections). A total of 22,000 slices were used for DL-

Synthesis training (healthy and hydrocephalus subjects). 

Training was performed with the Adam optimizer (learning 

rate 5 × 10−4, batch size = 8).  

Two simulation studies involving low-contrast lesions (not 

present in the training set) were designed to investigate the 

performance of the proposed methods. Experiment #1 

featured two types of simulated lesions added to a healthy 

patient: (i) simple circular lesions with varying contrast (-

70 to +70 HU, pertinent to low-contrast features such as 

intracranial hemorrhage (ICH), ischemia, and abnormal 

fluid), size (diameter ranging from 10-40 mm), and location 

(random placement within the cranial vault); (ii) more 

complex star-polygon lesions with varying contrast [-70 to 

 
Figure 3. Flowchart of the high-fidelity forward simulator. Input to the simulator is the high quality MDCT volumes. Output is the simulated CBCT. 

 
Figure 4. Validation results for the high-fidelity forward simulator using an anthropomorphic head phantom. Top row: axial plane. Bottom row: 

sagittal plane. (a) MDCT images of the head phantom used as input to the simulator; (b) Simulated CBCT images. (c) Real CBCT images from the 

Medtronic O-Arm system. (d) Difference map. (e) Axial plane noise-power spectrum (NPS) for the simulated and real CBCT image. Resolution [edge-

spread function (ESF) width] and contrast-to-noise ratio (CNR) for the simulated and real CBCT image were also labeled in (b) and (c).  

Quantification for (b( and (c) is performed  
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-20 HU and +20 HU to +70 HU], size (inner diameter 

ranging from 8 – 25 mm; outer diameter ranging from 20-

60 mm), shape (number of vertices ranging from 3-12), and 

location (random within the brain parenchyma). Experiment 

#2 used a dataset featuring real hypodense lesions (~ –30 

HU contrast) of edema and ischemia.  

3 Results 

3.1. Validation of Training Data Generation  

The performance of the high-fidelity forward simulator is 

summarized in Fig. 4. Side-by-side comparison shows that 

the simulated CBCT accurately reproduces the measured 

experimental data acquired with the O-arm system. The 

high level of agreement is also illustrated by the difference 

map in (d). Quantitative measurement shows <10% 

discrepancy in spatial resolution, CNR, and NPS between 

the simulated and real CBCT images.  

 
Figure 5. Correlation between DL-Synthesis error and the statistical 

uncertainty in 𝜇𝑠 [Eq. (1)]. (a) Difference between the DL-Synthesis and 

ground truth for an example dataset in Exp #1 featuring a hyperdense 

lesion with a contrast of +40 HU. (b) Corresponding uncertainty map 

( 𝜎 ) for the soft-tissue region. (c) Mean error (in lesion contrast) 

computed as a function of lesion location. (d) Mean uncertainty within 

the lesion computed as a function of lesion location. Lesion contrast and 

radius were fixed to +40 HU and 12 mm, respectively, in (c-d). (e) Mean 

error computed as a function of lesion contrast and size. (f) Mean 

uncertainty within the lesion computed as a function of lesion contrast 

and size. Lesion location was the same as (a) for calculations in (e) and 

(f). Values at each point-pair in (c-d) or (e-f) show results from one 

dataset [e.g., The point-pair marked with blue-green stars corresponds 

to the dataset in (a-b)].  

3.2. Validation of Uncertainty Estimation 

Figure 5 shows the uncertainty of DL-Synthesis for datasets 

with circular lesions in Exp #1. Taking as an example the 

dataset featuring a simulated hyperdense lesion (+40 HU 

contrast) as shown in Fig. 6(a), we see that uncertainty is 

highest in the region of the simulated lesion, since such a 

lesion was not present in the training set, leading to errors 

in the conventional DL-Synthesis prediction [Fig. 5(a)]. 

Note the correlation between error and uncertainty [Fig. 

5(a-b)]. Additionally, the correlation of DL-Synthesis error 

and uncertainty is shown: (i) as a function of the location of 

the lesion in Fig. 5(c-d), and as a function of the size and 

contrast of the lesion in Fig. 5(e-f). We also observe clear 

correlation between synthesis error and uncertainty for 

lesions of different location, size, and contrast – evident in 

the similar pattern between (c-d) and between (e-f). For 

example, lesions adjacent to or within the lateral ventricles 

resulted in greater synthesis error and uncertainty as seen in 

(c-d). Uncertainty was therefore taken as a reasonable 

surrogate for regions susceptible to error in the synthesis 

image.  

3.3. Experiment #1: Simulated Lesion 

Figure 6 shows images reconstructed with conventional 

methods (FBP, PWLS, and DL-Synthesis) and the proposed 

DL-Recon methods with uncertainty information (DL-FBP 

and DL-MBIR) for an example dataset in Exp #1 (simulated 

hyperdense ICH lesion of +40 HU contrast). Compared to 

(artifact-corrected) FBP and PWLS, the DL methods show 

~50% reduction in noise (at matched spatial resolution 

measured at the wall of the lateral ventricle) and ~53% 

improvement in image uniformity. The improved noise-

resolution tradeoff of DL-MBIR is shown in Fig. 6(i). 

Unfortunately, the conventional DL-Synthesis method 

alone exhibits ~52% reduction in contrast of the ICH lesion 

(compared to truth), showing a lack of reliability / 

generalizability for structures unseen in the training data. 

The DL-FBP and DL-MBIR methods, on the other hand, 

are significantly more robust against such contrast reduction 

by weighting the physical measurements in regions of high 

uncertainty. DL-MBIR shows the expected advantages in 

noise-resolution tradeoffs compared to DL-FBP.  

Figure 6(j) illustrates the importance of the spatially varying 

uncertainty penalty in DL-MBIR, where the performance of 

two variants is shown – one in which the penalty varies 

according to the uncertainty map and one in which 𝛽 is held 

constant [i.e., no uncertainty information, denoted as DL-

MBIR (constant 𝛽 )]. With DL-Synthesis as a prior, the 

spatially varying, uncertainty-based model (DL-MBIR) 

maintains an accurate representation of lesion contrast via 

the data fidelity term. Incorporation of the physical model 

thus compensates for inaccuracies in DL-Synthesis in 

regions where uncertainty is high. Note that DL-MBIR with 

constant 𝛽 outperformed DL-Synthesis alone, showing the 

benefit of combining deep learning with physics models 

even when the uncertainty information is not available.   

Figure 7 shows images reconstructed with conventional 

methods (FBP and DL-Synthesis) and the proposed DL-

MBIR method for an example dataset in Exp #1 (hypodense 

star-polygon lesion with -40 HU contrast). Utilizing 

uncertainty information (highest in the hypodense lesion 

region), DL-Recon was able to mitigate biases introduced 

by the inaccuracy in DL-Synthesis (~45% improvement in 

lesion contrast and ~35% improvement in Dice coefficient) 

while maintaining the improved noise and uniformity 

characteristics of deep learning methods. The improvement 

in Dice coefficient for DL-MBIR reflects a higher degree of 

reliability in imaging pathologies unseen in the training data 

– an important aspect for many clinical scenarios.  
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Figure 6. Image reconstructions and analysis for an example dataset in Exp #1. (a) Ground truth consisting of a clinical MDCT scan of the brain with 

the addition of a lesion of +40 HU contrast (ICH). (b) FBP. (c) PWLS. (d) DL-Synthesis. (e) Uncertainty map for DL-Synthesis. (f) DL-FBP. (g) 

Spatially varying penalty (“𝛽 map”) computed by Eq. (3). (h) DL-MBIR. Note the more accurate ICH contrast in (f) [+32.2 HU] and (h) [+33.4 HU] 

compared to (d) [+18.1 HU] relative to truth (a) [+38.2 HU]. The spatial resolution in images (b, c, d, f, h) was matched at the boundary of the 

ventricle. The cyan ROIs in (a) were used to measure the lesion contrast, and the yellow ROIs were used to measure non-uniformity (NU) and noise 

in brain parenchyma. (i) Noise-resolution tradeoff for FBP, PWLS, and DL-MBIR. (j) ICH contrast for DL-MBIR with spatially varying beta and for 

DL-MBIR with constant 𝛽 as a function of penalty strength 𝜆𝐷𝐿. Note that DL-MBIR maintains contrast despite the inaccurate DL-Synthesis prior.  

 
Figure 7. Reconstruction results for an example dataset in Exp #1, featuring a complex shaped (star-polygon) stimulus. (a) Ground truth consisting 

of a clinical MDCT scan of the brain with the addition of a hypodense lesion (ischemia) of -40HU contrast. (b) FBP. (c) DL-Synthesis. (d) DL-MBIR. 

(e) Spatially varying penalty (“𝛽 map”) computed by Eq. (3). Dice coefficients from a threshold-based segmentation (threshold set to achieve the 

optimal segmentation in the FBP reconstruction) were measured within the purple ROI. Note the more accurate segmentation from DL-MBIR as 

compared to DL-Synthesis, allowing easier lesion analysis in a clinical workflow 

 

Figure 8. Quantitative analysis of reconstruction accuracy [DL-Synthesis, DL-MBIR (constant 𝛽), DL-MBIR, and ground truth] aggregated over all 

datasets in Exp #1 with star-polygon lesions. (a) Relative error in contrast for hyperdense lesions. (b) Dice coefficient for hyperdense lesions. (c) 

Relative error in contrast for hypodense lesions. (d) Dice coefficient for hypodense lesions.  
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Figure 8 shows the distribution of relative error in lesion 

contrast and Dice coefficient for all datasets in Exp #1 with 

star-polygon lesions. The results in Fig. 8 compare the 

performance of DL-Synthesis, DL-MBIR with spatially 

invariant (constant) 𝛽, and DL-MBIR methods. Compared 

with DL-Synthesis alone, DL-MBIR (constant 𝛽) improved 

the interquartile range (IQR) of the relative error in contrast 

and Dice coefficient for the hyperdense lesions by 31% and 

10%, respectively, and DL-MBIR (spatially-varying beta) 

improved these characteristics by 51% and 23%, 

respectively. The performance of conventional DL-

Synthesis was observed to be lower for reconstruction of 

hypodense lesions. Possible reasons for the decreased 

performance could lie in the similarity between hypodense 

lesions and most forms of CBCT artifacts, such as scatter 

and beam hardening, which tend to present as “hypodense” 

shading or streaks. With DL-MBIR, the IQR of the relative 

error in contrast and Dice coefficient for the hypodense 

lesions were improved by 58% and 68%, respectively, 

compared to DL-Synthesis.  

3.4. Experiment #2: Real Pathology 

Figure 9 shows images reconstructed with conventional 

methods (FBP and DL-Synthesis) and DL-MBIR. 

Compared to FBP, DL-MBIR shows ~50% reduction in 

noise and ~47% improvement in image uniformity 

throughout the brain parenchyma. The DL-Synthesis 

network exhibited highest uncertainty in the region of 

hypodense lesions, leading to inaccurate representation of 

the edematous lesion (~42% reduction in Dice; green 

overlay) and the ischemic lesion (~12% reduction in Dice; 

red overlay). By including uncertainty information and 

physics-based reconstruction models, DL-MBIR accurately 

depicted the contrast and shape of the lesions while 

maintaining the improved noise and uniformity 

characteristics of DL-Synthesis. 

4 Discussion & Conclusion 

This work presented a new type of DL-based image 

reconstruction method (termed DL-Recon) that integrates 

physics-based models with image synthesis based on 

epistemic uncertainty. To our knowledge, this represents a 

novel incorporation of Bayesian uncertainty in a neural 

network approach with physics-based and DL-based CBCT 

image reconstruction. Two variations of DL-Recon were 

proposed in this work, both maintaining the basic 

advantages of conventional DL-Synthesis: (i) the DL-FBP 

method improved the accuracy of reconstruction and offers 

practical advantages of runtime efficiency; and (ii) the DL-

MBIR offered further image quality improvement due to the 

more accurate physical model and the explicit data-fidelity 

constraint. Compared with DL-Synthesis alone, both of the 

DL-Recon methods showed improved robustness to 

anatomical variations (e.g., pathologies) that were unseen in 

the training set. Besides image reconstruction, other 

applications of syntehsis uncertainty can be envisioned, for 

example: helping to identify abnornal anatomy and image 

features in image classifcaiton; providing a quantitative 

measurement of sufficiency in the size and/or variety of a 

training dataset; and helping to quantify improvements (or 

unexpected variations) in continuous learning. Ongoing 

work includes extension to fully 3D image reconstruction 

and investigation in clinical studies. 

References 
[1] Sisniega, A., et al. "Image quality, scatter, and dose in compact CBCT systems 
with flat and curved detectors." Medical Imaging 2018: Physics of Medical 
Imaging. Vol. 10573. International Society for Optics and Photonics, 2018. 

[2] Wu P et al. Cone‐beam CT for imaging of the head/brain: Development and 

assessment of scanner prototype and reconstruction algorithms. Med Phys. 
2020;47(6):2392-2407. doi:10.1002/mp.14124 

[3] Chen H et al. Low-Dose CT with a Residual Encoder-Decoder Convolutional 
Neural Network. IEEE TMI. 2017;36(12):2524-2535.  

[4] Yang Q et al. Low-Dose CT Image Denoising Using a Generative adversarial 

Network with Wasserstein Distance and Perceptual Loss. IEEE TMI. 
2018;37(6):1348-1357. 

[5] Wu D et al. Iterative low-dose CT reconstruction with priors trained by 
artificial neural network. IEEE TMI. 2017;36(12):2479-2486. 

[6] Zhang C et al. Deep learning enabled prior image constrained compressed 
sensing reconstruction framework. SPIE Medical Imaging 2020 Vol 11312.  

[7] Gal Y et al. Dropout as a Bayesian approximation: Representing model 
uncertainty in deep learning. ICML 2016:1050-1059. 

[8] Isola P et al. Image-to-image translation with conditional adversarial networks. 
CVPR 2017 1125–1134.  

[9] Fessler JA. Penalized weighted least-squares image reconstruction for positron 
emission tomography. IEEE TMI. 1994;13(2):290-300. 

[10] Siewerdsen JH et al. Empirical and theoretical investigation of the noise 

performance of indirect detection, active matrix flat-panel imagers for diagnostic 
radiology. Med Phys. 1997;24(1):71-89 

 
Figure 9. Reconstruction results for Exp #2. (a) Ground truth consisting of a clinical MDCT scan of the brain with hypodense lesions. (b) FBP. (c) 

DL-Synthesis images. (d) Error map. (e) Uncertainty map for the DL-Synthesis image. (f) DL-MBIR. Note the improved lesion contrast in (e) and (f) 

compared to (c) [cyan ROIs]. The spatial resolution of (b, c, f) were matched at the boundary of the ventricle region (giving ESF width = 0.85 mm). 

Dice coefficients from a threshold-based segmentation were measured within the purple ROI for the edema (green) and ischemia lesion regions (red).  
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Abstract  Positron range is one of the main limiting factors to the spatial 
resolution achievable with Positron Emission Tomography (PET). 
Several PET radionuclides such as 68Ga and 82Rb, emit high-energy 
positrons, creating a significant blurring in the reconstructed images. In 
this work, we have trained a deep neural network (Deep-PRC) with a U-
NET architecture to correct PET images for positron range effects. Deep-
PRC has been trained with 3D input patches from reconstructed images 
from realistic Monte Carlo simulations that considers the positron energy 
distribution and the materials and tissues it propagates into, as well as 
acquisition effects. The quantification of the reconstructed PET images 
corrected with Deep-PRC shows that it may restore the images up to 95% 
without any significant noise increase. The proposed method can provide 
an accurate positron range correction in a few seconds for a typical PET 
acquisition. 

1 Introduction 
 
Positron range (PR) is one of the main limiting factors to 
the spatial resolution achievable with Positron Emission 
Tomography (PET) [1–6]. PR makes the spatial distribution 
of the annihilation points to be a somehow blurred version 
of the emission points one (Figure 1). Accurate PR 
modeling is complex, as it depends both on the kinetic 
energy of the emitted positrons and the electron density of 
the surrounding tissues. 

 
Fig. 1 – Distribution of annihilation points from a centered positron 
emitter for different radionuclides and tissues. 
 
The quantitative accuracy of PET depends on an accurate 
positron range correction (PRC). As 18F, the most widely 
used PET radionuclide, has a relatively small PR in soft-
tissue, accurate PRC for different radionuclides has been 
neglected to a large extent, and to the best of our knowledge 
is not explicitely performed yet in standard PET image 
reconstruction. Nevertheless, the improved resolution of 
current scanners and the use of radionuclides with large PR 
such as 68Ga requires to improve this correction. 
 

Many PRC approaches have been proposed to remove the 
blurring caused by the PR on PET reconstructed images. 
They differ on the PR model they are based on and how they 
are applied in the image reconstruction process. On the  one 
hand, PRC can be applied within the tomographic iterative 
image reconstruction. PR models can be included into a 
resolution kernel or Point-Spread-Function (PSF) [7-9], or 
within the System Response Matrix (SRM) used in the 
iterative reconstruction. This approach has some important 
limitations: on one hand, adapting an existing SRM to other 
radionuclides could be difficult, unless a SRM where PR is 
factored out is used [10]. Furthermore, fully realistic PR 
models would require evaluating the SRM in each 
acquisition. On the other hand, PRC can be applied as a 
post-processing step to the reconstructed images. In this 
approach, the reconstructed images before PRC are 
considered to represent the distribution of the positron 
annihilations, instead of the distribution of the positron 
emissions. Therefore, the goal of the post-processing PRC 
procedure is to convert the annihilation distribution into the 
positron emission distribution (the one expected to be seen 
with PET). Post-processing PRC has the advantage of being 
fast, simple, and to some extent independent of the 
procedures, algorithms and codes used in the image 
reconstruction.  
 
Machine Learning (ML), and more specifically the area of 
ML known as deep learning are having a huge impact on 
many areas including medical imaging and PET [11]. Deep 
learning methods are able to create accurate mappings 
between inputs and outputs by means of an artificial neural 
network (NN) with a large (deep) number of layers. The fact 
that the same framework can connect many different inputs 
such as measurements, raw images, and outputs such as 
labels, and reference images allows its application in a large 
variety of problems and disciplines. A recent overview on 
ML and deep learning for PET imaging can be found in 
[12]. The components of the NN are learned from example 
training datasets. In the case of supervised learning, the 
example inputs are paired with their corresponding desired 
outputs. After the training, the NN can then be used on new 
input data to predict their output. Various studies based on 
convolutional neural networks (CNNs) have been proposed 
for medical images generation, especially for segmentation, 
many of them using the U-NET network structure [13]. 
However, to the best of our knowledge, it has not been 
applied yet for PRC. 
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In this work, we propose a deep-learning based PRC 
method (Deep-PRC) applied as a post-processing step to the 
reconstructed PET images. Our goal was to develop a fast 
PRC method for 3D PET imaging, that provides PET 
images for medium and large range radionuclides rivaling 
in spatial resolution to the ones reconstructed with the 
standard short-range 18F radionuclide. The NN is trained 
with realistic simulated cases of preclinical studies of 
reconstructed images of 68Ga and 18F corresponding to the 
same activity distribution, and it is able to produce accurate, 
and precise 68Ga PR-corrected images similar to the 18F 
ones. As we assume that the image reconstruction method 
has already incorporated the PRC for 18F, the goal of this 
work is to obtain a PRC for 68Ga that makes it look similar 
to the corresponding 18F counterpart, without the risk of 
double-correcting this effect. The source code of this work 
is available in Github [14]. 

2 Materials and Methods 
 
Numerical mice models from a repository [17] were used to 
simulate the different cases of activity, material, and density 
distributions needed for training, testing and validating the 
NN. The material composition and density of each tissue in 
the models were directly obtained from the repository, 
while different activities were assigned to each tissue type 
such as heart, liver, kidneys, and tumors using a range of 
typical values found in 18F-FDG acquisitions. The 
numerical models consisted of 154 × 154 × 242 cubic 
voxels of 0.28 × 0.28 × 0.28 mm.  
 
A total of 8 whole-body mouse models were used to 
generate with PenEasy (v2020) [15] the positron 
annihilation distributions from the initial positron emission, 
material and density distributions. PenEasy considers the 
path traveled by each positron until its annihilation taking 
into account their energy distribution and all the materials 
in the field-of-view. Each model was simulated twice, once 
for 18F and once for 68Ga. The energy distribution of the 
positrons emitted by 68Ga and 18F was obtained with 
PenNuc [16]. Each simulation consisted of around 3 × 108 

positron emissions simulated at a rate of 3.4 ×104 histories 
per second for the 18F simulations and 2.2 ×104 histories per 
second for the 68Ga simulations in an Intel(R) Xeon(R) CPU 
@ 2.30GHz computer. 
 
The positron annihilation distributions from PenEasy were 
used to simulate realistic PET acquisitions in the preclinical 
scanner Inveon PET/CT scanner [18] using the MC 
simulator MCGPU-PET [19], a PET-adapted version of the 
MC-GPU software [20]. MCGPU-PET allows simulating 
very fast and realistic PET acquisitions from voxelized 
activity, material, and density distribution. MCGPU-PET 
simulations contained around 1.2 × 109 coincidences 
including scatter and non-scattered true coincidences in a 

minute (2 × 107 coincidences/second) in a computer with a 
GeForce GTX 1080 8Gb GPU.  The output was stored into 
sinograms, with 147 × 168 × 1293 bins, maximum ring 
difference of 79, axial compression of 11, and a radial bin 
size of 0.795 mm. 
 
The sinograms were reconstructed with GFIRST [21], a 
GPU-accelerated version of FIRST [22], a 3D-OSEM 
algorithm which allows incorporating a physical model in 
the SRM. In this case, the SRM used was the standard one 
created based on 18F in water. We used 1 subset and 40 
iterations. The final images consisted of 154 ×154 × 80 
voxels with a size of 0.28 × 0.28 × 0.795 mm, as this is the 
typical size of the images reconstructed in the Inveon 
scanner [18]. The total reconstruction time was 50 seconds 
in a GTX 1080 8Gb GPU. The values of the reconstructed 
images were converted into standardized uptake value units 
(SUV) to make it easier to evaluate the performance of the 
method.  
 
The CNN was implemented in Python within the 
Tensorflow framework (v 2.3.0) with Keras. It is based on 
the U-NET network [13] which has demonstrated to be 
useful in many medical imaging applications [23]. We 
directly used the U-NET model available in Keras with 4 
levels, 64 filters and dropout factor of 0.2. The Swish 
activation function [24] was used instead of ReLU (except 
for the final output layer) as it performs better than ReLU 
with a similar level of computational efficiency. The loss 
function used was the L1-norm between the ground-truth of 
the 18F images and the output of the Deep-PRC network. 
The trained model was saved as Keras models in hdf5 
format. The source code can be found in [14].  
 
In a recent work [25], we trained a NN using several slices 
from the 68Ga and µ-map as channels in the input layer, 
while the output was the corresponding central slice from 
the 18F-PET image. In this work, in order to generate a more 
general NN, instead of slices we used 3D-patches from the 
68Ga (PET) and μ-maps (CT) volumes to train the neural 
network. Each input patch had 32 × 32 × 9 voxels, and the 
output was the central 16 × 16 × 1 voxels. This approach 
not only improves the results, and reduce the risk of 
overfitting, but it also makes it easier to fit the training data 
into the GPU memory. The input patches were normalized 
to make their values to be between 0 and 1. This 
normalization is restored in the output, so that the PRC 
preserves the appropriate units. We used an NVIDIA RTX 
2080 Ti GPU with 11GB memory for the training. The 
model was trained for 200 epochs with 100 iterations each 
in around 1 hour. 
 
One simulated case was set aside and not used in the 
training/validation process, to perform the final test. A 
quantitative analysis of the resulting image was performed 

373



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
  

obtaining the mean (µ) and standard deviation (σ) in 
different organs. The noise was defined as the ratio σ/µ in 
uniform regions away from any boundary and edges. The 
recovery coefficients were obtained defining regions over 
the whole organs, and their values were then normalized 
respect to the reference reconstruction with 18F. The 
differences between the 68Ga images before and after the 
proposed PRC can be easily evaluated from the obtained 
coefficients. 

3 Results 
 
Figure 2 shows a coronal view of a mouse with the u-map 
obtained from the CT, and the reconstructed images of 18F, 
68Ga, and 68Ga after the PRC. It can be easily seen that the 
proposed method is able to recover the resolution loss in 
68Ga images with respect to 18F, and this increases the values 
in some areas with higher uptake. The time required for 
obtaining the PRC with the trained model on the whole 
volume was 2.14s in a RTX 2080 Ti GPU.  
 

 
 
Fig. 2 Reconstructed images of 18F (left), 68Ga (center), and Deep-PRC 
68Ga (right), with the corresponding µ-map. The activity distribution in 
all cases was the same. 
 
Profiles along some organs of interest in the 18F, 68Ga and 
68Ga with Deep-PRC images are shown in Figure 3. The 
significant impact of the PR in these cases is quite clear, as 
well as the capacity of the proposed method to correct for 
this effect.  

 
Fig. 3 Profiles along the tumor and the bladder in 18F, 68Ga and Deep-
PRC 68Ga images. 
 
The quantitative analysis of the results is shown in Table 1. 
From the table, it is clear that the 68Ga images corrected by 
PR images are very similar to the 18F images (with 
recoveries greater than 95% of the reference values). 

Table 1. Quantitative analysis of the regions. 

 Recovery (%) Noise (%) 

 Heart Tumor Heart 

18F 100.00 100.00 6.0 

68Ga 67 60 7.1 

68Ga Deep-PRC 90 97 5.5 

 
Additionally, the noise level of the estimated images is 
comparable to the reference one, which indicates that the 
proposed method does not trade noise for resolution, as it is 
the case in many deconvolution-based approaches for PRC. 

4 Discussion 
 
This paper presents the use of a deep convolutional neural 
network to provide an accurate PRC in PET. The method 
has been evaluated in simulations in preclinical studies and 
its performance characterized. To the best of our 
knowledge, this is the first work that successfully combines 
deep learning and PRC in a coherent framework. 
 
Our results indicate that overall, the image quality produced 
by the learned model is comparable to that of the reference 
images, with recoveries going up from around 60% to more 
than 95%, while keeping low noise levels.  
The training was based on the minimization of the L1-norm 
between the reference images and the estimated ones, but 
other loss functions could be explored in this context, 
including a loss term from an adversarial network (GAN). 
 
We are working on a detailed comparison of the 
performance of the proposed method with previously 
proposed ones. In any case, the fact that the proposed 
deepPRC has no significant impact on the noise level of the 
images is a clear advantage respect to previous approaches 
[9]. It is important to note that although we proposed the 
method as a post-processing step, the same neural network 
architecture could be used to generate the PR model that can 
be applied in the forward projection within an image 
reconstruction (simply by inverting the input and outputs of 
the NN). We are currently working on this line of research. 
 
In this work we have used the preclinical scanner Inveon 
and 68Ga as a reference, but the proposed approach is 
flexible and suitable for any preclinical and clinical PET 
systems and with any other radionuclide. 

5 Conclusion 
 
We have developed and evaluated a deep convolutional 
neural network (Deep-PRC) that provides a fast and 
accurate PRC method to recover the resolution loss present 
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in PET studies with radionuclides that emit positrons with 
large PR. We demonstrated its quantitative accuracy in 
realistic simulations of preclinical PET/CT studies with 
68Ga. The correction of PR effects in PET image 
reconstruction is becoming mandatory due to the increasing 
use of high-energy positron emitters in preclinical and 
clinical PET imaging and their improved spatial resolution. 
CNN are very suitable for this type of correction. 
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Abstract Spiral computed tomography is a standard procedure in
clinical diagnostics. Besides a faster measurement time, as compared
to conventional CT, it can acquire 3D volumes. However, the limited
sampling in the axial z-direction can lead to reconstruction artifacts.
These spiral artifacts are referred to as windmill artifacts due to their
characteristic appearance. Available methods to increase the sampling
in z-direction, such as the z-Flying Focal Spot (zFFS), are technically
intricate. This work aims to interpolate CT detector rows using a
neural network trained with projection raw data from clinical patient
images. The presented approach is abbreviated as the acronym RIDL
(Row Interpolation with Deep Learning). In addition to analyzing
the interpolation results with single projection data, the method was
validated in the image domain. For this purpose, a reconstruction algo-
rithm was applied to the output generated by the RIDL network and
compared with data sets using zFFS and linear interpolation. Although
the zFFS cannot be entirely replaced by the presented method, it was
shown that the sampling in z-direction can be increased with RIDL
while achieving better results than with linear interpolation.

1 Introduction

Since the introduction of spiral CT in 1989 [1], the method
established itself as a standard procedure in modern clini-
cal diagnostics. A characteristic feature is the spiral trajec-
tory of the X-ray tube, caused by continuously advancing
the patient table through the gantry. In comparison to con-
ventional CT, faster measurement times and acquisition of
three-dimensional volumes are enabled [2]. Further, spiral
scans are less sensitive to motion artifacts. However, as with
conventional CT, reconstruction artifacts may occur.
The windmill artifact is an image distortion in the axial plane
that occurs in spiral multidetector CT scans. It is character-
ized by bright streaks diverging from a focal high-density
structure, e.g. from a bone. The streaks appear to rotate while
scrolling through the affected slices of a volume. Figure 1
shows an example of this type of artifact. Windmill artifacts
are caused by inadequate data sampling in the z-plane since
several detector rows cross the reconstruction plane with each
rotation of the gantry [2]. Mathematically this arises from not
satisfying the Nyquist-Shannon sampling criterion, which
states that at least two samples per detector pixel should be
recorded.
One method used to reduce the windmill artifact is the z-
flying focal spot (zFFS). The zFFS enables the periodic
movement of the X-ray focal spot in longitudinal direction to
double the data sampling along the z-axis such that the above-
mentioned Nyquist-Shannon sampling condition is met [2].

Figure 1: Representation of a slice from a CT scan of a skull
phantom without applying artifact reduction methods. A windmill-
shaped spiral artifact is clearly visible in the circled area.

The zFFS requires a specially manufactured X-ray tube that
allows for alternating the focal spot between two positions on
the anode surface by permanent electromagnetic deflection.
The deflection amplitude is set so that the detector’s two
consecutive measured longitudinal sampling positions are
shifted by half a detector row width in z-direction [2]. This
doubles the effective sampling rate of the CT system while
maintaining the same collimation. The resulting higher sam-
pling rate in z-direction removes the aliasing in the acquired
data and thus the windmill artifacts. However, the zFFS also
has some disadvantages as it is technically intricate and ex-
pensive. Furthermore, it cannot be applied to CT systems
that lack the technical requirements. Moreover, the zFFS
requires to double the readout rate of the detector and thus
may not be applicable for scan modes that run at maximum
speed.
In recent years, deep neural networks have achieved remark-
able results in the field of super-resolution, which aims at
transforming input images into high-resolution versions [3].
The application of such neural networks has also been investi-
gated to improve the resolution in CT images. However, pre-
vious works such as [4] mostly focus on the super-resolution
of the reconstructed image. Only a few earlier works have
explored the approach of super-resolution or super-sampling
in the projection domain as well [5].
In this paper, we propose the RIDL network, which is simi-
lar to the zFFS, designed to double the effective number of
acquired detector rows in projection domain. The network
was trained on raw projection data from clinical CT scans,
and the row interpolation was then compared with a linear
interpolation in the projection and image domain.
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Figure 2: Structure of the RIDL network. It contains 16 residual blocks (RB) at its core, followed by a subpixel convolution (labeled
blue). An 1×2 average pooling operation (labeled red) was added to halve the number of channels again.

2 Materials and Methods

2.1 Basic concept

The basic concept of the RIDL method is to train a neural
network that receives input projection raw data and predicts
the correct representation of rows in-between, i.e. to perform
an upsampling of the input data to double the number of
detector rows. The projection data used for the training
process are divided into alternative rows, so the projections
containing all rows (acquired with zFFS) are defined as the
desired output y, which is the ground truth, and every second
row out of the corresponding projections is used for the
network input x. It is therefore trained in a supervised manner.
The error between the network output and the ground truth
is calculated by a loss function and the parameters of the
network are adjusted via backpropagation to ideally calculate
an absolute minimum of the loss function iteratively. The
final trained network should receive a projection image x
with a number of M×L detector pixels as input, where M
describes the number of channels and L the number of rows.
Subsequently, the network should output a projection image
ŷ with M× (L×2) detector pixels according to the input.

2.2 Data preparation

To achieve the highest possible generalization of the network
on unseen clinical data, raw projection data of clinical CT
scans from different body regions were selected. The data set
includes a total of 29 CT scans, which predominantly cover
the body regions head, thorax, and abdomen. The individual
scans were acquired with different Siemens CT systems, such
as the SOMATOM Force, SOMATOM Definition Flash, and
SOMATOM Definition AS/AS+. Projections were obtained
after the rebinning, which is the rearrangement of the mea-
sured fan-beam data to parallel geometry. The data set was
divided into two disjoint subsets for training the neural net-
work: 24 of the CT scans were used as training data set and
five scans as testing set. It was ensured that the acquired body
regions were equally distributed in both data sets. Preprocess-

ing steps were performed on the data sets prior to reading the
data for training the RIDL network. Utilizing data augmen-
tation, instead of the full projection data, randomized image
patches were selected from the raw data. This procedure can
significantly increase the effective number of training and
test samples for the network. Furthermore, all values of the
resulting patches were normalized globally to lie between 0
and 1.

2.3 Network architecture

The proposed architecture of the RIDL network is a modi-
fied version of the SRResNet presented by Ledig et al. in
[6]. The network is designed to compute super-resolution
images, i.e. very high-resolution images. For this purpose,
the network is trained to receive low-resolution (LR) images
as input, and the corresponding high-resolution (HR) im-
ages are defined as ground truth. In [6], HR images were
transformed to LR images using bicubic downsampling to
generate the training pairs. In the context of this work, how-
ever, the downsampling of the input patches should only take
place in row-direction. For this purpose, image patches of
size 64×32×1 were generated for the network training from
the training data set and defined as ground truth. As already
mentioned, according to these patches, every second row was
used as input data for the network so that the input had a
size of 32× 32× 1. The structure of the RIDL network is
presented in Figure 2. The network is structured in such a
way that an input layer is followed by a convolutional layer
with 64 filters and a 9×9 kernel. The core of the network is
formed by 16 residual blocks. Each of these blocks consists
of two convolutional layers with 64 filters, 3×3 kernels and
a parametric rectified linear unit (PReLU) as the non-linear
activation between the convolutional layers. The residual
blocks are followed by a convolutional layer with the same
features of the previous layers, whose output is connected to
the input of the first residual block by a final residual layer. In
the following step, an upsampling of the input is performed
based on the obtained feature maps, which is another spe-
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cial feature of the SRResNet. The network uses a so-called
subpixel convolutional layer introduced by Shi et al. in [7].
This layer essentially uses the feature maps from previous
layers followed by a specific type of image reshaping called
phase shifting [7]. Instead of putting zeros between pixels
and performing additional computations as in conventional
upsampling, a subpixel convolution computes multiple con-
volutions at lower resolution and resizes the resulting feature
map to an upscaled image. An upsampling ratio of r = 2 was
used in the context of this work. Furthermore, the network
architecture was extended with a 1×2 average pooling layer
to halve the output of the subpixel convolution in the hori-
zontal direction. This is necessary because otherwise both
spatial dimensions would be increased by a factor of r = 2.

2.4 Implementation and training details

The proposed RIDL network was implemented using Ten-
sorFlow 2.2.0 in a Python 3.7.6 environment and training
was performed using an NVIDIA RTX 2070 graphic unit
with 32 GB RAM. A data set consisting of 500,000 exam-
ples from the training data set was used for the network
training. Another 125,000 test examples from the test data
set were used for network validation. The entire 1,377,921
trainable parameters of the network were initialized with ran-
dom weights and the adaptive moment estimation algorithm
(ADAM) was used to update the parameters during the train-
ing by minimizing the underlying loss function. In this work,
a combined loss function was used, which takes into account
the pixel-wise computed error between the network output
ŷ and ground truth y by the mean absolute error (MAE) but
also the structural similarity between the two images by the
multi-scale structural similarity index (MS-SSIM) [8]. This
combined loss function Lcomb was proposed in [9] and can
be described by

Lcomb(y, ŷ) = α · (1−LMS-SSIM(y, ŷ))+(1−α) ·LMAE(y, ŷ),

where α is used to weight the terms of the function. We used
the empirically determined value α = 0.84 from [9]. The
initial learning rate was set to 1×10−5 and was halved during
the training process once the validation error could not be
minimized after 25 consecutive epochs. An early-stopping
regularization was used to stop training the network if the
validation error could not be reduced after 100 epochs. In
total, the network was trained for 729 epochs with a batch
size of 128, which corresponds to 3,907 update steps of the
network parameters per epoch.

2.5 Evaluation and validation

The interpolation performance of the trained RIDL network
was first evaluated on single projection data. Therefore an
algorithm iterated over all projections from the test data, re-
placing every other row once with the RIDL network and

Method PSNR(y, ŷ) SSIM(y, ŷ)

LI 62.894±5.376 0.9989±0.0009
RIDL 63.463±5.498 0.9991±0.0008

Table 1: Quantitative results of row interpolation on all test pro-
jections with the RIDL network compared to a linear interpolation
(LI). Error measures are given accordingly as mean values with
standard deviation.

once with a linear interpolation. The results were compared
with the ground truth by calculating the error measures PSNR
and structural similarity index measure (SSIM) in compari-
son to the ground truth. One problem that arises when directly
comparing the interpolated images is that for an input image
with dimension m× n and even number of rows n, only a
maximum of n−1 rows can be linearly interpolated. For this
reason, the last row of each input image was removed for the
comparison. The same procedure was used for the output
projection, which was generated by the RIDL network.
Finally, the row interpolation with the RIDL network was ap-
plied to reconstruct a CT scan for validation. For this purpose,
a spiral CT of a skull phantom was acquired with a Siemens
SOMATOM-Force CT system. The zFFS was enabled and
the spiral pitch was set to p = 1, as it has been shown that
more substantial spiral artifacts occur at this value compared
to a lower pitch factor [2]. This acquisition was defined
as ground truth. A plugin for the Siemens-specific recon-
struction software was then implemented. Using the plugin,
every second row of the zFFS-generated projection data was
replaced by linearly interpolated rows or rows interpolated
by the RIDL network. The results of all reconstructions
were compared qualitatively and quantitatively with the error
measures in the final step.

3 Results

3.1 Results in projection domain

Table 1 shows the quantitative results of the row interpolation
on the total amount of test projections with the RIDL network
compared to a linear interpolation. It can be observed that the
RIDL network can increase the mean measures for PSNR and
SSIM. Thus a better interpolation related to the ground truth
was achieved compared to a linear interpolation of the rows.
A relatively high standard deviation of the PSNR values is
noticeable, which indicates that the individual projections
have varying degrees of interpolation difficulty.

3.2 Results in image domain

Concerning this work’s aim, the validation of the RIDL net-
work with reconstructed CT images is most important. Only
in the image domain it can be determined whether the method
affects the occurrence of spiral artifacts. Figure 3 compares
reconstructions of a specific slice, with differently modeled
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Figure 3: Representation of a reconstructed slice with the respective row adjustments LI and RIDL on the projection data and
corresponding difference images to the ground truth. The reconstructions are windowed in [60,360] HU and the difference images to the
ground truth in [0,150] HU.

Method RMSE [HU] PSNR SSIM

LI 14.036 49.303 0.9913
RIDL 12.920 50.022 0.9920

Table 2: Comparison of quantitative results for the reconstructed
slice with different row adjustment of projection data.

rows of the projection data, to the reconstruction with zFFS-
generated projection data. While comparing the LI recon-
struction to the RIDL reconstruction one can observe that
the RIDL reconstruction provides the best result compared
to the ground truth. This observation is confirmed by the
quantitative results presented in Table 2. Furthermore, an
influence of the RIDL method on the occurrence and dis-
tinctness of windmill artifacts could be noticed. A windmill
artifact can be observed in the nasal bone region and the nasal
cavity from the difference images of the LI reconstruction.
In comparison, this artifact is less noticeable in the difference
image for the RIDL reconstruction.

4 Discussion and Conclusion

In this work, we proposed the RIDL network, which is de-
signed to double the effective number of detector rows in
acquired projections before image reconstruction to improve
the sampling in z-direction and prevent windmill artifacts.

Our results can be considered a proof of concept that apply-
ing a neural network can meet the requirements of increasing
the sampling of underlying projection data and has a positive
impact on the prevention of windmill artifacts in spiral CT
reconstruction. Future work will focus on the adaption of
better network architecture, particularly the subpixel convolu-
tion, to the underlying task. The use of generative adversarial
networks (GANs) is also conceivable. In general, however,
the focus should be on simple, lightweight networks that are
easy to integrate into a CT system. Another point is that the
network results so far have only been compared with a simple
linear interpolation. However, using a linear interpolation to
simulate zFFS generated upsampling in z-direction is not a
concrete approach to improve longitudinal sampling, since a
linear interpolation is performed in each backprojection any-
way. Replacing the zFFS-generated rows in the projection
data with a linear interpolation should thus be equivalent to
omitting the zFFS. Therefore, it is necessary to investigate
more advanced interpolation methods and compare them with
the network results. If a suitable method can be discovered
that gives satisfactory results, the interpolated projections
with this method could act as a better initialization of the
input data for the network to further improve the results. Fur-
thermore, it would be interesting to investigate whether the
results could be improved with a larger amount of training
data and the use of simulated data.
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Abstract  
Photon-counting CT is an emerging technology that 
provides many advantages over the conventional energy-
integrating CT systems. One of these advantages is the 
availability of spectral information in the form of 4-6 energy 
bins. Since each energy bin includes a fraction of the entire 
detected photons, the bin images may suffer from noise and 
photon starvation. Many algorithms have been proposed 
that use prior information in order to reconstruct current 
low-fidelity CT projection data such as PICCS and 
PIRPLE. We have proposed a penalized likelihood 
approach that directly reconstructs the difference between 
prior and current data called Reconstruction of Difference 
(RoD). Direct regularization of the difference image may be 
advantageous in applications such as spectral material 
decomposition, where the difference between energy bins is 
important. Here we propose a spectral RoD framework to 
reconstruct each energy bin using the projection of entire 
photons as the prior.  
 

1 Introduction 
 
Many algorithms have been proposed that use prior images 
of a patient in order to reconstruct current CT projection 
data such as prior image constrained compressed sensing 
(PICCS)[1] and Prior Image Registration, Penalized-
Likelihood Estimation (PIRPLE)[2].  
Recently we have proposed and tested a penalized 
likelihood (PL) approach that directly reconstructs the 
difference between prior and current data called 
Reconstruction of Difference (RoD)[3], [4]. Unlike 
PIRPLE and PICCS where the prior information is used to 
regularize the current image, RoD incorporated the prior 
information in the data-fit term of the PL cost function. 
Direct regularization of the difference image may be 
advantageous in applications such as spectral material 
decomposition, where the difference between energy bins is 
important. 
Major CT manufacturers have developed photon-counting 
CT prototypes, which can measure the energy of the 
detected photons into a certain number of energy bins 
(usually 4 to 6)[5]–[7].  

Here we propose a spectral RoD framework which uses the 
projections made from all the detected photons as the prior, 
in order to reconstruct each energy bin of photon-counting 
CT data. Edge-preserving Huber norm of the difference 
image was used for regularization, and the penalty weight 
was chosen by exhaustive search.  

2 Materials and Methods 
 
Spectral Reconstruction of difference  
We adopted the reconstruction of difference algorithm [8] 
reconstruct spectral bins. We consider the forward model as 
follows:  

	𝑦#!	= 𝑏! ∙ 	exp(−[𝐀𝜇]!) 
where 𝑏! is a gain term of unattenuated photons and detector 
gain of one energy bin, µ is vector of attenuation 
coefficients representing the energy bin image, 𝐀 is the 
system matrix, and [𝐀𝜇]! is the line integral associated with 
the 𝑖#$ measurement, and 𝑦! is independent and Poisson 
distributed measurements in the energy bin. The current 
energy bin image can be modeled as the sum of a prior 
image, 𝜇%, and a difference image, 𝜇∆ such that: 𝜇 = 𝜇% +
𝜇∆. 
We choose the projection data from all detected photons at 
all energy bins as the prior due to its higher fidelity 
compared to individual energy bins.  The forward model 
can be rewritten as 

	𝑦#  = 𝑏	 ∙ 	exp3−𝐀𝜇%4 	 ∙ 	exp(−𝐀𝜇∆), 
Assuming the following term is independent of the current 
measurement, 

𝑔 = 𝑏	 ∙ 	exp3−𝐀𝜇%4 
we have a new forward model that uses measurements of 
one energy bin in order to reconstruct the difference 
between that bin and the image reconstructed from all the 
detected photons.  

	𝑦#  = 𝑔	 ∙ 	exp(−𝐀𝜇∆), 
We chose the following cost function to solve for the 
difference image: 

�̂�∆ = argmin
'∆
?−𝐿3𝜇∆; 𝑦, 𝜇%4 + 𝛽(∥Ψ𝜇∆∥1D 

where L represents log-likelihood, and the second term is a 
roughness penalty with edge-preserving Huber norm; Ψ is a 
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local pairwise voxel difference operator whose strength is 
controlled by 𝛽(. 
We used a separable quadratic surrogate method to optimize 
the cost function. The difference image was then added to 
the prior image to achieve de-noised energy bin images. 
 
Test subjects and photon-counting imaging protocol 
We compared the performance of spectral RoD to filtered 
backprojection (FBP) algorithm. We imaged a 20-cm water 
phantom with vials containing multiple concentrations of 
iodine-, gadolinium-, and bismuth-based contrast agents as 
well as samples of ferrous sulfate, hydroxyapatite, and fat. 
The phantom was imaged at: 140 kVp, 300 mAs, 1 s 
rotation time, with 4 energy thresholds: 25/50/75/90 keV on 
the Somatom CounT prototype PCCT scanner (Siemens, 
Germany). More information regarding the scanner can be 
found in [9]. In addition we reconstructed dual-energy 
PCCT brain scans a healthy human volunteer acquired at 
120 kVp with thresholds set at 25/52 keV.  
 

3 Results 
 
Figure 1 and 2 summarize the findings. Joint histogram of 
bin1 and bin2 shows reduced image noise, while the slopes 
of the lines are preserved; indicating that the RoD did not 
introduce a bias in attenuation of images. 
We also analyzed projection data from a brain scan of a 
human volunteer acquired at 120 kVp, 370 mAs, and two 
energy thresholds at 22/52 keV. Figure 3 shows the 
improvements in image quality with RoD. 
 

 
Figure 1- FBP and model-based RoD images reconstructed 
from photon-counting CT scan of a water phantom with 
vials filled with multiple contrast agents.   

 

 
Figure 2-  Joint-histograms of attenuation coefficients of bin 
1 and bin 2 images reconstructed with FBP and RoD of the 
phantom in Figure 1.  

 

 
Figure 3- Energy bin images of a dual-energy photon-
counting brain CT of a healthy volunteer, reconstructed 
with FBP (top row), and RoD (bottom row). 

 

4 Discussion 
 
We tested performance of RoD on data from phantoms and 
humans imaged on a prototype whole-body photon-
counting CT scanner with 2 to 4 energy thresholds. The 
early results indicate significant noise reduction is 
achievable, while preserving the spectral fidelity of 
attenuation coefficients with RoD. Future work will include 
optimizing the penalty weight and joint reconstruction and 
noise matching of multiple energy bins. 
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Abstract Voxel-based forward projectors play an important role in
iterative CT reconstruction, since they provide a suitable candidate
for an adjoint pair of forward and backprojector with reasonable com-
putational efficiency. A prominent example is the separable footprint
technique, proposed by Long et al. However, some of the incorporated
optimizations introduce constraints on the geometry the method can be
applied to without loss in accuracy. Here, we present two extensions
of the TT footprint approach that 1) allow generating accurate projec-
tions in a broader range of acquisition geometries, and 2) make use of
sparse representations of an input volume to grant a huge increase in
computation speed. Based on a series of simulation experiments, we
demonstrate that accurate projections can be computed for geometries
including tilted and twisted detectors with the proposed extension. Its
sparse counterpart is shown to provide a speed-up of up to factor 65
in specific situations. The increased number of possible geometries
can be of importance in many practical scenarios involving imperfect
acquisition geometry, for example, when facing miscalibration, patient
motion, or unconventional (non-circular) scan trajectories.

1 Introduction

Generating artificial X-ray images—typically called forward
projections (FP)—is an important aspect of various topics in
computed tomography, particularly in the field of iterative
image reconstruction (IR). Usually, FP algorithms make a
well-defined compromise between flexibility, accuracy, and
computational effort. A variety of methods exists, all differ-
ing in their specific position within this ”compromise phase
space”. In IR, a further aspect comes into play, as FP methods
should ideally also have an adjoint backprojector (BP).
A well-known pair of adjoint FP/BP is provided by the separa-
ble footprint (SFP) technique proposed by Long et al [1]. SFP
combines the efficiency of a voxel-driven BP with a FP that
provides proper accuracy without excessive computational
demand. To achieve that goal, an approximation is used that
describes the shape of the footprint (i.e. the "shadow imprint"
a single voxel leaves on the detector) as a multiplication of
two separate functions in both detector dimensions. Part of
its algorithmic efficiency comes from clever optimizations
within the SFP routine that utilize properties found in typi-
cal acquisition geometries. However, these properties might
not always be fulfilled under practical conditions, thus, lim-
iting the usability of said approach in those situations—or
accepting the unavoidable loss in accuracy.
Here we present an extension of the so-called TT footprint
(trapezoidal shape in both dimensions) that allows for a
broader range of geometries, while keeping the additional
computational effort as limited as possible. Based on simula-
tion experiments, we demonstrate that geometries containing
a tilted and/or twisted detector can be properly handled by

the proposed approach for angles up to 40 degrees. We inves-
tigate the difference to the unmodified version and discuss
potential applications of the new generalized routine.
Another important advantage of voxel-based FPs is the possi-
bility to apply them to an arbitrary subset of voxels from the
original volume. Ray casting techniques can hardly make use
of similar approaches without restricting themselves to highly
specialized data representation such as surface models, which
are typically poorly suited to describe medical datasets. In the
second part, we show how the proposed footprint-based FP
can be used efficiently to create projections from a sparsely-
populated volume to substantially reduce computation times.
We demonstrate the efficiency and accuracy of the routine on
an artificially generated vessel tree phantom and investigate
the achievable speed-up for different volume sparsity levels.

2 Materials and Methods

2.1 Generic TT footprint

With respect to space limitations, the original TR/TT foot-
print approaches will not be introduced here in detail. The
interested reader is referred to the original publication [1]
by Long et al. The two central properties of the algorithms
that need to be considered here are: a) the assumption that
the s-component of a footprint is independent of the voxel’s
z-coordinate (cf. Fig. 1), and—even more crucial— b) the
approximation of full separability of the footprint in the two
detector dimensions. A trivial solution for both issues would
be computing everything on-the-fly for each detector pixel
(and each voxel) individually. This, however, implies huge
computational effort, which would render the method unsuit-
able for use in IR. Instead, the proposed extension aims at
keeping as many of the simplifications/optimizations as possi-
ble, but still provide proper results when the originally-made
assumptions are violated. Before going into detail of how
a) and b) are addressed, one important concept of the foot-
print computation should be recapitulated here; it consists of
two steps. Step 1: The profile of the footprint is described
by a simple geometric shape in each direction (rectangle or
trapezoid). This geometric shape can be characterized by
supporting points (e.g. four points for a trapezoid: starting,
plateau, and end points). Roughly speaking, these can be
computed via forward projection of appropriate points on the
voxel outline (i.e. edges or corners) and subsequent sorting
of the results to map them to the corresponding supporting
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point of the shape. Step 2: To get the actual contribution
to a specific detector pixel, one then needs to compute the
integral of the shape function over the pixel extent.
Issue a) can be tackled rather simply, by computing the foot-
print in s-direction individually for each voxel in z-direction.
Additionally, the points on the voxel that define the support-
ing points need to be refined. Instead of simply using the
center positions on the four edges (parallel to z), one needs
to choose points that are projected to the same t coordinate
on the detector (note that this was trivially fulfilled when t
was parallel to z). This is done by projecting the voxel center
and using the resulting t coordinate as reference tref. For
projecting the four voxel edges, tref is then used to determine
which z position on the edge needs to be chosen (x and y
remain the same):

z(tref;x,y) = t−1
ref (P21x+P22y+P24)−

P31x+P32y+P34

P33− t−1
ref P23

,

where P ∈ R3×4 denotes the projection matrix for the view
to be computed and r = (x,y,z)T is the world coordinate of
the sought-for point on the voxel edge.
Dealing with issue b) requires introducing some kind of cou-
pling between the s- and t-dimension. As mentioned earlier,
computing the entire s-footprint for each t would be far too
expensive. Instead, we make use of the fact that—with some
limitations at the lower and upper end of the voxel—the shape
of the s-footprint still remains the same for the entire extent
of the footprint. The only adjustment that needs to be done
is a shift in position on the s-axis. This shift follows a simple
linear relation: sshift(t) = (t− tref) ·∆s, where ∆s denotes the
required shift in s direction per t, which corresponds to the
slope of footprint’s vertical edge. We compute ∆s by project-
ing the lower and upper end of a voxel edge and computing
the slope: ∆s = s2−s1

t2−t1
. In principle, the full s-footprint—that

means including integration of contributions to the detector
pixels—could be precomputed in the step described in a);
however, due to the required shift (typically a fraction of
a pixel) in position, resampling of the contributions would
become necessary (Step 2). This introduces potential inac-
curacies and, interestingly, experiments (not provided here)
showed that on-the-fly computation of the integrated values
did even end up in faster computation times on the GPU than
using precomputed values along with linear interpolation.
Consequently, we decided to compute the integrated values
on-the-fly for each t. Note that the supporting points for the
s-direction trapezoid (Step 1), which are rather expensive
due to four projection operations and one sorting step being
involved, need to be computed only once for each voxel.

2.2 Sparse projector

As described earlier, voxel-based projectors can directly op-
erate on any subset of voxels from the original volume and
decrease computation times accordingly—because there are
simply fewer voxels to process. Voxel data (i.e. coordinates

X

Z

y

s

t

Detector

Source

Phantom

s

t

s

t

Tilt Twist

Rotation axis

Figure 1: Schematic view on the undistorted geometry setting
used in detector tilt and twist manipulation experiments. Projec-
tions are acquired along the x-axis of the world coordinate system
(WCS); detector axes are aligned with the WCS y- and z-axis.
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Figure 2: Projection of a single voxel (i.e. footprint) computed
with a ray caster, the regular TR and TT projector, as well as the
proposed generic extension in a setting with 20° twist angle.

and attenuation) can be stored efficiently within the RGBA
channels of a GPU image object (cl::Image1DBuffer,
where RGB components hold the voxel position in world
coordinates (i.e. x, y, and z) and the alpha channel contains
its actual attenuation value. This allows us to retrieve all four
values with a single GPU read command. The remainder
of the algorithm remains identical to non-sparse versions
of the projector, granting free choice between TR, TT, and
generic TT versions. However, most of the optimizations
in the original TR/TT projection methods would not result
in substantial benefit in case of an arbitrary sparse subset of
voxels. Hence, we opt for the most flexible option and use
the proposed generic version of the TT method as base.

2.3 Simulation experiments

To evaluate the performance of the proposed extensions (i.e.
generic and sparse version) of the TT footprint algorithm, a
series of simulation experiments has been carried out. All
simulations feature a cone-beam projection setting with a flat-
panel detector with 1280 x 960 pixels (0.25 mm pixel size),
imaging the scene at a source-to-detector distance of 1000
mm and a source-to-object-distance of 750 mm. First, we
analyze the accuracy of the proposed generic TT extension
under two specific geometrical distortions. Figure 1 shows
the baseline setting (i.e. undistorted geometry). The first ma-
nipulation, called tilt, is a rotation of the detector around the
detector’s s-axis; in our specific setting, this axis is parallel to
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Figure 3: Comparison of projection images generated with the
original footprint routines and the proposed generic extension.

the WCS y-axis. Tilting preserves orthogonality between the
s-axis and WCS z-axis, whereas the t-axis will no longer be
aligned with the WCS z-axis. The second manipulation, the
twist, is a rotation of the detector around the principal ray;
note that this corresponds to the WCS x-axis in our specific
setting. This manipulation destroys parallelism between both
detector axes with the corresponding WCS axes. By design,
the ”traditional” TR/TT method should be sensitive to such
manipulations and lose accuracy rather quickly. Analysis is
based on projections of a 2563 voxel phantom (0.5 mm voxel
size) containing random values from [0,1] (see Figure 3).
The second experiment focuses on computation times of both
extensions to assess: a) the additional cost of the generic TT
extension and b) the potential speed-up achievable by using
the sparse version of the projector. A software phantom rep-
resenting an artificially ”grown” (binary) vessel tree has been
used to investigate the performances in a more or less realistic
use case. The phantom is generated on a 5123 voxel grid (0.5
mm voxel size) and contains 126’663 non-zero voxels (ap-
prox. 0.14 % of total voxel count). To judge the accuracy of
the results, projections are compared to reference projections
(relative L2 differences) generated using a high-resolution
ray casting approach (non-interpolating, constant step length
of 5% of the voxel size, 10x10 subrays per detector pixel).
An example of a projection image is shown in Figure 4.
In addition, the speed-up of the sparse version is evaluated
in more detail using a simple randomized dummy volume.
A cube of M3 voxels (M ∈ {128,256,512}; voxel sizes:
{2.0,1.0,0.5}mm) is initialized with zero. Subsequently,
a number of N (randomly selected) voxels is set to 1, thus
generating a phantom with sparsity level: σ = N/M3 ∈ [0,1].
In both cases (i.e. vessel tree and dummy), sparse representa-
tions of the volumes are created with a simple thresholding
approach, keeping all voxels with a value greater than zero.

2.4 Implementation

Open-source implementations of the proposed generic TT
projector and its sparse counterpart, as well as the regular
TR/TT methods, are available as part of our Computed To-
mography Library (CTL) C++ toolkit [2], which is publicly
available on GitLab (gitlab.com/tpfeiffe/ctl).

0 0.3extinction

Figure 4: Example projection image of the vessel tree phantom
(view 59). Displayed extinction range narrowed to [0, 0.3] to
improve visibility (full value range: [0, 0.53]).

Table 1: Performance comparison of different projection tech-
niques (sparsity: 0.14%). t – computation time, Err. – relative L2
norm w.r.t. reference images, RC-LQ – low-quality ray caster.

RC-LQ TR TT Gen. TT Sparse

t [ms] 6974 18895 46257 64289 1886
Err. [%] 4.560 0.162 0.155 0.155 0.155

3 Results and Discussion

Detector tilt and twist Figure 3 shows example images
of forward projections computed with the three different
footprint approaches for 30° detector tilt and 20° twist. As
expected, both TR and TT projector have issues with the
introduced geometric distortions. For quantitative assessment
of the effect, relative L2 errors (w.r.t. high-res. ray casting
projections) have been computed for varying rotation angles
of both manipulations (Figure 5). The results demonstrate
that the proposed generic TT approach provides accurate
projection results for arbitrary tilt angle (up to 45°) and twist
angles up to about 25°(error <1%). For very small tilt angles,
TR and TT provide reasonable accuracy; twists, however, are
handled poorly even for smallest angles.

Comparison and Runtime Projection images of the arti-
ficial vessel tree (cf. Section 2.3) are generated in a typical
short scan geometry (angular range approx. 198°) for 100
equiangularly-spaced views. Runtimes are measured for the
entire projection procedure, including data transfer to, and
back from, the GPU device (OpenCL kernel compilation
times are excluded). All benchmarks have been performed
on a system equipped with an Intel i5-8400, 16 GB RAM,
and a single NVIDIA GTX 1060 GPU. The results (Table 1)
show that the generic TT extension incurs additional compu-
tation effort compared to regular TR/TT. Computation times
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Figure 5: Relative L2 errors of projections generated with different footprint approaches as functions of detector tilt and twist angles.

σ

Figure 6: Speed-up factors of the sparse projector version com-
pared to the non-sparse generic TT projector for varying sparsity
level of three differently resolved dummy phantoms.

in the given example are roughly 40% higher than for the
TT method and about 3.4 times longer than those of TR.
In the chosen example (artificial vessel tree, sparsity level
0.14%), the sparse version can lower the computation times
substantially, leading to a speed-up of about factor 34 w.r.t.
the non-sparse generic TT method. Even in comparision to a
fast, low-quality ray casting technique, a speed-up factor of
approximately 3.7 is achieved, while providing substantially
more accurate results (0.15% vs. 4.5% error). Note that these
results imply an average simulation time (incl. data transfers)
of only 19 ms per projection.
The speed-up over the non-sparse generic TT method in de-
pendency of the sparsity level of the input volume is shown
in Figure 6 for three different voxelizations. It becomes ap-
parent that the speed-up runs into saturation when the volume
becomes too sparse. This is due to data transfer overhead
dominating the total computation time in these cases. De-
pending on the number of voxels in the full dataset, speed ad-
vantage starts just below a sparsity of 5 to 7%, which should
constitute a reasonable size for many practical segmentations
(e.g. vessel trees, bone structures, or implants).

4 Conclusion and Future Work

We presented an extension of the TT footprint approach that
allows generating accurate projections in presence of acqui-

sition geometries that deviate from perfectly aligned cases
(t || z); the additional computation effort could be kept at
about 40% of the regular TT method. The gained flexibility
can be of importance in all practical scenarios that involve
imperfect acquisition geometry, for example, when facing
miscalibration. Another important area of application might
be motion compensated reconstruction. Patient motion can
be interpreted as system miscalibration, and thus, leads to
similar geometric deviation. Non-circular data acquisition
schemes, e.g. ellipse-line-ellipse trajectories [3], constitute
a further topic for meaningful application of the proposed
approach. Due to the difficulties faced in analytical recon-
struction of arbitrary trajectory data, IR is particularly inter-
esting in these cases. We further showed that the method can
easily be used with sparse representations of an input volume,
granting huge speed advantages of up to factor 65 in specific
situations. This provides a powerful tool for all tasks that
require accurate, fast, and flexible FP of sparse objects. As
a side effect, flexibility of use is increased even further, as
off-the-grid positioning of individual voxels becomes possi-
ble at zero additional cost. Future work will focus primarily
on the implementation of a corresponding backprojector for
the proposed generic TT method, including evaluation of IR
results produced with the resulting FP/BP pair in previously
described target applications (esp. motion compensation).
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Abstract In this work we address the challenge of exploiting the
structural similarities of images acquired at different energy to improve
the reconstruction and material estimation in dual-energy cone beam
computed tomography (DE-CBCT). We focus on the sparse-view
single-source fast KVp switching acquisition set-up to reduce scan
time and the total dose delivered during a computed tomography (CT)
acquisition. We propose to exploit the joint total variation (JTV)
regularization between low- and high-energy images to reduce the
artifacts due to the under-sampling of the angular views. We show
through numerical experiments and patient data the benefit of the
proposed method for material decomposition and estimation, both
qualitatively and quantitatively, compared to individual total-variation
(TV) regularization.

1 Introduction

Dual-energy cone beam computed tomography (DE-CBCT)
allows quantitative imaging and improves tissue visualization
[1]. The technique provides two sets of measurements from
two distinct energy spectra (low- and high-energy) acquired
over the same anatomical region which are reconstructed into
material- and energy-selective images that enable enhanced
tissue characterization. In addition, it has the ability for
real tumor-guided radiation therapy in combination with a
contrast agent.
The acquisition techniques in DE-CBCT can be classified
into 4 different categories: single-source sequential acqui-
sition; single source with dual-layer detector; dual source
with two detectors positioned orthogonally; and single-source
with rapid KVp switching. Rapid potential switching allows
consecutive projection measurements with alternating tube
potentials where both the low- and high-energy projection
data are acquired throughout a whole gantry rotation [2, 3].
The tube voltage varies between low and high, and transmis-
sion data is acquired twice for adjacent projection angles.
The major disadvantage of this method is the need of re-
ducing the rotation speed of the system to acquire the extra
projections and to account for the rise and fall times required
for voltage modulation [4]. Due to fast switching it is not
possible to modulate the tube current between low and high
energy simultaneously. It remains constant during the acqui-
sition. Thus, the tube current needs to be increased to reduce
the noise on images obtained with lower peak voltage, which
results in an increase of the radiation dose [5, 6].
A reduction in the acquisition time can be achieved by de-
creasing the number of projection angles. Moreover, sparse-
view acquisitions can reduce the radiation dose. However,
aliasing artifacts can appear in the reconstructed images if

the number of projection angles does not follow the Shan-
non/Nyquist sampling theorem, which makes more challeng-
ing to reconstruct high-resolution, high-contrast and high-
signal-to-noise ratio (SNR) images [7, 8].
The present work proposes a methodology for image recon-
struction in sparse-view single-source rapid KVp switching
DE-CBCT by exploiting structural similarity with JTV reg-
ularization. The hypothesis behind this approach is that the
low- and high-energy images can inform each other, thus not
only giving room for acquisition time and dose reduction
but also enhancing the spatial resolution deficit due to the
down-sampled projection data.

2 Materials and Methods

2.1 Dual Energy Image Reconstruction

Assuming a simplified single-source rapid KVp switching
DE-CBCT setting, each sinogram y` ∈ Rn, obtained from
the energies ` ∈ {L,H} (low and high), is a modeled by
random vector y` = [y1,`, . . . ,yn,`]

> with independent entries,
where n is the number of detectors. At each detector i ∈
{1, . . . ,n}, the number of detected photons yi,` follows a
Poisson distribution:

yi,` ∼ Poisson(ȳi,`(µ`)) , (1)

with
ȳi,`(µ`) = bi exp(−[Pµ`]i)+ si,` (2)

where µ` ∈ Rm is the attenuation image at energy `, P is a
n×m matrix modeling the system, si,` is a background term
and m is the number of voxels in the image.
In this work we propose to reconstruct the low- and high-
energy attenuation images (µL,µH) by penalized maximum-
likelihood joint estimation from the sinograms (yL,yH):

(µ̂L, µ̂H) = argmax
µL,µH≥0

F(µL,yL)+F(µH ,yH)−βR(µL,µH)

(3)
where R(µL,µH) is a joint regularization term, β is the regu-
larization parameter and F(µ`,y`) is the log-likelihood de-
fined as:

F(µ`,y`) =
n

∑
i=1

yi,` log ȳi,`(µi,` )− ȳi,`(µi,` ) . (4)

In this work the maximization problem (3) is solved using
a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm [9].
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(a) Ground truth (b) Reconstruction
without prior (c) TV prior (d) JTV prior

Figure 1: Comparison of reconstructed extended cardiac-torso (XCAT) phantoms using different reconstruction methods for sparse-view
DE-CBCT with top row corresponding to high energy (E = 140 KeV) and bottom row to low energy (E = 70 KeV): (a) Ground truth, (b)
reconstruction without prior, (c) TV reconstruction, (d) joint reconstruction using JTV prior.

2.2 Joint Total Variation Regularization

In this work, we used the JTV penalty term R(µL,µH) in-
spired from [10]. The JTV regularization term can be written
as:

R(µL,µH) =
m

∑
j=1

(
‖[∇µL] j‖2 +‖[∇µH ] j‖2 + γ2)1/2

(5)

where ∇µ` ∈ Rm×d (d = 2,3) is the gradient image of µ`

and [∇µ`] j ∈ Rd is the gradient at voxel j, and γ > 0 tunes
the smoothness of the prior (for differentiability). The role
of this prior is to promote structural similarities by enforcing
joint sparsity of the 2 gradient images. We compared the
proposed approach of jointly reconstruct the images with
JTV against reconstructing separately with TV as follows:

µ̂` = argmax
µ`≥0

F(µ`,y`)−δS(µ`) (6)

with

S(µ`) =
m

∑
j=1

(
‖[∇µ`] j‖2 +η2)1/2

(7)

where δ and η play the same roles as β and γ respectively.
With this approach each image is reconstructed independently
without sharing structural information.

3 Experiments

We performed the dual-energy image reconstruction by it-
eratively alternating between (i) updating the low-energy
image µL and (ii) updating the high-energy image µH using
the L-BFGS algorithm. We initialized the images using an
maximum-likelihood reconstruction for transmission tomog-
raphy (MLTR) algorithm [11] without explicit prior.

3.1 Results on XCAT Phantom

The numerical down-sampled projection data was modeled
by forward projection of a 0.85-mm pixel width 512×512
torso axial slice images generated from the extended cardiac-
torso (XCAT) phantom at two energy levels [12]. We mod-
eled the projectorP with a 1-mm full width at half maximum
(FWHM) fan beam system. We simulated sparse-view 60-
angle sinograms. We distributed the projection angles such
that, in a single gantry rotation, one projection angle corre-
sponds to a low-energy projection and the consecutive angle
corresponds to a high-energy projection. For each sinogram,
we used a monochromatic source with 105 incident photons
and 100 background events. The values of the linear attenua-
tion coefficients for each phantom were generated with X-ray
energies of 70 KeV (low) and 140 KeV (high).
Figure 1 shows the reconstructed images using JTV regular-
ization, TV and without prior. In absence of prior, the images
suffer from under-sampling artifacts. The selected regions of
interest (ROIs) in the images show the improved performance
of JTV as compared with TV. Low-contrast features can be
better identified with JTV than with TV. Furthermore, we
quantitatively evaluated the performance of JTV using the
peak signal-to-noise ratio (PSNR) defined as:

PSNR(dB) = 10 · log10




max j

{
µGT

j

}2

∑m
j=1

1
K

(
µ̂ j−µGT

j

)2


 (8)

where µ̂ j and µGT
j represent the intensity value at the pixel j

in the reconstructed image and the ground truth respectively.
We also computed the structural similarity index measure
(SSIM) using equation (7) in [13]. Table 1 shows the values
of the metrics mentioned above. At both energy levels, the
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70 KeV PSNR SSIM 140 KeV PSNR SSIM
JTV 64.85 0.9996 JTV 66.66 0.9998
TV 62.01 0.9993 TV 63.01 0.9992

Gain(%) 4.58 0.030 Gain(%) 5.79 0.06

Table 1: PSNR in dB and PSNR for the JTV and TV reconstruc-
tion algorithms at low energy (70 KeV) and high energy (140 KeV).
The gain is calculated as Gain(%) = 100 · (JTV−TV)/TV where
the terms JTV and TV correspond to the values of the PSNR and
SSIM for each regularization.

JTV approach results in higher PSNR and SSIM. For the
low-energy image the gain was 4.58% in PSNR and 0.03%
in SSIM while for the high-energy image the gain was 5.79%
in PSNR and 0.06% in SSIM.

We analyzed the bias/variance trade-off of JTV and TV on
the low- and high-energy images by plotting the absolute bias
(AbsBias) against the variance (Var) of the total image, based
on K = 30 realizations of yL and yH , for different values of
the regularization parameters, i.e.,

AbsBias =
1
K

1
J

K

∑
k=1

J

∑
j=1

∣∣µ̂k
j −µGT

j

∣∣ (9)

Var =
1
K

1
J

K

∑
k=1

J

∑
j=1

(
µ̂k

j − µ̄ j

)2

with µ̄ j =
1
K

K

∑
k=1

µ̂k
j

where µ̂k
j is the reconstructed image at pixel j for the noise

realization k and µGT
j is the ground truth. Figure 2 and 3

show that JTV achieves lower absolute bias for any variance
level in the two energy images.
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Figure 2: Plot of the absolute bias (AbsBias) versus the variance
(Var) for the sparse-view reconstruction with XCAT data and high
X-ray source energy, 140 keV.
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Figure 3: Plot of the absolute bias (AbsBias) versus the variance
(Var) for the sparse-view reconstruction with XCAT data and low
X-ray source energy, 70 keV.

4 Results on Clinical Data

The clinical dataset was acquired on the Philips IQon Spec-
tral CT scanner from the Poitiers University Hospital. All
patients used in the study provided signed permission for the
use of their clinical data for scientific purposes and anony-
mous publication of data. We selected 2-dimensional (2-D)
slices from a full body patient scan with 0.902-mm pixel
width and 512×512 image size corresponding to the thorax
area. The energies used in this study were 70 keV and 140
keV. To generate the sparse-view DE-CBCT measurements
we used the same geometrical and noise settings as for the
XCAT simulation.
In Figure 4 we observe that JTV outperforms TV for clinical
data; TV-reconstructed images shows aliasing artifacts.
Figures 5 and 6 report on the AbsBias versus the Var for
different values of the regularization parameters. We ob-
tain a similar behavior as compared with the XCAT simula-
tions;JTV outperforms TV.

4.1 Modulation Transfer Function

The spatial resolution of the DE-CBCT-reconstructed images
was measured by computing the modulation transfer func-
tion (MTF) derived from an edge measurement. Initially, an
edge spread function (ESF) was obtained at the slanted edge
between the trachea and the lung. The ESF was resampled
using linear interpolation and averaged across multiple ESF
realizations to reduce variance. Then, a line spread function
(LSF) was estimated by taking the derivative of the ESF.
Finally, the MTF was obtained by applying the Fourier trans-
form to the LSF [14, 15]. Figures 8 and 9 show the MTFs
of the images reconstructed utilizing TV and JTV regular-
ization for high- and low-energy images respectively. We
observe that JTV produces higher spatial resolution than TV.
The spatial resolution analysis reveals that JTV increases
detectability and edge-preservation in comparison to TV.
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(a) Ground truth (b) Reconstruction
without prior (c) TV prior (d) JTV prior

Figure 4: Comparison of reconstructed clinical data using different reconstruction methods for sparse-view with top row corresponding
to high energy (E = 140 KeV) and bottom row to low energy (E = 70 KeV): (a) Ground truth, (b) reconstruction without prior, (c) TV
reconstruction, (d) joint reconstruction using JTV prior.
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Figure 5: Plot of the absolute bias (AbsBias) versus the variance
(Var) for the sparse-view reconstruction with clinical data and high
X-ray source energy (140 keV).

5 Results for Material Decomposition

An important application of DE-CBCT is material decompo-
sition. It relies on the approximation of the linear attenuation
coefficient at each pixel in the CT image by a linear combi-
nation of the attenuation values of basis materials. Thus, the
material decomposition can be written as:

(
µL

µH

)
=

(
µ1,L µ2,L
µ1,H µ2,H

)(
x1
x2

)
(10)

where µp,l is the linear attenuation coefficient of material
p∈ {1,2} at energy l ∈ (L,H), x1 and x2 are the volume frac-
tions of the two basis materials at the same position of two
basis material images and µL and µH are the low- and high-
energy reconstructed attenuation values. The aim of material
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Figure 6: Plot of the absolute bias (AbsBias) versus the variance
(Var) for the sparse-view reconstruction with clinical data and low
X-ray source energy, (70 keV).

decomposition algorithms is to estimate the volume fractions
knowing the linear attenuation coefficient of the basis ma-
terials. In the present study we utilized the methodology
proposed in [16].
We decompose into soft tissue (x1) and bone (x2) with attenu-
ation coefficient values (in cm−1):

(
µ1,L = 0.1929 µ2,L = 0.3432
µ1,H = 0.1538 µ2,H = 0.2237

)
(11)

Figure 7 shows the image decomposition into bone and water
(body) basis material from the reconstructed images using
JTV, TV, and the ground truth. We observe that small bone
structures can be better identified in the bone-decomposed
image obtained from the JTV reconstruction.
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(a) Ground truth (b) TV prior (c) JTV prior

Figure 7: Decomposed images into Bone (top row) and Water (bottom row) basis materials utilizing the clinical images obtained form
the (a) ground truth, (b) reconstruction with TV and (c) reconstruction using JTV prior
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Figure 8: MTF obtained from the reconstructed images utilizing
TV and JTV priors for high-energy clinical data , 140 keV.

6 Discussion

By using JTV and coupling the low- and high-energy images,
is possible to incorporate joint structural information between
the 2 energies. The results presented in this work show
the ability of the JTV regularization to improve sparse-view
reconstruction, even when the number projection angles are
6 times less than that of a full-view setting, which allows a
significant decrease of the scanning time and the radiation
dose to the patient. In comparison with TV regularization,
JTV leads to improved accuracy both in reconstruction and
material decomposition. The reconstruction with JTV results
in better contrast and spatial resolution. The results obtained
with patient data or more textured phantoms corroborate the
high performance of JTV compared to TV.
Further analysis will involve using the proposed reconstruc-
tion framework in new CT scanner technologies, like photon-
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Figure 9: MTF obtained from the reconstructed images utilizing
TV and JTV priors for low-energy clinical data, 70 keV.

counting spectral CT, where the algorithm can leverage the
joint structural similarities from an increased number of im-
ages at different energies, leading to an overall improved
quantitative estimation even with a further reduction of the
acquired projection angles.

7 Conclusion

The present work proposes an image reconstruction method-
ology for sparse-view DE-CBCT using a JTV regularization.
The coupled regularizer exploits structural similarities be-
tween the two images acquired at low- and high-energy. We
compared the performance of the proposed approach against
the reconstruction of each image separately using TV reg-
ularization. Reconstruction with JTV resulted in improved
contrast and spatial resolution as well as improved material
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decomposition.
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Abstract The software coincidence processing is typically imple-
mented on central processing units (CPUs) and then it is accelerated
by CPU multithreading technology. However, the more detection
modules a PET system has, the more CPU threads are used in acqui-
sition and the fewer threads are available in coincidence processing
when the number of threads is fixed, which results reduced processing
performance of CPU-based software coincidence processing (CPU-
SCP). In this paper, we proposed the GPU-based real-time software
coincidence processing (GPU-SCP) method to solve the limited CPU
thread problem. To evaluate the validity of the proposed GPU-SCP,
we adapted it to our PET system. We did the speedup experiments and
the image quality experiments. The speedup experiment results show
that the proposed GPU-SCP achieve up to 14.5 times speedups on
GTX1070 compared to the serial CPU algorithm, which is 7.6 times
faster than parallel CPU-SCP with 10 CPU threads. Besides, the im-
age quality experiments indicate the reconstruction images processed
by GPU-SCPs are almost the same as the references in low activity
nuclide imaging (differences 1% in image domain and projection do-
main). Owing to GPU-SCPs’ faster processing speed, there are more
coincidences extracted by it than that extracted by CPU-SCP in high
activity nuclide imaging.

1 Introduction

The PET imaging is based on the gamma photon coin-
cidence technology to find the annihilation photon pairs
among many single photon events (singles) and finally re-
alizes the quantification of the distribution of radionuclides
in the body. In some digital PET systems, the photon co-
incidence processing is implemented on the host computers
which provide strong computing power to increase the speed
of coincidence processing and offer much more flexibility.
They are called software coincidence processing (SCP) [1–
3]. The online software coincidence processing is that the
single events raw data are processed in real time on the host
computer and the information of the coincidence events are
acquired once the PET data acquisition is over. Based on
the above characteristics, the processing speed of online
SCP must be high enough to meet the real-time require-
ment. However, it is almost impossible to processing sin-
gles serially in real time with single central processing unit
(CPU) thread. In order to realize lossless real-time acqui-
sition and coincidence processing, the real-time SCP meth-
ods based on CPU multi-threading technology[2, 3] was pro-
posed. However, the more basic detection modules (BDMs)
a PET system has, the more threads are used in acquisition
and the fewer threads are available in coincidence process-
ing when the number of threads is fixed which results re-
duced processing performance of CPU multithreads-based
software coincidence processing.
In the past decades, graphics processing unit (GPU), which

Figure 1: SCP flow of our PET system.

has great potential in parallel computing, has been widely
used in acceleration of medical image reconstruction algo-
rithm [4, 5]. However, the implementation of GPU in the
acceleration of SCP has been reported rarely so far. In this
paper, we propose a novel GPU-based real-time software co-
incidence processing (GPU-SCP) approach, which solve the
real-time processing challenges in PET systems with mul-
tiple modules. The proposed processing architecture sim-
plifies the management of threads between acquisition and
coincidence processing, accelerates the coincidence process-
ing by GPU multiple threads and finally realizes the online
coincidence processing in our PET system. Besides, the in-
troduction of GPU relaxes the requirements on the number
of CPU threads, thus greatly reducing the system cost.

2 Materials and Methods

The SCP is applied to extract the pairs of singles from the
same positron annihilation captured by the PET system on
the host computer. As shown in Figure 1, SCP includes data
frame decoding, crystal position encoding, energy correc-
tion, energy coincidence, time coincidence, random correc-
tion and line of response (LOR) coding in our PET system.
After SCP, the PET system outputs the histogram of LORs.
Considering the different levels of parallelization, the SCP
is viewed as two parts, Before Coincidence Processing and
Coincidence Processing. ’Before Processing’ consists data
frame decoding, crystal position encoding and energy cor-
rection. ’Coincidence Processing’ is composed of energy co-
incidence processing, time coincidence processing, random
correction and LOR coding.
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2.1 Before Coincidence Processing

Each single is encoded as a 16-byte data frame in the process
of data acquisition. At the beginning of SCP, the data frame
needs to be decoded into single data containing hit time, pho-
ton energy and location information. We first parallelize the
process of data frame decoding. Equation (1) and (2) are ap-
plied to each 16-byte data frame, and communication is not
required between different single photon data frames.




T [tid]
E
′
[tid]

Px[tid]
Py[tid]
NB[tid]
NP[tid]




6×1

= A6×15×




d[tid][0]
d[tid][1]

...
d[tid][ j]

...
d[tid][15]




15×1

(1)

A6×15 =




a1,1 a1,2 · · · a1,n 0 · · · 0 0⃗
0 0 · · · 0 a2,n+1 · · · a2,n+m 0⃗
...

...
...

...
...

...
...

...
0 0 · · · 0 0 · · · 0⃗ a6,16


 (2)

where d[i][ j], j = 0, ...,15, represents the 16-byte ith single
data frame, T is the hit time of the single photon, E

′
is the

uncorrected photon energy, Px and Py are the cartesian coor-
dinates of a hit on PMT, NP is the index of PMT and NB is
the index of BDM. A is the row echelon form representing
the decoding rules. It is suitable for all single data frames.
After data frame decoding, a single captured by PET system
can be represented by (T,E

′
,Px,Py,NP,NB). This is a typical

single instruction multiple data (SIMD) computing model,
which is suitable for parallelization.
The goal of position encoding is to rearrange the position
(Px,Py), and then the position of each photon deposition was
corresponding to the actual crystal position according to the
crystal identification map (CIM) [6] established in advance.
Besides, energy correction is to calibrate the energy value
of a single captured by i-th crystal [7]. Similar to the data
frame decoding, crystal position encoding and energy cor-
rection are also the SIMD models, except that it may read the
energy correction factors or CIM from the same address si-
multaneously. Through the above analysis, each GPU thread
can perform data extraction, correction and energy coinci-
dence processing for a 16-byte single data frame before co-
incidence processing. Therefore, tid in Equation (1) repre-
sents the GPU thread index.

2.2 Coincidence Processing

In the energy coincidence processing, we record the index
of singles that satisfied with the energy window by Equation
(3).

I[tid] = ε((E[tid]−downEnergy)

×(upEnergy−E[tid]))× tid
(3)

where ε is Heaviside function, I is the index of singles.In
the implementation, zero-padding is used at the end of each

BDM data stream so that the singles from the same BDM
which are at the end of data stream will be extracted by the
same warp.
Different from the ’Before Coincidence Processing’ which
are highly suitable for parallelization, the parallelism of time
SCP is not obvious. In this section, the parallelism of time
SCP is explored and then the GPU-SCP is proposed. There
are many coincidence processing approaches at present, we
only developed the sorting-based GPU-SCP in this paper.
In the sorting-based time SCP, the single data streams from
all BDMs are merged into one data stream firstly. Then the
total data stream is sorted according to the photon hit time, fi-
nally a global time-ordered data stream is obtained. A time
window is applied to each single event in the global time-
ordered data stream. If there are other singles in the time
window, these singles are identified to be from the same an-
nihilation event and constitute coincidences.

Algorithm 1 Pseudocode implementation of GPU-SCP
// DEFINITIONS
// Tk is the hit time of singles which are accepted by energy
window from BDMk
// T = [T0,0;T1,0; ...;T20,0],
// value is the global index of a single before sorting
Input: T
Output: Time Coincidence Index

1: COIN_KERNEL<<< blockSize,threadSize >>>(
T, value)

2: function COIN_KERNEL(T,value)
3: tid ← blockDim.x × (blockIdx.x + gridDim.x ×

blockIdx.y)+ threadIdx.x
4: i← value[tid]
5: j← value[tid +1]
6: k← value[tid +2]
7: ∆ time0←T[j]-T[i]
8: ∆ time1←T[k]-T[i]
9: if ∆ time0 < TW then

10: record i and j
11: end if
12: if ∆ time1 < TW then
13: record i and k
14: end if
15: end function

There are two main parts in the sorting-based time SCP, sort-
ing and coincidence. In the process of parallelizing the sort-
ing algorithm, according to the piecewise ordered data type
of the sequence, the optimal sorting method should be merge
sort. However, there have been developed parallel sorting li-
braries in CUDA. Therefore the function cub:: DeviceRadix-
Sort::SortPairs, which is based on radix sort, is used to sort
the continuous data stream to obtain the global time-ordered
data stream. Besides, in order to avoid the migration of a
large amount of data, including hit time, photon energy, po-
sition and so on, lexicographical sorting is used in this paper.
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Specifically, the arrival time of the photon is taken as the key
and the global index of the single is taken as the value. Next,
we parallelize the process of time coincidence. The modi-
fied time coincidence processing is as follow. First, the hit
time differences between the current single and the next two
singles are obtained by making a first forward difference to
the global time-ordered sequence in a GPU thread. And then
by comparing the time differences and TW, it is determined
whether these two pairs of singles constitute coincidence
pairs. Finally, the subsequent LOR encoding is performed
to encode photon positions as the LOR index. The specific
implementation process is shown in Algorithm 1. Compared
with the conventional time coincidence processing, the sim-
plified time difference method could lose a certain accuracy.
At the cost of certain processing precision, such modifica-
tion greatly improves the parallelism of the algorithm.

3 Results

3.1 Experimental Setups

To evaluate the performance and illustrate the effectiveness
of the proposed GPU-SCP, we did two phantom experiments
on our PET system with 20 BDMs.
1) The Rat-like phantom was scanned in order to evaluate
the speedups and real-time performance of GPU-SCP on
high activity nuclide. The diameter of the phantom is 60mm
and the length is 110mm. The line source with 44.4MBq
(1.2mCi) fluorine-18 fluorodeoxyglucose (F-18-FDG) at the
start of scanning was inserted into the hole of the phantom.
The scan lasted 2 minutes.
2) Derenzo phantom was used to evaluate the speedups of
GPU-SCP on low activity nuclide and evaluate the impact of
GPU-SCP on the resolution of images. The diameter of the
hot spots was 1mm, 1.5mm, 1.8mm, 2.4mm, 3.0mm, 3.6mm.
The phantom was filled with F-18-FDG whose activity was
3.4MBq (92µCi). The scan lasted 10 minutes.
The acquisition and SCP were run on a Dell Poweredge with
two Intel Xeon Sliver 4108 (1.80 GHz, 16 (32 logical) cores)
CPUs, 512 GByte DDR3-RAM and an NVIDIA GeForce
GTX 1070 GPU. The acceleration strategies of the CPU-
SCP are similar to that of GPU-SCP. In the acquisition, 20
logical cores were used to ensure the completeness of scan
data of 20 BDMs. According to the above settings, there
were 12 logical cores left for SCP. In the SCP, the energy
window was set to 350-650 keV. The coincidences were
extracted by 6ns TW. Images were reconstructed using an
MLEM reconstruction algorithm with 50 iterations.

3.2 Speedup

The processing time and speedups of different algorithms
in ’Before Coincidence Processing’ are shown in Table 1.
The parallel CPU-SCP with 10 threads can increase the pro-
cessing speed by 3.4 times. Proposed GPU-SCP achieved

Phantom(Activity)
Rat-like(1.2mCi) Derenzo(92.0µ Ci)

Time Ratio Time Ratio

CPU-SCP(serial) 81.0 1.0 41.7 1.0
CPU-SCP(10 threads) 18.5 4.4 10.0 4.2
GPU-SCP 1.0 81.0 0.63 66.2
GPU-SCP* 4.4 18.4 3.1 13.5

Table 1: Processing time and speedups of data frame decoding,
crystal positron encoding and energy correction.’Time’ represents
processing time in seconds and ’Ratio’ represents the ratio of the
processing time of serial CPU-SCP to the processing time of cor-
responding approach. ’*’ means the data transmission between
RAM and video memory is considered.

Phantom(Activity)
Rat-like(1.2mCi) Derenzo(92.0µ Ci)

Time Ratio Time Ratio

CPU-SCP(serial) 177.8 1.0 81.5 1.0
CPU-SCP(10 threads) 114.4 1.6 72.9 1.1
GPU-SCP 16.8 10.6 11.6 7.0

Table 2: Processing time and speedups of energy coincidence pro-
cessing, time coincidence processing and random correction.The
abbreviations have the same meanings as Table1.

the maximum speedups in data frame decoding and correc-
tion which are up to 80 times faster than serial CPU-SCP
and 18.4 times the maximum speedups of parallel CPU-SCP
with 10 threads. Even when the data transmission between
RAM and video memory is considered, the advantages in
speed of the GPU-SCP are still obvious.
Table 2 shows the processing time and speedups of different
algorithms in ’Coincidence Processing’. The sorting-based
GPU-SCP achieved the maximum speedup which is 10.6
times faster than serial CPU-SCP at most. It is noted that
the processing speed of the GPU-SCP is more than 6 times
the speedups of the parallel GPU-SCP with 10 threads.
Table 3 shows the processing time and speedups of different
algorithms in the overall SCP. The results are similar to Ta-
ble 2 because the execution time of coincidence processing
takes up the largest proportion in the whole process. The
proposed GPU-SCP is up to 13.5 times faster than serial
CPU-SCP and about 7.6 times the maximum speedups of
the parallel CPU-SCP with 10 threads at most.

Phantom(Activity)
Rat-like(1.2mCi) Derenzo(92.0µ Ci)

Time Ratio Time Ratio

CPU-SCP(serial) 258.8 1.0 123.2 1.0
CPU-SCP(10 threads) 132.9 1.9 82.9 1.5
GPU-SCP 17.8 14.5 12.2 10.1
GPU-SCP* 21.2 12.2 15.7 7.8

Table 3: Processing time and speedups of entire process.The ab-
breviations have the same meanings as Table1.
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Methods MRE on LORs RE of Count of Coincidences

CPU-SCP 1.6% 4.6%
GPU-SCP 2.0% 0.1%

Table 4: Maximum relative error of LORs and relative error of to-
tal count of coincidences by different SCPs in the rat-like phantom
experiment.

Figure 2: Reconstruction images of different SCPs for Derenzo
phantom.

3.3 Image Quality

In the Rat-like phantom experiment, the output of offline
serial CPU-SCP was used as the ground truth considering
that the offline CPU-SCP does not cause the data loss. The
ground truth was compared with the outputs of all online
methods. We calculated the maximum relative error of
LORs and the relative error between the total counts of co-
incidences of SCPs and the ground truth. As shown in the
Table 4, the maximum relative error on LORs is less than 2%
for all methods. However, the relative error of total count of
coincidences by parallel CPU-SCP is 4.6%, indicating the
data loss in high activity acquisition by parallel CPU-SCP.
Figure 2 shows reconstruction images of the Derenzo phan-
tom for serial CPU-SCP and sorting-based GPU-SCP. The
outputs of offline serial approach are used as ground truth.
The line profiles across 1.5mm rods and 2.4mm rods were
shown on the right side of Figure 2 There was no sig-
nificant difference in image quality of GPU-SCPs and the
ground truth. Besides, in order to compare performances of
different methods in image domain and projection domain
quantificationally, we extracted the max value of reconstruc-
tion images and the total count of coincidences to calculate
the difference in image domain and projection domain re-
spectively. The differences between the GPU-SCP and the
ground truth are less than 1% in image domain and in pro-
jection domain.

4 Discussion and Conclusion

The speedups of GPU algorithm are stable and optimal in
’Before Coincidence Processing’. The reason for this phe-
nomenon is the high parallelism of the process which is sat-
isfied with SIMD model. In ’Coincidence Processing’, the
performance of GPU-SCP is not so surprising as in ’before
coincidence processing’. However, the proposed GPU-SCP
can still realize the real-time processing for nuclides of dif-
ferent activity without image degradation.
In this paper, we propose the GPU-SCP to solve the limited-
thread problem. The proposed processing architecture sim-
plifies the management of threads between acquisition and
coincidence processing, accelerates the coincidence process-
ing by GPU multiple threads and finally realizes the online
coincidence processing.
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Abstract Deep Learning networks outperformed the state-of-the-art in
many fields. However, the link between those methods and the classical
signal processing theory is not yet fully understood. To address such
gap, Deep Convolutional Framelet Networks (DCFNs) were proposed
as a new scheme for signal representation composed of learning and
non-learning components. DCFNs allow the representation of input
signals using a fixed non-local basis Φ convolved with a data-driven,
local basis Ψ. We propose a novel DCFN where Φ is a Steerable
wavelet. The data representation within our network is translation- and
rotation- invariant. We evaluated our method for recovering sparse-
view tomosynthesis images from ripple artifacts. Both quantitative
and qualitative evaluations show that our method performs better than
U-net for this application.

1 Introduction

Despite the huge success of the Deep Learning methods in
many fields, the effectiveness of those architectures cannot
be demonstrated mathematically by classical signal process-
ing approaches. Therefore, Deep Convolutional Framelet
Networks (DCFNs) [1] were designed based on the theory of
convolution framelets to fill this gap. DCFNs are regarded as
a new scheme for signal representation that - in contrast to
wavelets [2], SVD [3], and DCT [4] - is composed of learning
and non-learning components.
Convolution framelets were first proposed by Yin et al. [5]
for representing a signal using a fixed, non-local basis Φ
convolved with a data-driven, local basis Ψ. Later, Ye et al.
[1] showed that such convolution framelet representation can
also be regarded as a DCFNs. In such new deep networks,
local convolutions filters are learned after a given non-local
basis Φ is fixed.
In this work, we propose a novel DCFN by introducing a
Steerable wavelet as Φ. Steerable wavelets are much more
flexible than orthogonal separable Wavelets (such as Haar,
Daubechies, and others) since no orthogonality constraints
are applied to the filters. In a Steerable basis, the filters are
only constrained to be (i) rotated copies of each other; and
(ii) a linear combination of the basis filters [6]. Therefore,
a large variety of filter sets can be chosen according to the
application task.
We evaluate the proposed network for recovering digital X-
ray tomosynthesis images in a sparse-view setup. Tomosyn-
thesis is a medical imaging technology known for providing
superior diagnostic information than 2D radiography at a
lower cost and radiation than 3D X-ray Computed Tomogra-

phy [7]. By acquiring sparse-view projections from a regular
tomosynthesis setup, faster scans that operate with lower
radiation levels could be obtained. However, the lack of
projection data available generates clinically unacceptable
images highly degraded by artifacts. To improve the image
quality in X-ray tomosynthesis, the current baseline in the
literature relies on the use of U-nets [8]. For this reason, we
compare the accuracy of our method against an U-net.

2 Mathematical Background

A frame is a family of functions {φk}k∈N in a Hilbert space H
that decomposes any signal x ∈ H into K components 〈x,φk〉
that satisfy the following:

α||x||2 ≤
K

∑
k=1
|〈x,φk〉|2 ≤ β ||x||2,∀x ∈ H (1)

where α,β > 0 are frame bounds. When α = β , the frame Φ
composed of {φk} is called tight. From the frame coefficients
c = ΦT x, the original signal can be recovered using the dual
frame Φ̃ which satisfies the frame condition Φ̃ΦT = I:

x̂ = Φ̃c = Φ̃ΦT x = x (2)

For any input signal x ∈ Rn, let Φ = [φ1, · · · ,φm] ∈ Rn×m

(which interacts with all the n−elements of x ∈ Rn) be a
non-local basis, and Ψ = [ψ1, · · · ,ψq] ∈ Rd×q (which only
interacts with d−neighborhood of x ∈ Rn) be a local basis.
Therefore, the deep convolutional framelet expansion states
that [1]:

x =
1
d

m

∑
i=1

q

∑
j=1
〈x,φi ~ψ j〉φ̃i ~ ψ̃ j (3)

where ~ refers to the convolution operator. Furthermore, if
C is a framelet coefficient matrix, where [1]:

C = ΦT (x~Ψ), (4)

Equation (3) can be represented by:

x = (Φ̃C)~ v(Ψ̃) (5)

where
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v(Ψ̃) =
1
d




ψ̃1
· · ·
ψ̃q


 ∈ Rdq (6)

Based on Equations (4) and (5), Ye et al. derived the multi-
layer implementation of convolution framelets composed of
the following encoder stage [1]:

C(0)
low = x,∀x ∈ Rn (7)

C(l)
low := Φ(l)T

low

(
C(l−1)

low ~Ψ(l)
)

(8)

C(l)
high := Φ(l)T

high

(
C(l−1)

low ~Ψ(l)
)

(9)

where Φlow and Φhigh are set of functions from the frame
Φ that decomposes an input signal into low- and high-pass
sub-bands, respectively. Then, the following decoder stage
completes the multilayer convolution framelet:

Ĉ(L−1)
low :=

(
Φ̃(L)Ĉ(L)

)
~ v
(

Ψ̃(L)T
)

(10)

x̂ = Ĉ(0)
low (11)

where Ĉ(l) is the composition of
{

Ĉ(l)
low,Ĉ

(l)
high

}
, so:

Φ(l)Ĉ(l)Ψ̃(l)T = Φ(l)
lowĈ(l)

lowΨ̃(l)T +Φ(l)
highĈ(l)

highΨ̃(l)T (12)

and Ĉ(l)
high is given based on a high-frequency filter H(l):

Ĉ(l)
high =C(l)

high ~H(l) (13)

3 Proposed Method

The Steerable Pyramid allows image decomposition into
scale, and orientation sub-bands [6]. In this wavelet-like rep-
resentation, the framelet basis are dilated and rotated versions
of a single directional wavelet [9]. In this way, the steerable
wavelet decomposition components capture orientations of
local image features in any k directions. Furthermore, they
form a tight frame that satisfies the frame condition given in
Equation (2).
The filter banks diagram illustrated in Figure 1 shows a com-
plete stage of the steerable transform composed of decom-
position (Φ) and restoration (Φ̃) for k = 4. In the diagram,
{Bn(ω1,ω2), n = 0,1,2,3} are band-pass oriented filters,
H0(ω1,ω2) and L1(ω1,ω2) are non-oriented high-pass and
narrowband low-pass filters, respectively. Higher levels of de-
composition are obtained recursively by inserting the subsys-
tem enclosed in the dashed lines between the down-sampling
and up-sampling blocks.
In this work, we propose a DCFN that employs a Steerable
wavelet as a fixed non-local basis Φ1. This way, the network

1the code of the Steerable layers of our DCFN is available
at: github.com/luisfilipeap/A-Deep-Convolutional-Framelet-Network-
based-on- Tight-Steerable-Wavelet

2 2

recursive subsystem

Figure 1: Diagram of filter banks presenting a complete stage of
the steerable transform (Φ) and its inverse (Φ̃).

local basis Ψ learns to suppress noise and artifacts into the
low- and the high-pass sub-bands of the input image. The
data representation in our method is rotation-invariant due
to the use of steerable derivative operators and translation-
invariant due to the nature of the band-pass decomposition in
the Fourier space.
Furthermore, in contrast to the regular orthogonal separable
Wavelets, the filter sets used at the Steerable wavelet are
highly flexible since there are no orthogonality constraints.
In this way, filters can be designed to focus on the character-
istics of noise and artifacts to be suppressed in a particular
denoising problem.
Finally, the proposed method also includes Mixed Scale
Dense (MSD) [10] and Deconvolution [11] networks in its
architecture. In contrast to architectures that enlarge the net-
work receptive field via tensor scaling [12] and need to learn
upscaling operations, the MSD networks exploit dilated con-
volutions. As a result, the models obtained are smaller and
easier to train. To avoid image blurring, the Deconvolution
networks apply large horizontal, vertical, and squared kernels
along with its layers.
Figure 2 illustrates the architecture of the proposed DCFN.
The gray tensors refer to the data input/output, the yellow
tensors refer to the output of MSD networks, the red tensors
are the high and low band of the Φ =

{
Φlow,Φhigh

}
decom-

position, the blue tensors are the result of Φ̃ reconstructions,
and the green tensors refer to the output of the Deconvolution
networks.

4 Experiments

Our experiments to evaluate the proposed network were fo-
cused on recovering sparse-view X-ray tomosynthesis images
from ripple artifacts. By doing so, we expect to allow faster
scans that involve reduced levels of radiation dose.
Let T be a training set composed of I 3D reconstructions
of full-sampled tomosynthesis with J slices per volume,
and the same amount of sparse-sampled data. Then, T =
{(x′i j,xi j), ∀i ∈ [1, · · · , I] , ∀ j ∈ [1, · · · ,J]} where x′, and x
refer to 2D slices of sparsely and fully sampled tomosynthe-

400



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

Φ

Φ Φ̃

Φ̃

Figure 2: Architecture of the proposed DCFN: the gray tensors
refer to the data input/output, the yellow tensors refer to the output
of MSD networks, the red tensors are the high and low band of the
Φ =

{
Φlow,Φhigh

}
decomposition, the blue tensors are the result

of Φ̃ reconstructions, and the green tensors refer to the output of
the Deconvolution networks.

sis data, respectively. We trained our model fθ (·) to find the
set of parameters θ that minimizes:

argmin
θ

I

∑
i=1

J

∑
j=1
|| fθ (x′i j)−xi j||22 (14)

We designed our experimental setup in Python using the Ten-
sorflow framework. During the training stage, the ADAM
optimizer was used to update the network’s weights with
learning rate and batch size equal to 10−5 and 20, respec-
tively. It took 9 days to run 300 epochs on an Nvidia DGX
station using a single Tesla V100 GPU. Furthermore, the
Steerable wavelet chosen for Φ was based on the 4th order
filters described by Karasaridis and Simoncelli [13].

4.1 Dataset

We used medical data from the Clinical Proteomic Tumor
Analysis Consortium Pancreatic Ductal Adenocarcinoma
(CPTAC-PDA) collection2 as the training set. It contains
Computed Tomography (CT), and Magnetic Resonance Imag-
ing (MRI) data from 74 patients with pancreatic cancer. To
design a solution with high generalization capacity, we used
MRI and CT data. Reconstruction volumes with less than
120 slices were discarded. As a result, 152 volumes were
used. For testing our model, we used the Visible Human
Project dataset3. It contains 10 CT reconstructions of differ-
ent human parts from male and female subjects, such as the
ankle, pelvis, knee, and shoulder.

2https://wiki.cancerimagingarchive.net/display/Public/CPTAC-PDA
3https://mri.radiology.uiowa.edu/visible_human_datasets.html

4.2 Scanning setup

We simulated the scanned setup illustrated in Figure 3 using
the Astra-Toolbox [14]. Such setup is composed of an X-ray
source (a) that moves linearly to scan a patient lying down
on a stationary detector (b). This is a particular challenging
scanning geometry for 3D reconstructions due to its minimal
angular view.

(a)

(b)

Figure 3: Tomosynthesis scanning setup simulated in this work.

Using 120× 512× 100 volumes from our dataset as phan-
toms, fully sampled (xi j) and sparsely sampled (x′i j) acquisi-
tions were reconstructed using SIRT from 100 and 20 X-ray
projections, respectively. Furthermore, we used the source-
to-object distance (SOD) as 1500 mm, the source-to-detector
distance (SDD) as 1650 mm, the detector as a 1406×1130
grid of unit cells, and a linear track of 800 mm for the move-
ment of the radiation source.

5 Results and Discussion

Figure 4 shows central slices obtained from sparsely sam-
pled tomosynthesis data reconstructed by SIRT without Deep
Learning processing as well as slices obtained from datasets
processed by U-net [15] and our method. It also shows error
maps that stretch the difference between the reconstructions
and the fully sampled tomosynthesis data. From Figure 4, it
can be appreciated that the energy of the U-net error map is
higher than that of our method.
Furthermore, Table 1 shows the SSIM, PSNR, and NRMSE
metrics for a quantitative evaluation of the reconstruction
images presented in Figure 4. Our method outperforms U-
net in all metrics, notably in PSNR.

SSIM PSNR NRMSE
SIRT 0.9978 54.063 0.0335
U-net 0.9983 55.412 0.0287

Proposed 0.9986 57.028 0.0238

Table 1: Quantitative evaluation of the proposed method in rela-
tion to SIRT and U-net.

6 Conclusion

We presented a Deep Convolutional Framelet Network
(DCFN) that employs a Steerable wavelet as a fixed non-
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Figure 4: In the first line, reconstruction images obtained using SIRT, Unet, and the proposed method. In the second line, their respective
error maps with contrast stretching.

local basis Φ. As a result, the data representation within the
model is translation- and rotation-invariant. In contrast to
regular orthogonal separable Wavelets, the filter set used here
is flexible since there are no orthogonality constraints.
We applied our proposed data representation to the reduc-
tion of ripple artifacts in sparse-view tomosynthesis images.
Quantitative and qualitative evaluations showed that our
method outperforms the U-net, which is the current base-
line in the literature for denoising X-ray tomosynthesis.
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Abstract When the object contains metals, its x-ray computed 

tomography images are normally affected by streaking artifacts. These 

artifacts are mainly caused by the x-ray beam hardening effects, which 

deviate the measurements from their true values.  One interesting 

observation of the metal artifacts is that certain regions of the metal 

artifacts often appear as negative pixel values. Our novel idea in this 

paper is to set up an objective function that restricts the negative pixel 

values in the image. We must point out that the naïve idea of setting the 

negative pixel values in the reconstructed image to zero does not work. 

This paper proposes an iterative algorithm to optimize this objective 

function, and the unknowns are the metal affected projections. Once the 

metal affected projections are estimated, the filtered backprojection 

algorithm is used to reconstruct the final image. This paper also proposes 

a convex optimization formulation for this problem. 

 

1 Introduction 

 

Due to the wide energy spectrum of x-rays, beam 

hardening effects are severe when the object being imaged 

contains metals. The beam hardening effects introduce large 

errors in the x-ray computed tomography (CT) projection 

measurements. Those measurement errors in turn produce 

artifacts in the reconstructed CT images. Typical metal 

artifacts appear as dark and bright streakings. This metal 

artifact problem has been recognized for a long time and it 

is still an open problem. 

Most methods to combat the metal artifacts are iterative 

algorithm based [1-8]. Among these iterative algorithms, 

projection data inpainting is popular. The basic priciple of 

inpainting is first to remove the metal affected 

measurements and to assume that there is no metal in the 

object. Next, estimation methods such as interpolation, 

lowpass filtration, or some non-linear approaches are used 

to inpaint the measurements that are artifacially removed in 

the first step. Iterative algorithms are designed to optimize 

an objective function, which can contain Bayesian terms. 

For example, the total variation (TV) norm is effective in 

enforcing the peicewise constant prior [9-10]. Noise 

weighting is often incorporated in the objective function as 

well. 

Our proposed method is inspired by the observation that 

the metal artifacts usually have regions with negative pixel 

values. The innovation of this paper is the establishment of 

an objective function that restricts the negative pixel values 

in the reconstructed images. The proposed methods will be 

presented in the next section. Results with real x-ray CT 

measurements are presented. The measurements are 

obtained from airport bags that contain metal objects inside.   

2 Methods 

 

A usual objective function in image reconstruction 

consists of two parts: the data fidelity part and the Bayesian 

part. The data fidelity part projects the image array to 

generate pseudo projections and then matches them to the 

measurements. Noise weighting can be applied in the data 

fidelity part. The main purpose of the Bayesian part is for 

regularization, because the image reconstruction problem 

may be ill posed. An L2-nom of the reconstructed image can 

be used to regularize the image to enforce smoothness. The 

TV norm of the image can be used to denoise and maintain 

the sharp edges, by encouraging the piecewise constant 

constraint. Projection data inpainting is usually required 

before iterative image reconstruction. Unfortunately, 

inpainting methods are problematic and the pseudo 

projections are not the same as the projections when metals 

are not present.  

2.1 Approach #1 

It is observed that the metal artifacts often have regions 

with negative pixel values. This paper proposes a novel 

objective function, which is the total sum of the negative 

pixel values (or the total sum of the square of the negative 

pixel values).  

Let the reconstructed image be X, represented as a 

vector. The proposed objective function is 

𝐹 = 𝑚𝑎𝑥
𝑝𝑀

{∑ 𝑚𝑖𝑛(0, 𝑥𝑖)

𝑖

},                                (1) 

subject to 

𝑝𝑀 ≥ 𝑝𝑀
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (2) 

where xi is the ith pixel of X and pM is metal affected 

measurements. The set pM is a small proper subset of the 

total measurements.  Therefore, the entire measurements 

consist two parts: pM and p0, where p0 represent the 

measurements not affected by the metals. The projections 

in pM are the optimization variables, but the projections in 

p0 are fixed. Essentially, the optimization problem (1) is 

measurement inpainting. Unlike most other methods, which 

estimate the measurements as if the metals are not present, 

we estimate the measurements of metals. We adjust the 

metal projections until the metal artifacts are reduced. We 

choose the metal artifact indicator as the negative pixel 

values. 
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In the constraint (2), 𝑝𝑀
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is the set of metal 

affected projections in the original measurements, 𝑝𝑀 is the 

same set but is treated as variables. The beam hardening 

effects introduce large errors to 𝑝𝑀
𝑚𝑒𝑎𝑠𝑢𝑟𝑒. Our empirical 

evidence indicates that the beam hardening effects make the 

measurements smaller than they really are. The constraint 

(2) implies that the true values in pM are somewhat larger 

than the measured values. 

Most optimization algorithms are gradient based. 

However, the proposed objective function (1) involves a 

non-differentiable function 𝑚𝑖𝑛(0, 𝑥𝑖), which makes the 

optimization of (1) difficult. Currently, we use the 

following steps to optimize (1). 

 

Step 1: Use the filtered backprojection (FBP) algorithm 

to generate a raw image Xraw using {pM, p0}. The raw image 

may contain severe metal artifacts. 

Step 2: Calculate the total sum of all the negative pixels 

𝑁 = ∑ 𝑚𝑖𝑛(0, 𝑥𝑖
𝑟𝑎𝑤).𝑖  

Step 3: Segment the raw image to obtain a metal-only 

image. 

Step 4: Forward project the metal-only image to obtain 

the indices of pM. 

The above 4 steps are the preparation steps. The 

following Step 5 actually optimizes the objective function 

(1).  

Step 5: This step is an iterative algorithm. At each 

iteration, loop through all indices of pM.  

Step 5.1: Introduce small perturbations to pM, 

obtaining 𝑝𝑀
𝑡𝑒𝑚𝑝

. 

Step 5.2: Obtain the FBP reconstruction Xtemp using 

{𝑝𝑀
𝑡𝑒𝑚𝑝

, p0}. 

Step 5.2: Calculate the total sum of all the negative 

pixels 𝑁𝑡𝑒𝑚𝑝 = ∑ 𝑚𝑖𝑛(0, 𝑥𝑖
𝑡𝑒𝑚𝑝

).𝑖  

Step 5.3: If 𝑁 < 𝑁𝑡𝑒𝑚𝑝, update N as Ntemp and 

update pM as the perturbed 𝑝𝑀
𝑡𝑒𝑚𝑝

. 

Step 6: The final image is the FBP reconstruction with 

the latest {𝑝𝑀
𝑡𝑒𝑚𝑝

, p0}, where p0 is the measurements that are 

not affected by metals and is never changed in the 

algorithm. 

 

The proposed algorithm was implemented in MATLAB 

and applied to some CT data of airport bags. The original 

projections of airport bags were acquired with an Imatron 

C300 clinical CT scanner. The original projections were 

rebinned and downsized in this paper. The number of views 

for the scaled-down version was 180 over 180°. The number 

of channels (i.e., the detection bin at each view) for the 

scaled-down version was 597. The reconstructed image size 

was 420 × 420.  

2.2 Approach #2 

The objective function formulated in (1) can be 

formulated in other ways. For example, we can use convex 

optimization to formulate the same strategy [11.12]. In 

doing so, we need to introduce a set of slack variables, T = 

{ti}, as follows: 

Objective funtion = 𝑚𝑖𝑛
𝑝𝑀

‖𝑇‖ (3) 

subject to: 

𝑡𝑖 ≤ 0 (4) 

𝑡𝑖 ≤ 𝑥𝑖 (5) 

𝑝𝑀 ≥ 𝑝𝑀
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (6) 

‖𝐴𝑀𝑋 − 𝑝𝑀‖ ≤ 𝜀 (7) 

‖𝐴0𝑋 − 𝑝0‖ ≤ 𝜀 (8) 

where AM and A0 are the projection matrices corresponding 

to pM and p0, respectively. Therefore, our proposed problem 

is a standard convex optimization problem. One has the 

freedom to choose the norm involved in (3), (7), and (8). If 

the l1 norm (i.e., the Manhatton norm) is chosen, some 

outliers are forgiven. If the l∞ norm (the Chebyshev norm) 

is chosen, the maximum error is considered. If the l2 norm 

(i.e., the Euclidean norm), the problem is more 

mathematically friendly with the ease of evaluation of 

gradients.  

Over-the-shelf canned software is available to solve (2). 

For example, CVX is a Matlab software for disciplined 

convex programming, developed by Stanford University. 

The CVX software requires the matrices AM and A0 

completely formed and fed into the package. This is 

currently not practical for a CT application. One must 

develop their own practical algorithm to solve (2) for any 

real-world size CT applications.   

3 Results 

 

Some results from Approach 1 are shown in Figures 1-

4. Two airport bags were used. Fig. 1 shows the raw FBP 

reconstruction of the first bag. The negative values are 

shown as the darkest color. The metals appear as the 

brightest color. Fig. 2 shows the result generated by the 

proposed method. 

Fig. 2 shows the raw FBP reconstruction of the second 

bag. The negative values are shown as the darkest color. The 

metals appear as the brightest color. Fig. 3 shows the result 

generated by the proposed method. 

It is ovserved that the proposed iterative algorithm 

reduces the number of negative pixels in the image. The 

streaking artifacts are also reduced. 

The display window for the raw image and the final 

image is the same. 

 

4 Discussion and Conclusions 

 

This paper uses a unique objective function for image 

reconstruction and metal artifact reduction. The traditional 

iterative algorithm’s main goal is to iteratively reconstruct 

the image. On the other hand, we use the FBP to reconstruct 

the image in every step of the iteration in the algorithms.  
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Fig. 1. Raw FBP reconstruction of bag #1.  

 

 
Fig. 2. FBP reconstruction of bag #1 using the processed sinogram. 

 

 

 From our knowledge, it is the first time in image 

reconstruction that the total sum of the negative pixels 

is used as the objective to be maximized. By reducing 

the total sum of the negtive pixels, the metal caused 

streaking artifacts are reduced accordingly. 

 The main difficulty of development of an algorithm 

to optimize the objective function is that we do not 

know the partial derivative of the objective function 

with respect to the varaibles, which are the metal 

affected projections. In traditional image 

reconstruction, the variables are the image pixels.   

 

 
Fig. 3. Raw FBP reconstruction of bag #2.  

 

 
Fig. 4. FBP reconstruction of bag #2 using the processed sinogram. 

 

 

We do not treat the image pixels as variables, because 

the image can be readily reconstructed by the FBP 

algorithm once the projections are determined.  

The motivation of the paper is to minimize the the 

features of the metal artifacts. The negative overshoots are 

not the only feature. There could be more features.  Once 

we can express the features, we are able to minimize them. 

In our previous paper, the total variation (TV) was used as 

a feature for the metal artiacts [13].  The TV norm is useful 

and effective, but it may smooth the image too much. 
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Abstract Proton therapy is increasingly used in treating certain types
of cancers because of decreased side effects compared to traditional
radiation therapy. We previously proposed the dual-energy alternating
minimization (DEAM) algorithm that has achieved sub-percentage
uncertainty in estimating proton stopping power mappings from experi-
mental phantom data. However, the high accuracy requirement leads to
a large computational cost. To obtain accurate proton stopping power
mappings in clinically acceptable time, a Convolutional Neural Net-
work (CNN) based initialization method is introduced for DEAM. The
CNN is trained on our former initialization and converged images. The
simulation results show that our method generates denoised images
with greatly improved estimation accuracy for adipose, tonsils, and
muscle tissue. Also, it reduces elapsed time approximately 8-fold for
DEAM to reach the same objective function value for both simulated
and real data.

1 Introduction

Over the last 20 years, proton radiotherapy has been increas-
ingly used to treat certain types of cancers because it has
fewer side effects than traditional radiation. The absorbed
dose reaches the maximum value after the proton beam trav-
eling a certain depth in the object and then drops to near zero
immediately. This peak is relatively narrow and is known
as the Bragg peak. The estimated proton stopping power
ratio (SPR) mapping allows radiation oncologists to align the
Bragg peak to the tumor of the object, irradiating diseased
tissues while sparing healthy cells. The current clinical prac-
tice estimates the SPR mappings from the single-energy CT
(SECT) results, which leads to 2−3.5% proton beam range
uncertainty.
Dual-energy CT (DECT) SPR estimation methods were intro-
duced to reduce the SPR uncertainty. Previous studies have
shown that our iterative DECT algorithm, dual-energy alter-
nating minimization (DEAM), has achieved sub-percentage
uncertainty in estimating proton stopping-power mappings
from experimental 3 mm collimated phantom data [1].
However, DEAM is quite time-consuming when reconstruct-
ing 3D image volumes from helical sinograms, due to the
large system operator and its low convergence rate. Com-
pared to SECT, DECT algorithms reconstruct two measured
sinograms scanned at different peak energies, which at least
doubles the required number of system operations per itera-
tion. Moreover, because the objective function of DEAM is
decoupled in two more domains than the objective function
in single-energy monoenergetic CT alternating minimization
(AM), DEAM converges much slower than the AM algorithm

Figure 1: (a) plot objective function of DEAM versus time, (b)
percentage biases of the SPR mapping derived from DEAM results
with different elapsed time

with respect to the number of iterations. These factors make
it difficult to get an accurate DECT result within a clinically
acceptable time (20 minutes).
Several algorithm-based and implementation-based accelera-
tion methods have been taken into account, including GPU
computation and the ordered subsets method, but it still takes
more than 4 hours for the DEAM algorithm to converge. Fig-
ure 1(a) shows the plotted objective function of DEAM versus
time in minutes. It can be seen that the objective function
converges after around 400 minutes. Figure 1(b) shows the
percentage biases of the SPR mapping derived from DEAM
results with different elapsed time. The SPR biases are calcu-
lated inside 5 regions of interest, corresponding to 5 different
materials in a virtual human head phantom. It can be seen
that the percentage biases reach the (−1%,+1%) range after
around 180 minutes and become steady after around 380
minutes, 9× or 19× greater than the target elapsed time.
Neural networks have been widely used in image processing
and reconstruction because they are able to learn complicated
potential image features which are difficult to capture with
model-based methods. However, CNNs do not reliably gener-
ate accurate and critical information due to data susceptibility.
As a result, they have been combined with the model-based
optimization method to take advantage of the known physics
knowledge. In [2, 3], researchers plug a pre-trained denoising
CNN as a prior into a model-based optimization algorithm to
solve different inverse imaging problems. In [4], an unrolled
network of the model-based algorithm is constructed with
trained hyper-parameters and a CNN regularizer for mask-
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based lensless imaging. In [5], photoacoustic tomography
images are updated iteratively by a pre-trained CNN based
on the previous image volume and the gradient computed
by the model-based algorithm. In this paper, We introduce a
CNN-based initialization method to better estimate the ini-
tial condition of DEAM, which takes advantage of CNN’s
speedup while sparing the data susceptibility.

2 Materials and Methods

2.1 Dual Energy Alternating Minimization (DEAM)

DEAM is a joint statistical iterative algorithm that minimizes
the objective function given by the sum of I-divergence [6],

I(d||g) = ∑
j

d j(y) ln
d j(y)

g j(y : c)
−d j(y)+g j(y : c), (1)

and a penalty term,

R(c) = λ
2

∑
i=1

∑
x

∑
x̃∈Nx

w(x, x̃)Φ(ci(x)− ci(x̃)) , (2)

Φ(t) = δ 2
(∣∣∣ t

δ

∣∣∣+ log
(

1−
∣∣∣ t
δ

∣∣∣
))

, (3)

where x, y denote the indices of the discretized image space
and measurement space, respectively. Nx denotes the set
of the neighbouring voxels of the image index x, w(x, x̃) is
the voxel weight calculated as the inverse physical distance
between voxel x and x̃ λ and δ are two hyper-parameters
that control the weight and sparsity of the regularization
term, i denotes image component index (specifically 1 for
polystyrene and 2 for CaCl2 ), j denotes measured data index
(specifically 1 for 90 kVp and 2 for 140 kVp ), d denotes
measured data, g(y : c) denotes the estimation of measured
data based on image components ci, which is the forward
model, written as

g j(y : c) = ∑
E

I0, j(y,E)exp

(
−∑

x
h(x,y)

2

∑
i=1

µi(E)ci(x)

)
,

(4)
where µi(E) denotes the attenuation coeffcient of the ith

material at energy E, I0, j denotes the photon counts of the
jth peak energy in the absence of an object, which contains
information of the spectrum and the bowtie filter, and h(x,y)
denotes the system operator that represents the helical fan
beam CT system.
The original initial condition was estimated by a iterative
filtered backprojection (iFBP) based algorithm [7] which
requires less computational resources but has less in-practice
accuracy than DEAM algorithm.

2.2 CNN-based initialization method

The architecture of the whole CNN-based estimation process
is shown in figure 2. The main idea is to utilize CNN to

estimate a better initial guess based on iFBP, our previous
initialization method for DEAM. The proposed CNN has a
widely used U-net structure originally from [8] with some
modifications. Its encoding-decoding structure allows the
neural network to learn global features and reduce noise.
This CNN takes four inputs: iFBP c1 image, iFBP c2 image,
the DEAM update direction of c1, and the DEAM update
direction of c2. It has been observed that the CNN trained
with update directions performs better than the CNN trained
without update directions. All the input and output images
share the same positioning and sampling information, so the
entire process could take advantage of the image alignment.
Due to the computational cost and their physical property,
each slice of the 3D reconstructed image is trained or tested
separately. The reconstructed image with the size 610×610
is zero-padded to 640×640 pixels to fit this U-net structure.
The update directions for two basis vector model (BVM)
components c1,c2 read

udi(x) = log
∑ j pB

i j(x)

∑ j qB
i j(x)

, (5)

where pB
i j denotes the backprojection of the jth measured

data recalculated based on BVM and the spectrum for the ith

basis, and qB
i j denotes the backprojection of the jth estimation

data recalculated based on BVM and the spectrum for the ith

basis. Therefore, the update direction gives the pixel-wise
distance of the estimated components to the “truth.”
In unregularized DEAM, two basis vector model components
c1,c2 are updated by

ck+1
i (x) = ck

i (x)−
1

Zi(x)
log

∑ j pB,k
i j (x)

∑ j qB,k
i j (x)

, (6)

where Zi(x) is the auxiliary variable to ensure convergence.
Then, the CNN estimation

c1,c2 =CNN(c1,c2,ud1,ud2) (7)

could be regarded as an update step of DEAM whose step
size and regularization term are trained rather than embedded.

3 Results and Discussion

3.1 Simulation results

The measured data is simulated from the ICRP [9], a virtual
female phantom. The simulation system operator has the
same geometry as the Phillips Brilliance Big Bore CT scan-
ner. The reconstruction and CNN training-testing process are
done in a 20-threaded computer with 4 GTX 1080TI. The
training process takes the iFBP result of ICRP chest and its
corresponding update directions as the input and takes the
ground truth of ICRP chest as the output. In the test process,
the input of the trained CNN is the iFBP result of ICRP head.
Figure 3 shows an example slice of the training and testing
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Figure 2: The overall process of DEAM initialization.

Figure 3: Examples of simulation images. From left column to
right column: training input, training output, test input, test output,
test ground truth (as reference). Top row: C1; Bottom row: C2.

data. Chest iFBP is noisier than head iFBP since the larger
area of the chest leads to the larger line integral of attenuation
coefficients. Compared the CNN head result to the ground
truth, the CNN eliminates most of the noise of iFBP images
but introduces some artifacts.
Figure 4 shows the quantitative comparison. Five regions

of interest are selected for different materials and indicated
by red lines in 4(a). 4(b) shows the objective function of
DEAM starting from different initial condition versus time.
The objective function of iFBP is initially around 10 times
larger than the objective function of CNN estimation. The
objective function of CNN estimation after 3 minutes is close
to the objective function of iFBP after 25 minutes, which
means CNN introduces ∼ 8× speedup in this case. 4(c) and
(d) are the plots of percentage bias and percentage standard
deviation of SPR mapping estimated by 20 minutes DEAM
result starting from CNN estimation, the result of CNN esti-
mation, iFBP, 20 minutes DEAM result starting from iFBP,
the result of iFBP and converged DEAM.
Converged DEAM has the best overall performance. The

uncertainty measures of converged DEAM for all ROIs are
within 1%. iFBP has the worst overall performance with the
largest uncertainty measures. CNN and CNN-DEAM-20min
have less bias than iFBP-DEAM-20min in muscule tissue,
tonsils, and adipose tissue, but the bias of CNN and CNN-
DEAM-20min beyond ±1% range in spongiosa (cranium)
and brain. Due to the absence of brain tissue and spongiosa
(cranium) in training data, it is not surprising that CNN fails
to estimate their BVM components. We hypothesize that it

Figure 4: (a) Five ROIs in different materials, (b) plot of objective
function of DEAM starting from iFBP result and DEAM starting
from CNN estimation vs. time, (c) and (d) mean SPR estimation
percentage error and SPR standard deviation of DEAM 20 min-
utes result with CNN estimation as initial condition, iFBP result,
DEAM 20 minutes result with iFBP estimation as initial condition
and DEAM converged result.
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Figure 5: Examples of real patient images. From left column to
right column: training input, training output, test input, test output.
Top row: C1; Bottom row: C2

.

Figure 6: Real patient objective function of DEAM starting from
iFDK and CNN estimation vs. time.

could be fixed by containing brain slices in the training data.
iFBP got the highest standard deviation, which matches the
noise level of iFBP images. Standard deviation of iFBP-
DEAM-20min is the second highest, because the data fidelity
term is much greater than the penalty term in early itera-
tions, so DEAM tends to reduce the data fidelity term rather
than the penalty term. CNN and CNN-DEAM-20min did a
great job in the standard deviation analysis since the U-net
structure is good at denoising.

3.2 Clinic results

In this section, all 90 kVp and 140 kVp clinically measured
data are acquired sequentially on the Phillips Brilliance Big
Bore CT scanner, with 12 mm collimation. The CNN takes
iFBP of the head scan as the training input and DEAM con-
verged result of the same head scan as the training input. In
the test process, iFBP of the head scan of a different patient
is used as the input. The example images of the experimental
training and testing data are shown in figure 5.
Figure 6 shows the plot of the real patient objective function
of DEAM starting from iFDK and CNN estimation versus
time. Similar to simulation results, the objective function
of CNN estimation after 8 minutes is close to the objective
function of iFBP after 70 minutes, which means CNN also
introduces ∼ 8× speedup in the real patient case.

4 Conclusion

We have proposed a CNN-based method that improves the
initial guess for DEAM. We only show the CNN-based initial-
ization of one iterative algorithm, but it is applicable for other
iterative algorithms. This CNN initialization method takes
iFBP result as the input, generating a denoised image with a
great improvement of estimation uncertainty for adipose, ton-
sils, and muscle tissue in the simulation task. However, the
method did not work well in estimating brain and spongiosa
tissue, due to the absence of brain and spongiosa (cranium)
in training data. We hypothesize that the misestimation of
spongiosa and brain tissse could be fixed by containing brain
slices in the training data. It is desirable to use CNN trained
with head-neck images for head-neck data, and CNN trained
with thorax images for thorax data. Also, in both the simu-
lation and real patient tasks, the proposed method reduces
elapsed time approximately 8-fold for DEAM to reach the
same objective function value.
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Abstract In computed tomographic imaging, model based iterative
reconstruction methods have generally shown better image quality
than the more traditional, faster filtered backprojection technique. The
cost we have to pay is that MBIR is computationally expensive. In
this work we train a 2.5D deep learning (DL) network to mimic MBIR
quality image. The network is realized by a modified Unet, and trained
using clinical FBP and MBIR image pairs. We achieve the quality
of MBIR images faster and with a much smaller computation cost.
Visually and in terms of noise power spectrum (NPS), DL-MBIR
images have texture similar to that of MBIR, with reduced noise power.
Image profile plots, NPS plots, standard deviation, etc. suggest that
the DL-MBIR images result from a successful emulation of an MBIR
operator.

1 Introduction

X-ray computed tomography has become a important tool
in applications such as healthcare diagnostics, security in-
spection, and non-destructive testing. The industry preferred
method of reconstruction is filtered backprojection (FBP)
and its popularity is owed to its speed and low computational
cost. Iterative methods such as model-based iterative recon-
struction (MBIR) generally have better image quality than
FBP and do better in limiting image artifacts [1, 2].
MBIR is a computationally expensive and potentially slow
reconstruction method since it entails repeated forward pro-
jection of the estimated image and back projection of the
sinogram residual error. Even with fast GPUs becoming
the norm, MBIR may take minutes compared to an FBP
reconstruction that can be performed in seconds. The compu-
tational cost and reconstruction time have been deterents in
wide adoption of MBIR.
In recent years, deep learning has made serious inroads in CT
applications. It is applied in sinogram and image domains
and sometimes in both. It has been applied in low signal
correction [3], image denoising [4, 5], and metal artifact
reduction [6].
Ziabari, et al [7] showed that a 2.5D deep neural network,
with proper training, can effectively learn a mapping from an
FBP image to MBIR. In this paper we expand on their work
and study the characteristics of output from networks trained
to simulate MBIR with a highly efficient neural network
implementation.

2 Methods

We will first train a deep neural network, which we will, simi-
larly to [7], entitle DL-MBIR. Our aim is to train the network

Figure 1: DL architecture and training setup. This is a modified
form of Unet. Layers on the left denote the contracting path where
features are compressed from image towards latent space but the
number of features increases. Layers on the right denote the ex-
panding path where feature are decompressed from latent space
towards corrected image but the number of features decreases.

to closely approximate MBIR images from FBP images. The
training input is FBP images and the target is MBIR images
from the same data. Let XFBP be the input to the network,
XMBIR be the target, and σ represents a hypothetical mapping
such that σ : XMBIR→ XFBP. Let fDL-MBIRZ be the DL neu-
ral network with Z number of input channels. During the
training phase:

f̂DL-MBIRZ = argmin
fDL-MBIRZ

∣∣∣∣ fDL-MBIRZ (XFBP)−XMBIR
∣∣∣∣

2 (1)

fDL-MBIRZ can be thought of as the inverse of σ , i.e.
fDL-MBIRZ = σ−1. During the training phase, the weights
of fDL-MBIRZ are randomly initialized and then adjusted in
several iterations using error backpropagation. Once the num-
ber of iterations is exhausted or the convergence criteria is
met, the training stops.

For training, 4 pairs of clinical exams were selected. Each
pair had one FBP image volume and the corresponding MBIR
volume. Each image volume had about 200 slices, resulting
in about 800 training image pairs. A modified version of Unet
[8] was chosen as the network architecture. The learning rate
was set to 0.0001 and 2 GPUs were used. Training and
inferencing were done on Tensorflow/Keras. Training was
run for 300 epochs. 3 versions of DL-MBIR were trained:
DL-MBIR1 was trained with inputs with 1 channel i.e. 1
axial slice, DL-MBIR3 was trained with 3-channel inputs
and DL-MBIR5 was trained with 5-channel inputs. Having
adjacent slices in the input provides additional information to
the DL network [7] and helps train it better. Figure 1 shows
the DL architecture and the training setup.
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Figure 2: PSNR (with MBIR image as reference). PSNR values
are in dB. X axis represents the axial slices in the image volume.

3 Results

A cardiac FBP image was inferenced on the trained DL-
MBIR network. Inference time for every network was be-
tween 4 and 6 seconds, and it goes up with the increase in the
number of input channels. The MBIR version of the same
exam was also available. Figure 3 shows a comparison, for
4 slices – (a), (b), (c), and (d) in the image volume, among
MBIR image, FBP image, and the outputs of DL-MBIRZ ,
where Z = 1, 3, 5. Figure 4 shows a comparison, for the
same slices in the image volume, among difference between
images and the MBIR images. Figure 5 has a profile plot to
show the comparison of DL-MBIRZ and FBP images w.r.t
the MBIR images.
Peak signal to noise ratio (PSNR) is another measure of
similarity between images and is closely related to mean
squared error. A higher value would mean that the image is
closer to the reference image. Figure 2 is a plot of PSNR
of all slices within the images with MBIR as the reference
image. Table 1 has some other metrics of comparison among
the images, such as averaged (across slices) PSNR, standard
deviation (std) within regions of interest (RoIs), and average
CT number within those RoIs.
The noise power spectrum (NPS) is a reliable tool for demon-
strating similarity in the image texture. To measure NPS,
uniform region patches from one of the cardiac chambers
were extracted from each image. Then NPS was measured
for all patches and averaged. Then 1D radial profile was mea-
sured from the 2D NPS. Figure 6 shows NPS in the uniform
region within one of the cardiac chambers.

4 Discussion

Visually, all DL-MBIR images bear close resemblance to the
MBIR images in figure 3. It is confirmed by the difference
images in figure 4. In the profile plot of Figure 5, the DL-
MBIR profiles closely follow that of MBIR.
All DL-MBIR images have higher PSNR than that of FBP,
with DL-MBIR5 having the best. Ziabari, et al [7] achieved

(a)

(b)

(c)

(d)

Figure 3: Reconstructed image. (left to right): MBIR, FBP,
DL-MBIR1, DL-MBIR3, DL-MBIR5. (a), (b), (c) and (d) represent
different slices in the image volume. WW/WL 450/0 HU.

MBIR FBP DL-MBIR1 DL-MBIR3 DL-MBIR5

PSNR - 64.98 68.99 70.63 71.08

std 25.07 46.65 26.39 27.24 25.85

average 74.68 75.20 77.0 71.52 74.43

Table 1: Performance metrics. PSNR (dB) is calculated w.r.t the
MBIR images and averaged for all axial slices. Standard deviation
(std) and the average value are in HU, with water being 0 and air
-1000.

a PSNR gain over FBP of 3.4 dB for DL-MBIR1, compared
to 4.1 dB with the current implementation. For DL-MBIR5,
we have improved the result from 4.25 dB to 6.1 dB over
FBP. DL-MBIR images have standard deviations nearly the
same as MBIR, with DL-MBIR5 outperforming the rest. The
average within the chosen RoI is more or less preserved in
all images.

In figure 6, noise power spectrum (NPS) plots of DL-MBIR
images are quite close to that of MBIR, indicating that the
DL-MBIR image texture is also similar to that of MBIR, and
it appears this attribute is learned well by the network. Due
to its type of adaptive regularization, MBIR may create dis-
tinctive texture in the surviving image noise. The attenuation
of noise is a clear gain; however this texture and its effect on
low-contrast detectability may be of concern to some users.
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(a)

(b)

(c)

(d)

Figure 4: Difference image w.r.t. MBIR. (left to right): FBP,
DL-MBIR1, DL-MBIR3, DL-MBIR5. (a), (b), (c) and (d) represent
different slices in the image volume. WW/WL 150/0 HU.

(a)

(b)

Figure 5: Image profile. (a) One axial slice, from left to right, of:
MBIR, FBP, DL-MBIR1, DL-MBIR3, DL-MBIR5 (b) Profile plot
of the images along the yellow line.

Figure 6: NPS plot demonstrating similar behavior of DL-MBIR
with MBIR for noise power.

5 Conclusion

We trained a U-net, 2.5D DL network that effectively es-
timates MBIR results from FBP input images. The com-
putation cost is also signifcantly less than that of MBIR.
All metrics – NPS, PSNR, standard deviation, profile plots
demonstrate that DL-MBIR images have all the features of
MBIR including noise reduction and noise texture.
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Abstract: Aimed at further understanding the fundamentals of photon-

counting spectral CT and providing guidelines on its design and 

implementation, we investigate the correlation of noise in the material-

specific images obtained via multi-material decomposition (m-MD) and 

its impact on the performance of spectral imaging in photon-counting 

CT. By exercising the rule that governs the relation between the 

covariance matrix of random variables and that of their functions, we 

derive the equations that characterize the noise and noise correlation in 

the material specific images in m-MD. Via simulation studies using a 

specially designed phantom that mimics the soft and bony tissues in the 

head, we assess and verify those relations and their impact on the 

performance of spectral imaging. The simulation studies, in which the 

geometry of photon-counting CT is similar to a clinical CT, run over two-

, three- and four-material decomposition based material specific imaging 

in energy range [18 150] keV under both ideal and realistic detector 

spectral responses. The results in 2-MD show that the noise correlation 

coefficient between the two basis materials always approaches -1 and is 

consistent to what has been published in the literature. The results in 3-

MD are complicated and interesting, as the noise correlation coefficients 

among the three material specific images alternate between 1, and so do 

the noise correlation coefficients among the four material specific images 

in 4-MD. Moreover, the distortion in detector’s spectral response, which 

is inevitable in a realistic photon-counting detector due to Compton 

scattering, charge-sharing and fluorescent escaping, results in correlation 

in the acquired projection data and thus degrades the noise property. The 

finding of the alternation in noise correlation coefficient between 1 in 

3-MD, 4-MD and beyond (i.e., m-MD) is novel and thus of significance. 

The revealed relationship and the data obtained in this study may provide 

insightful information to help understand the fundamentals of material 

decomposition based spectral imaging guidelines on the implementation 

of spectral imaging in photon-counting CT and other x-ray related 

imaging modalities (e.g., radiography and tomosynthesis). 

1 Introduction 

 

We have recently been studying the conditioning of basis 

materials (functions) and spectral channelization (energy 

binning). With the singular value decomposition (SVD) 

based approaches1-3, we demonstrated how the conditioning 

of basis materials (functions) and spectral channelization 

can impact the performance of multi-material decompo-

sition (m-MD) based spectral imaging in photon-counting 

CT2,3. Here, we study another fundamental issue in photon-

counting CT–the correlation of noise in the material-

specific (basis) images and its impact on the performance of 

spectral imaging.   

Initially, Alvarez and Macovski assumed no correlation in 

the noise between the projection data acquired at high and 

low tube peak voltages (namely correlation-vanished 

henceforth), but showed that there is a negative correlation 

in noise of the image corresponding to each basis material4-

6. Focused on 2-MD based spectral imaging, Roessl et al 

carried out an analytic investigation to reveal the influence 

of noise correlation in the projection data on the noise and 

its correlation in the material-specific images7. By 

characterizing the noise propagation from projection space 

to the A-space8, they derived a set of equations and arrived 

at the conclusions that the noise correlation in the projection 

data decreases (i) the noise in the image corresponding to 

each basis material and (ii) the correlation of noise in the 

basis images is always negative. 

An immediate benefit of photon-counting detection for 

spectral CT is the facilitation of spectral channelization 

(energy binning8-12) by thresholding the energy of incident 

x-ray photons. With the engagement of multi-spectral 

channels and multi-basis materials, the dimension of the 

Jacobian increases accordingly, which in turn complicate 

the mechanism at which the correlation of noise in the 

projection data acquired in each spectral channel impacts 

the noise in each of the material-specific images. The 

research and development (R&D) in m-MD based spectral 

imaging in photon-counting CT is gaining the momentum. 

It is the time to investigate the relationship between the 

noise and noise correlation in the projection data and their 

counterparts in the material-specific images in m-MD based 

spectral imaging. Via analytical derivation, analysis and 

simulation studies using digital phantoms, we attempt to 

answer these fundamental questions in this work, by 

constraining our effort on m-MD that is implemented in 

projection domain, i.e., the so-called A-space approach8,13. 

 

2 Materials and Methods 

 

By treating Ik(L) (k=1, …, K) as random variables in the 

projection space and Ap(L) (p=1, …, P) the random 

variables in the A-space, the transformation from projection 

space to A-space can be written as  

 𝐼𝑘(𝐿) = 𝑓𝑘(𝐴1(𝐿), … , 𝐴𝑝(𝐿)) (𝑘 = 1, … , 𝐾)  (1) 

Then, the rule governing the relationship between the 

covariance matrix of random variables and that of their 

functions states12,14 

𝑉[𝐴] = (𝐹−1) ∙ 𝑉[𝐼] ∙ (𝐹−1)𝑇          (2) 

where each entry of the transformation matrix F is defined 

as 𝐹𝑘𝑝 = 𝜕𝐼𝑘 𝜕𝐴𝑝⁄ . Furthermore, following the way in 

reference12, we define the effective attenuation coefficient, 

signal-to-noise ratio (SNR), the correlation coefficient in 

the projection space and A-space, respectively, as 

𝜇𝑘𝑝 = −
1

𝐼𝑘

𝜕𝐼𝑘

𝜕𝐴𝑝
,  𝑆𝑁𝑅𝑘 =

𝐼𝑘

𝜎𝐼𝑘

,                (3) 
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𝜌𝐼𝑘1𝐼𝑘2
=

𝜎𝐼𝑘1𝐼𝑘2

𝜎𝐼𝑘1
𝜎𝐼𝑘2

, 𝜌𝐴𝑝1𝐴𝑝2
=

𝜎𝐴𝑝1𝐴𝑝2

𝜎𝐴𝑝1
𝜎𝐴𝑝2

,         (4) 

 

In 3-MD, starting from eq. (2), the covariance matrix V[A] 

becomes 

𝑉3×3[𝐴] = [

𝜎𝐴1

2

𝜎𝐴2𝐴1

𝜎𝐴1𝐴2
𝜎𝐴1𝐴3

𝜎𝐴2

2 𝜎𝐴2𝐴3

𝜎𝐴3𝐴1
𝜎𝐴2𝐴2

𝜎𝐴3

2
],         (5) 

with each entry of V33[A] being given in the Appendix. In 

m-MD while m > 3, the analytic expression of each entry of 

the covariance matrix becomes exhaustively complicated, 

though they can be readily determined using the definitions 

given in eqs. (3)–(5). 

 

The simulation study is carried out using a simulation 

software kit of photon-counting spectral CT15 in which the 

geometric parameters are chosen to mimic a clinical CT for 

diagnostic imaging.  The CT system is assumed working at 

140 kVp, 1000 mA, and 1 rotation/sec gantry rotation speed. 

The criterion for spectral channelization is to assure that the 

photon counts in each spectral channel are roughly equal 

prior to their entering into the object to be imaged, though 

other criteria have been reported in the literature16. The 

spectral channels are implemented via energy thresholding 

as [1~58, 59~140] keV in 2-MD, [1~51, 52~68, 69~140] 

keV in 3-MD, [1~43, 44~58, 59~72, 73~140] keV in 4-MD. 

Each detector element’s spectral response is initially 

assumed ideal, followed by the cases with spectral 

distortion induced by scattering, charge-sharing and 

fluorescent escaping17,18. In data acquisition, the photon-

counting detector is a curved array at dimension 86416 and 

pitch 1.0241.092 mm2. The source-to-iso and source-to-

detector distances are 541.0 mm and 949.0 mm, respec-

tively, leading to a nominal voxel size 0.5816× 0.5816× 

0.625 mm3 in reconstructed image at 512512 matrix.  

 

 
 

A cylinder of water at 20 cm diameter, which consists of 

three rods at 7 cm diameter, is designed as the phantom to 

study and verify the correlation of noise in basis (material-

specific) images in photon-counting CT. The mass 

attenuation coefficients of the materials in the phantom and 

their variation over energy are determined by consulting the 

authoritative publications19,20 and the EDPL library21. A 

sectional view of the phantom is presented in Fig. 1, in 

which a region of interest (ROI) at 6 cm diameter within rod 

2 is defined for noise measurement. 

 
Table 1. Material configuration (fraction in weight) of the three rods in the 

phantom used for verification of noise correlation in the material-specific (basis) 

images in 2-MD, 3-MD and 4-MD, respectively (I: iodine; Gd: Gadolinium). 

Rod 2-MD 3-MD 4-MD 

1 
1/3 soft tissue  

2/3 cortical bone 

2/7 soft tissue  

4/7 (10 mg/ml)  I 
1/7 cortical bone 

2/7 soft tissue  

2.5/7 (10 mg/ml) I  

2/7 (10 mg/ml) Gd            

0.5/7 cortical bone 

2 
1/2 soft tissue  
1/2 cortical bone 

3/7 soft tissue  

3/7  (10 mg/ml) I 

1/7 cortical bone 

3/7 soft tissue  

2/7 (10 mg/ml) I 
1.5/7 (10 mg/ml) Gd 

0.5/7 cortical bone 

3 
2/3 soft tissue  

1/3 cortical bone 

4/7 soft tissue  

2/7 (10 mg/ml) I 
1/7 cortical bone 

3/7 soft tissue  
2.5/7 (10 mg/ml) I 

1/7 (10 mg/ml) Gd 

0.5/7 cortical bone 

 

3 Results 

 

In 3-MD, the correlation of noise in the images corres-

ponding to basis materials soft tissue, iodine (10 mg/ml) and 

cortical bone under ideal detector spectral response are 

presented in Fig. 2 (a–c), while those under realistic detector 

response are in Fig. 2 (a–c). It is observed that the polarity 

of correlation in noise over the material specific images in 

3-MD based spectral imaging alternates between 1. The 

comparison between Fig. 2 (a–c) and (a–c) tells us that the 

overlapping in spectral channel caused by the spectral 

distortion in detector’s response increase the noise and thus 

makes the noise correlation spread over a wider region.  

In 4-MD, the correlation of noise in the images corres-

ponding to basis materials soft tissue, gadolinium (10mg/ 

ml), iodine (10 mg/ml) and cortical bone under ideal 

detector spectral response are presented in Fig. 3 (a–f), 

while those under realistic detector response are in Fig. 4 

(a–f). Note that the polarity of correlation in noise over the 

material-specific images in 4-MD alternates between 1, in 

a way that is even more complicated than that in the case of 

3-MD. Again, a comparison between Fig. 3 and Fig. 4 tells 

us that the inter-channel overlapping caused by the spectral 

distortion in detector’s response makes the image noisier 

and thus the noise correlation spread over a wider region. 

 

Fig. 1. A sectional view of the cylindrical 

phantom and the ROI for measurement of noise 

correlation. 

Rod 1 

Rod 3 

Rod 2 
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4 Discussion 

 

Recognizing the increasing momentum in R&D of photon-

counting CT and the potential of m-MD based spectral 

imaging, we derived the equations governing the behavior 

of noise and noise correlation in the material-specific 

images. Via phantom study supported by computer 

simulation and using 3-MD and 4-MD as the examples, we 

quantitatively evaluated and verified the equations derived 

by us to characterize the noise and correlation of noise in 

the material specific images in m-MD based spectral 

imaging in photon-counting CT. To the best of our 

knowledge, our work is novel and thus of innovative 

relevance. As observed in previous sections, the behavior of 

the noise correlation in the m-MD (3-MD, 4-MD and 

beyond) differs substantially from that in the 2-MD case. 

Below is a summary of the points that are believed to be of 

theoretical and practical prominence.  

 

 
 

As we know, the correlation of noise in the material-specific 

images of 2-MD is always negative. However, as 

demonstrated in Figures 2, 3 and 4, the polarity of the 

correlation of noise in the basis (material specific) images 

of 3-MD and 4-MD varies between positive or negative. It 

is important to note that the magnitude of noise correlation 

between the material-specific images in 3-MD and 4-MD, 

no matter it is positive or negative, approaches one in 

magnitude, implying that the correlation is actually very 

strong. The negative correlation of noise in the material-

Fig. 2. Correlation of noise in 3-MD under both ideal (left) and 

realistic (right) detector spectral response: (a–a) soft tissue vs. 

iodine, (b–b) soft tissue vs. cortical bone and (c–c) iodine vs. 

cortical bone.  

(a) 

(b) 

(c) 

(b) 

(a) 

(c) 

Fig. 3. Correlation of noise in 4-MD under ideal detector response: 

(a) soft tissue vs. Gd, (b) soft tissue vs. iodine, (c) soft tissue vs. 

bone, (d) Gd vs. iodine, (e) Gd vs. bone and (f) iodine vs. bone.  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 4. Correlation of noise in 4-MD under realistic detector 

response: (a) soft tissue vs. gadolinium, (b) soft tissue vs. iodine, 

(c) soft tissue vs. bone, (d) gadolinium vs. iodine, (e) gadolinium 

vs. bone and (f) iodine vs. bone.  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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specific images in 2-MD has been the ground on which 

sophisticated algorithms can be designed and implemented 

for de-noising in spectral (dual energy) CT22. As indicated 

above, the polarity in the correlation of noise in the 

material-specific images in 3-MD, 4-MD and beyond 

alternates between 1, and such an alternation makes the 

noise property in m-MD based spectral imaging 

complicated in photon-counting CT, as has been 

demonstrated in our recent work2,3. It may bring about the 

opportunity for one to design and implement sophisticated 

algorithms for de-noising in m-MD based spectral imaging 

in photon-counting CT, similar to what has been reported in 

the literature22. We believe that this subject deserves further 

effort for an in-depth investigation.  

Only 3-MD and 4-MD are considered in our study as the 

examples to verify the property of noise and noise 

correlation in m-MD. As indicated in our recent 

investigation on the conditioning of basis materials and 

spectral channelization and their impacts on the 

performance of spectral imaging in photon-counting CT2,3, 

the chance for more than four basis materials (and 

accordingly four spectral channels) is really limited, in light 

of the fact that more basis materials (and thus more spectral 

channels) may radically impact the imaging performance, 

e.g., the occurrence of severe noise with increasing number 

of spectral channels. Finally, we would like to state that the 

data acquired in this work are informative and instructive 

on implementation of spectral imaging in either photon-

counting or energy-integration CT. 

 

5 Conclusion 

 

In this study, by taking 3-MD and 4-MD as the examples, 

we investigated the correlation of noise in basis (material 

specific) images and its impact on the performance of m-

MD based spectral imaging in photon-counting CT. It has 

been found by us that the noise correlation in 3-MD, 4-MD 

and beyond (i.e., m-MD) alternate between ±1, in addition 

to the existing observation that the noise correlation 

coefficient between the two basis materials in 2-MD always 

approaches -1. It is believed that the obtained results and 

conveyed information can help further understand the 

fundamentals of material decomposition based spectral 

imaging in either photon-counting or energy-integration CT 

and other x-ray related imaging modalities, such as 

radiography and tomosyn-thesis. 

 

Appendix 

𝜎𝐴1𝐴1
2 = ((μ23μ32 - μ33μ22)2/SNR2

1 + (μ13μ32 - μ33μ12)2/SNR2
2 + 

(μ13μ22 - μ12μ23)2/SNR2
3 - 2ρI12(μ13μ23μ2

32 +  μ2
33μ12μ22 - 

μ33μ12μ23μ32 - μ33μ13μ22μ32)/SNR1SNR2 - 2ρI23(μ2
13μ22μ32 + 

μ33μ2
12μ23 - μ12μ13μ23μ32 - μ33μ12μ13μ22)/SNR2SNR3 - 

2ρI13(μ12μ2
23μ32 + μ33μ13μ2

22 - μ13μ22μ23μ32 - 

μ33μ12μ22μ23)/SNR1SNR3)/2
33.    

      (A-1) 

𝜎𝐴2𝐴2
2 = ((μ23μ31 - μ33μ21)2/SNR2

1 + (μ13μ31 - μ33μ11)2/SNR2
2 + 

(μ11μ23 - μ13μ21)2/SNR2
3 - 2ρI12(μ13μ23μ2

31 + μ2
33μ11μ21 - 

μ33μ11μ23μ31 - μ33μ13μ21μ31)/SNR1SNR2 - 2ρI23(μ2
13μ21μ31 + 

μ33μ2
11μ23 - μ11μ13μ23μ31 - μ33μ11μ13μ21)/SNR2SNR3 - 

2ρI13(μ11μ2
23μ31 + μ33μ13μ2

21 - μ13μ21μ23μ31 - 

μ33μ11μ21μ23)/SNR1SNR3)/2
33.    

      (A-2) 

𝜎𝐴3𝐴3
2 = ((μ11μ32 - μ12μ31)2/SNR2

2 + (μ21μ32 - μ22μ31)2/SNR2
1 + 

(μ11μ22 - μ12μ21)2/SNR2
3 - 2ρI12(μ11μ21μ2

32 + μ12μ22μ2
31 - 

μ11μ22μ31μ32 - μ12μ21μ31μ32)/SNR1SNR2 - 2ρI23(μ2
12μ21μ31 + 

μ2
11μ22μ32 - μ11μ12μ21μ32 - μ11μ12μ22μ31)/SNR2SNR3 - 

2ρI13(μ12μ2
21μ32 + μ11μ2

22μ31 - μ11μ21μ22μ32 - 

μ12μ21μ22μ31)/SNR1SNR3)/2
33.    

      (A-3) 

𝜎𝐴1𝐴2
= 𝜎𝐴2𝐴1

= -((μ2
23μ31μ32 + μ2

33μ21μ22 - μ33μ21μ23μ32 - 

μ33μ22μ23μ31)/SNR2
1 + (μ2

33μ11μ12 + μ2
13μ31μ32 - μ33μ11μ13μ32 - 

μ33μ12μ13μ31)/SNR2
2 + (μ11μ12μ2

23 + μ2
13μ21μ22 - μ11μ13μ22μ23 - 

μ12μ13μ21μ23)/SNR2
3 - ρI12(μ2

33μ11μ22 + μ2
33μ12μ21 + 2μ13μ23μ31μ32 

- μ33μ11μ23μ32 - μ33μ13μ21μ32 - μ33μ12μ23μ31 - 

μ33μ13μ22μ31)/SNR1SNR2 - ρI23(μ2
13μ21μ32 + 2μ33μ11μ12μ23 + 

μ2
13μ22μ31 - μ11μ13μ23μ32 - μ12μ13μ23μ31 - μ33μ11μ13μ22 - 

μ33μ12μ13μ21)/SNR2SNR3 - ρI13(μ12μ2
23μ31 + 2μ33μ13μ21μ22 + 

μ11μ2
23μ32 - μ13μ21μ23μ32 - μ13μ22μ23μ31 - μ33μ11μ22μ23 - 

μ33μ12μ21μ23)/SNR1SNR3)/2
33.    

      (A-4) 

𝜎𝐴1𝐴3
= 𝜎𝐴3𝐴1

 = -((μ21μ23μ2
32 + μ33μ2

22μ31 - μ22μ23μ31μ32 - 

μ33μ21μ22μ32)/SNR2
1 + (μ11μ13μ2

32 + μ33μ2
12μ31 - μ12μ13μ31μ32 - 

μ33μ11μ12μ32)/SNR2
2 + (μ2

12μ21μ23 + μ11μ13μ2
22 - μ12μ13μ21μ22 - 

μ11μ12μ22μ23)/SNR2
3 - ρI12(μ11μ23μ2

32 + 2μ33μ12μ22μ31 + μ13μ21μ2
32 

- μ12μ23μ31μ32 - μ13μ22μ31μ32 - μ33μ11μ22μ32 - 

μ33μ12μ21μ32)/SNR1SNR2 - ρI23(μ2
12μ23μ31 + 2μ11μ13μ22μ32 + 

μ33μ2
12μ21 - μ11μ12μ23μ32 - μ12μ13μ21μ32 - μ12μ13μ22μ31 - 

μ33μ11μ12μ22)/SNR2SNR3 - ρI13(μ13μ2
22μ31 + 2μ12μ21μ23μ32 + 

μ33μ11μ2
22 - μ11μ22μ23μ32 - μ13μ21μ22μ32 - μ12μ22μ23μ31 - 

μ33μ12μ21μ22)/SNR1SNR3)/2
33.    

      (A-5) 

𝜎𝐴2𝐴3
= 𝜎𝐴3𝐴2

 = -((μ33μ2
21μ32 + μ22μ23μ2

31 - μ21μ23μ31μ32 - 

μ33μ21μ22μ31)/SNR2
1 + (μ33μ2

11μ32 + μ12μ13μ2
31 - μ11μ13μ31μ32 - 

μ33μ11μ12μ31)/SNR2
2 + (μ2

11μ22μ23 + μ12μ13μ2
21 - μ11μ12μ21μ23 - 

μ11μ13μ21μ22)/SNR2
3 - ρI12(μ12μ23μ2

31 + 2μ33μ11μ21μ32 + μ13μ22μ2
31 

- μ11μ23μ31μ32 - μ13μ21μ31μ32 - μ33μ11μ22μ31 - 

μ33μ12μ21μ31)/SNR1SNR2 - ρI23(μ2
11μ23μ32 + 2μ12μ13μ21μ31 + 

μ33μ2
11μ22 - μ11μ13μ21μ32 - μ11μ12μ23μ31 - μ11μ13μ22μ31 - 

μ33μ11μ12μ21)/SNR2SNR3 - ρI13(μ13μ2
21μ32 + 2μ11μ22μ23μ31 + 

μ33μ12μ2
21 - μ11μ21μ23μ32 - μ12μ21μ23μ31 - μ13μ21μ22μ31 - 
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μ33μ11μ21μ22)/SNR1SNR3)/2
33.    

      (A-6) 

where 33 = μ11μ23μ32 - μ13μ21μ32 - μ12μ23μ31 + μ13μ22μ31 - 

μ33μ11μ22 + μ33μ12μ21     

      (A-7) 

 

If no correlation exists in projection data, (𝜌𝐼𝑖𝑗
= 0, 𝑖 =

1, 2, 3, 4; 𝑗 = 1, 2, 3, 4), (A-1) - (A-6) degenerate into 

𝜎𝐴1𝐴1
2 = ((μ23μ32 - μ33μ22)2/SNR2

1 + (μ13μ32 - μ33μ12)2/SNR2
2 + 

(μ13μ22 - μ12μ23)2/SNR2
3)/2

33.    

      (A-1) 

𝜎𝐴2𝐴2
2 = ((μ23μ31 - μ33μ21)2/SNR2

1 + (μ13μ31 - μ33μ11)2/SNR2
2 + 

(μ11μ23 - μ13μ21)2/SNR2
3)/2

33.    

      (A-2) 

𝜎𝐴3𝐴3
2 = ((μ11μ32 - μ12μ31)2/SNR2

2 + (μ21μ32 - μ22μ31)2/SNR2
1 + 

(μ11μ22 - μ12μ21)2/SNR2
3)/2

33.    

      (A-3) 

𝜎𝐴1𝐴2
= 𝜎𝐴2𝐴1

 = -((μ2
23μ31μ32 + μ2

33μ21μ22 - μ33μ21μ23μ32 - 

μ33μ22μ23μ31)/SNR2
1 + (μ2

33μ11μ12 + μ2
13μ31μ32 - μ33μ11μ13μ32 - 

μ33μ12μ13μ31)/SNR2
2 + (μ11μ12μ2

23 + μ2
13μ21μ22 - μ11μ13μ22μ23 - 

μ12μ13μ21μ23)/SNR2
3)/2

33.     

      (A-4) 

𝜎𝐴1𝐴3
= 𝜎𝐴3𝐴1

 = -((μ21μ23μ2
32 + μ33μ2

22μ31 - μ22μ23μ31μ32 - 

μ33μ21μ22μ32)/SNR2
1 + (μ11μ13μ2

32 + μ33μ2
12μ31 - μ12μ13μ31μ32 - 

μ33μ11μ12μ32)/SNR2
2 + (μ2

12μ21μ23 + μ11μ13μ2
22 - μ12μ13μ21μ22 - 

μ11μ12μ22μ23)/SNR2
3)/2

33.     

      (A-5) 

𝜎𝐴2𝐴3
= 𝜎𝐴3𝐴2

 = -((μ33μ2
21μ32 + μ22μ23μ2

31 - μ21μ23μ31μ32 - 

μ33μ21μ22μ31)/SNR2
1 + (μ33μ2

11μ32 + μ12μ13μ2
31 - μ11μ13μ31μ32 - 

μ33μ11μ12μ31)/SNR2
2 + (μ2

11μ22μ23 + μ12μ13μ2
21 - μ11μ12μ21μ23 - 

μ11μ13μ21μ22)/SNR2
3)/2

33.     

      (A-6) 
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Abstract As a non-invasive imaging tool, PET play an important role in 

brain science and disease research. Dynamic PET imaging is one way of 

brain PET data acquisition. However, its widely application in clinics 

research has often been hindered by practical challenges, such as patient 

involuntary movement, which could degrade both image quality and the 

accuracy of the quantification. This is even more obvious in scans of the 

patients with neurodegeneration and mental disorders. Traditional 

motion correction methods are either based on images or raw measured 

data, were shown to be able to compensate the motion to some extent. 

However, when the PET tracer kinetics are present, like in the early and 

middle scan phase, existing method may fail. In this work, we propose a 

motion compensation approach for dynamic PET imaging. Our method 

only requires reconstructed images, based on which the motion can be 

estimated and compensated. The simulations and patient study show that 

the proposed method can compensate the complex motion in scans with 

three different tracers. The recovered image quality and quantification 

was superior to the ones corrected with the conventional image-based 

method. The proposed method enables image quality control for dynamic 

PET imaging, hence facilitate its applications in clinics and research. 

1 Introduction 

Advanced imaging technology such as Positron Emission 

Tomography (PET), as a noninvasive tool, has led to 

remarkable improvement in our knowledge of brain. 

Dynamic PET is an acquisition method that allows 

clinicians and researchers to study the physiological or 

pathological processes of the human body, and in particular 

the brain via the use of specific tracers. The metabolism, or 

receptor binding, of the living body, can be quantitatively 

calculated from dynamic data based on proper kinetic 

modeling.  

    A factor affecting dynamic PET quality is voluntary and 

involuntary patient movement. For brain PET imaging, 

patient head movement during scanning presents a 

challenge for accurate PET image reconstruction and 

subsequent quantitative analysis [1]. In dynamic PET, these 

problems are often more sever since the scan times are 

commonly over one to two hours [2]. In such cases, subjects 

that have neurodegenerative disease or mental disorders 

cannot remain still. The ability to compensate head motion 

in dynamic imaging, would be of great value. Several types 

of retrospective correction methods already exist, from 

image-based methods such as multiple acquisition frame 

[3,4], to list-mode data-based methods [5,6]. However, 

these methods often cannot cope with dynamic PET 

imaging well, as their performance can be degraded by the 

changing tracer kinetics, e.g. in early-mid phase of a FDG 

scan or in a perfusion scan. 

In this study, we propose a method which can 

compensate the motion in dynamic reconstructed PET 

images. The method has an iterative implementation, and in 

each iteration two subsequent steps are performed. First, 

abrupt inter-frame movement can be compensated by 

incorporating the tracer kinetics into a groupwise image 

registration process. Second, a multi-phase alignment can 

further compensate the residual slow movement across the 

entire scan. By iterating these steps, the reconstructed 

images are aligned, and subsequent kinetic modelling can 

be performed with confidence. In the following context, we 

will first illustrate the details of the methods, and then 

perform experiments to evaluate the proposed method. 

2 Materials and Methods 

Let us define the motion parameters T at each frame that 

representing the relative head position in scanner coordinate 

system: 

 1...N_frame N_frame
={T } , , , , ,k k x y z x y z k

r r r t t t= 
=T   (1) 

where k is the frame index, rx, ry and rz are the rotations, tx,ty 

and tz are the translations. For T we have a total number of 

N_frame×6 parameters to be estimated. Conventional 

image-based method registers all frames to a reference 

frame to obtain T. However, the varying contrast in 

dynamic images could prevent the accurate registration, 

especially considering the relatively high noise in PET 

image. Therefore, we propose an iterative method to cope 

with the above problem. In each iteration, motion 

parameters were first estimated within a procedure called 

kinetics-driven estimation, and then refined within a 

procedure called multi-phase refinement (Figure 1). To 

perform the kinetics-driven estimation, we estimated the 

initial T by utilizing the fact that motion can affect the 

accuracy of the kinetic modelling. A cost function which 

reflects the degree that how much the dynamic images fit a 

kinetic model was introduced. We estimated the kinetic 

parameters p by minimizing the cost function L1 from the 

reconstructed images: 

( )
2

L1( ; ) ( ( )) ( ( ), )

p̂= argmin L1( ; )

k k j S k j

j N k F

p

p T w I T x I T x p

p T

 

 
= − 

 
 

 (2) 

which is essentially a modelling process, where wk is the 

weighting factor at each frame (proportional to the frame 

duration). Tk is a zero vector in first iteration, �̂�  are the 

estimated kinetic parameters. We can generate a new set of 

images IS(x, p̂), which is less affected by motion artifacts 

compared with I(x). For different tracer and the target organ, 

we can choose appropriate model to compute IS (x,p). For 

example, Patlak Graphical model can be applied for 18F-
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FDG; Simplified reference tissue model (SRTM) can be 

applied for 11C-raclopride. Performing the pairwise image 

registration for each frame in IS(x, p̂) and I(x): 

( )k

1...N_frame

ˆ ˆL2( ; ) NCC ( ( )), ( ( , )

ˆ arg min L2( ; )

ˆ ˆ={ }

k

k j S k j

j N

k k
T

k k

T p I T x I T x p

T T p

T



=

=

=



T

）

(3) 

where the similarity metric is chosen as summed 

normalized cross correlation (NCC) difference of all voxels. 

By optimizing L2, we can find the initially estimated 

motion parameters �̂�.  

It was shown that the most of the abrupt inter-frame 

movement can already be estimated by performing above 

steps. To further estimate the residual slow movement 

compenent, we introduced a multi-phase registration step. 

All frames were aligned to a reference position. Unlike 

conventional MAF method, it segemented the frames into 

three groups and for each group we registered the images to 

the middle frame in that group (Figure 1). Then these three 

middle reference frame were aligned, hence all frames were 

aligned.  

 

 

 
Figure 1 Multi-phase registration that refines the estimated 

motion parameters. 

 

 

 

 
Figure 2 The iterative correction scheme proposed in this 

work. 

 

 

We can alternate above estimation and refinement 

process, with the output from each as the input to another 

(Figure 2). Multi-resolution acceleration was applied to the 

scheme. At first iteration, we down-sampled all dynamic 

images in a designated resolution level and performed the 

estimation. Then the transformed images can be supplied 

into next iteration and repeated until next resolution level. 

Whether preceding to next resolution level or not was 

determined by checking if the change in motion estimates 

was less than predefined threshold. Upon obtaining final 

motion parameters, we can re-align the original 

reconstructed images to a reference position to finish 

correction. Subsequent kinetic modelling can be performed 

on the corrected images to derive either micro- or macro- 

parameters. 

3 Results 

We simulated 60-min dynamic acquisitions for three tracers: 
18F-FDG with irreversible two-tissue compartment model; 
11C-raclopride and 11C-WAY-100635 with reversible two-

tissue compartment model. The simulated micro parameters 

were obtained from existing publications. Realistic Poisson 

noise was added into these images with normalization to the 

frame duration [7]. We applied rigid motion segments with 

slow and abrupt position change to the scan by transforming 

each individual image, hence only inter-frame movement 

was simulated. Motion correction was performed using the 

proposed and conventional MAF methods. The proposed 

method run for two iterations from coarse to fine resolution 

levels (downsample factor 4×4×2, 2×2×1). The proposed 

method recovered the dynamic PET image quality, as the 

time-activity-curve (TAC) plotted in Figure 3. For the 

simulation with 11C-Raclopride, proposed method can 

produce high quality image at static frame (50-60 mins 

summed, MSE=16.0, SSIM=0.99), while MAF correction 

produce inferior results (MSE=35.0, SSIM=0.92) when 

comparing to the truth. The derived parametric images from 
11C-WAY-100635 simulation were shown in Figure 4, 

indicates the superiority of the proposed method in 

recovering the kinetic parameters. In a patient study, the 

proposed method was shown to be able to compensate the 

motion artifacts and improve the image quality in a dynamic 

FDG scan (Figure 5). 
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Figure 3 Time activity curves in left striatum from 

uncorrected, proposed correction method, MAF and truth 

images from (a) simulation with FDG, (b) simulation with 
11C-raclopride. The meaning of the abbreviations is: NMC-

uncorrected, MAF-multiple aligned frame, KMC-proposed 

method, REF-reference. 

 

 
 

Figure 4. Results from noise-free 11C-WAY-100635 

simulation. (a) Transaxial slice of voxelized volume of 

distribution image that is calculated with Logan graphical 

analysis. (b) The decrease in variance from Logan analysis 

indicates the effectiveness in recovery. The methods listed 

here are the same as in Figure 3. 

 

 
Figure 5 Motion correction was applied to a motion-

contaminated 60-min 18F-FDG patient scan. After 

correction, the image quality is improved (summed over 5-

10 min). The intensity value of a region in frontal lobe is 

15.1 % higher for the corrected image.  

 

4 Discussion and Conclusion 

 

To conclude, in this preliminary study, we demonstrate a 

motion correction method that works for a dynamic brain 

PET scan. It can reduce the effect of the involuntary head 

movement on image quality and potential inaccurate 

quantification.  
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Abstract Recently, a new concept of COplanar Transmission and
Emission Guidance in Radiotherapy (Co-TeGRT) has been proposed
to enable multi-modality imaging with great potential of better data
registration and simplified workflow. In Co-TeGRT, a relaxed Equian-
gular Detector CT (RedCT) scan is formed naturally, where the source
position is away from the focus of equiangluarly distributed detector
pixels, leading to a unique nonuniform data sampling on detector. In
this work, based on an in-depth investigation of the novel geome-
try in RedCT, we present a direct filtered-backprojection (FBP) type
reconstruction with no data rebinning needed, where an innovative
weighting strategy before filtering is developed. Numerous simulation
studies show that accurate reconstruction with better spatial resolution
can be achieved by using our proposed FBP algorithm, validating our
method to be effective and feasible in practical applications.

1 Introduction

Nowadays, multi-modality imaging such as positron emis-
sion tomography (PET) and computed tomography (CT) has
been greatly advanced for image guidance in Radiotherapy[1].
Recently, a new concept of compact architecture of COpla-
nar Transmission and Emission Guidance in RadioTherapy
(Co-TeGRT) has been proposed[2], which has great potential
of multi-modality imaging with benefits in better data regis-
tration and simplified workflow. The Co-TeGRT is enabled
by leveraging a common detector developed to detect both
X-ray and gamma ray photons. The system can be further
optimized by combining the common detector with a small-
sized KVCT detector to form a hybrid radiation sensor (as
illustrated in Fig. 1), where PET and CT imaging and MV
treatment can all be assembled in the same scan plane on a
rotating gantry. Such a compact system design balances both
PET and KVCT image performance during MV treatment.
Regardless of the performance difference between the KVCT
dedicated detector segment and the common detector seg-
ment, there exists an interesting problem on image recon-
struction from such a novel geometry, specifically, from a
relaxed equiangular detector CT (RedCT) scan.

2 Method

In Co-TeGRT, the arc-shape common/hybrid detector, in gen-
eral, is formed symmetrically along a circle. Let the detect
pixels be equiangularly distributed, whose focus is at the cen-
ter of the rotating gantry. Apparently, the corresponding KV

*Author to whom correspondence should be addressed. Email address:
hwgao@tsinghua.edu.cn.

Figure 1: An illustration of a new concept of Compact architecture
of coplanar Transmission and Emission Image Guided Radiother-
apy (Co-TeGRT).

X-ray source should locate on the gantry as well and is there-
fore away from the focus of the detector, making it a unique
imaging geometry. As a result, CT imaging in Co-TeGRT
is quite different from a typical equiangular or equispaced
detector CT scan.

2.1 The Architecture of RedCT

A simplified imaging geometry using the KV X-ray source
and the common/hybrid detector in Co-TeGRT is shown in
Fig. 2. Without loss of generality, the KV X-ray source
may not be exactly positioned on the same orbiting circle as
the detector due to the manufacturing limitations in practical
applications. Let R be the radius of the detector equiangularly
distributed with a focus at location O (namely the detector
rotation center), the distance between the kV X-ray source
and the detector rotation center can be denoted as D = kR.
Here, k is a ratio depending on the relative location of the
source to the detector. Apparently, k = 1 when the source
and detector are strictly co-circled.
Given the geometry in Fig. 2, the fan angle α and the central
angle γ always meet the following condition:

α = g(γ) = atan(
sinγ

cosγ + k
). (1)

From the Icnscribed Angle Theorem, it is seen that only when
k = 1 will the fan angle α ≡ γ/2 be equiangularly sampled
(assuming γ is uniformly sampled). Otherwise, it will be
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Figure 2: The imaging geometry of a RedCT scan in Co-TeGRT.

a nonuniform sampling on the detector (with respect to the
projection rays). Therefore, a CT scan in Co-TeGRT, in
essence, is a relaxed equiangular detector CT (RedCT).
For a RedCT scan, due to the nonuniform sampling on de-
tector, it is an interesting but open question if an analytic
reconstruction can be done without data rebinning. In this
work, we demonstrate that a practical filtered-backprojection
(FBP) type algorithm is still available as long as the ratio k is
not too off from 1.

2.2 A Practical FBP-type Reconstruction

For a typical equiangular fan-beam CT with a uniformly
sampled fan-angle α , an FBP reconstruction formula can be
written as:

f (x,y) =
1
2

∫ 2π

0
dβ
∫ +αm

−αm

dα p(α,β )

× Dcosα
L2 h(sin(α0−α)),

(2)

where,

L2 = (R+xcosβ + ysinβ )2 +(−xsinβ + ycosβ )2,

tanα0 =
−xsinβ + ycosβ

R+ xcosβ + ysinβ
,

(3)

and β is the source-detector rotation angle.
For a RedCT scan, substituting α by γ using Eq. (1), one gets

f (x,y) =
1
2

∫ 2π

0
dβ
∫ +γm

−γm

dg(γ) p(γ,β )

× kRcosg(γ)
L2 h(sin(g(γ0)−g(γ))),

(4)

where,
sinγ0

cosγ0 + k
=
−xsinβ + ycosβ

R+ xcosβ + ysinβ
. (5)

In Eq. (4), unfortunately, due to the g(·) function the filtering
processing no long preserves a shift-invariant property (can-
not be derived as a function of (γ0−γ)), making it difficult to
achieve an exact filtered-backprojection algorithm. However,
a good approximate formula can still be achieved as follows.
First, Let us simplify h(sin(g(γ0)−g(γ))) as

h(sin(g(γ0)−g(γ))) = h(sin(g′(ζ )(γ0− γ)))
≈ h(sin(m(γ0− γ))),

(6)

where,

m =

∫ γm
−γm

g′(x)dx

2γm
, g′(x) =

1+ kcosx
k2 +2kcosx+1

. (7)

Here, the scaling factor m is the mean value of g′(x) within a
range of [−γm,γm] that roughly scales a fan angle α in RedCT
(nonuniformly sampled) back to a central angle γ (uniformly
sampled), with a maximum value being 1

k+1 . Comparing
with using 1

k+1 as the scaling factor directly(α ≈ γ
k+1 ), m

can reduce overall reconstruction error across the entire fan
angle ranges. After using such a scaling factor, the filtering
processing becomes shift-invariant as desired.
Of course, using a simply scaling factor m or 1

k+1 will result
in causing inconsistencies across CT projections. However,
an empirical weighting strategy can be established to further
reduce these inconsistencies and get quite accurate recon-
struction. In this work, we apply a weighting factor w into
the original projection p(γ,β ) before filtering,

p̃(γ,β ) = w · p(γ,β ), w =

(
γ/α

mean(γ/α)

)4

. (8)

The w can be treated as a compensation for the sampling
variation from γ to α . Finally, a practical FBP-type recon-
struction formula is obtained as

f (x,y) =
1
2

∫ 2π

0
dβ
∫ +γm

−γm

dγ
kRcosg(γ)

L2 g′(γ)p̃(γ,β )

× (γ0− γ)2

sin2(m(γ0− γ))
h(γ0− γ),

(9)

3 Results

In order to evaluate the performances of RedCT reconstruc-
tion methods, fan-beam RedCT projections of various phan-
toms were generated with k′s ranging from 0.8 to 1.2. The
radius R (detector-to-focus distance) was set as 500 mm,
with 480-mm-in-diameter as the nominal scan field-of-view
of RedCT. An equiangular detector arc consisting of 1000
detector pixels with a pixel size of 1×1 mm2 was used. The
number of view angles was set as 1000 per one rotation.
CT images were reconstructed using Eq. (9) and its variants.
Rebinning-to-equiangular CT scan was also implemented for
comparison of spatial resolution. Reconstruction from stan-
dard equiangular CT having the same detector-to-focus and
source-to-focus distance(ie, k = 1) was taken as the ground
truth for other k values.

3.1 A water phantom

Here, a water clyinder with a radius of 240 mm was simu-
lated. The source to center distance was 450 mm (k = 0.9).
As shown in Fig. 3 and Table 1, CT images reconstructed
using the scaling factor m during the filtering step is biased,
the scaling factor 1

k+1 makes it better. Our proposed empir-
ical weighting strategy before the filtering generates quite
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Figure 3: The central profiles of reconstructed images for a
480mm-in-diameter water phantom using different reconstruction
approaches. It is clear that using scale factor m or 1

k+1 alone cannot
decrease the CT nonuniformity as the peripheral region is higher
than the central. With the weighting factor w, no significant nonuni-
formity is observed.

(a) (b)

1

2

1

2

Figure 4: CT images of the modified Shepp-Logan phantom re-
constructed from a fan beam equiangular CT (a), and from RedCT
(b). Display window: [0.98, 1.05].

accurate results, with a CT number inaccuracy of about 1
Hounsfield Units (HU), largely acceptable for practical appli-
cations.

Table 1: Reconstrution PSNR and SSIM relative to ground truth
for Fig. 3.

Reconstructin method PSNR(dB) SSIM

Standard equiangular CT 52.86 1
Using 1/(k+1) only 38.64 0.9998

Using m only 41.18 0.9998
Using both m and w 51.84 0.9999

3.2 A modified Shepp-Logan phantom

To evaluate the performance of RedCT image reconstruction
with respect to object shapes, we simulated a RedCT scan of
a modified Shepp-Logan phantom with k = 0.9. As shown
in Fig. 4, it is observed that our proposed weighted FBP
method can generate high quality CT images with no obvious
artifacts.

3.3 RedCT image from real CT data

To evaluate the performance of RedCT image reconstruction
of object close to real patient, we simulated a RedCT scan
using a dataset of CT images from a diagnostic CT scanner
with k = 0.9. As shown in Fig. 5 and Table 2, our proposed
weighted FBP method achieve reasonably accurate results as
expected.

(a) (b)

Figure 5: Abdomen CT images reconstructed from a fan beam
equiangular CT (a), and from RedCT (b). Display window: [0.2,
0.8].

Table 2: PSNR and SSIM of CT images in Fig. 5.

Architecture PSNR(dB) SSIM

The relaxed architecture(k = 0.9) 46.39 0.9924
Standard euqiangular CT 45.43 0.9912

3.4 A water phantom with iodine contrasts

It is expected that reconstruction inaccuracy increases as the
ratio k moves away from 1. As a result, an important question
is under what range of k our proposed FBP algorithm can
work well. To quantitatively get the number, we simulated
a water cylinder with four iodine contrasts shown in Fig. 6,
with CT number average relative error (ARE) calculated as,

EARE =
1
N ∑

N
|CTresult −CTgroundtruth

CTgroundtruth
|×100%, (10)

where, N is the total number of image pixels in the selected
region of interest (ROI).
The CT images reconstructed from RedCT scan at k = 0.9
is demonstrated in Fig. 6. Figure 7 shows the relationships
between k and EARE error for the ROI being the entire water
cylinder and for the four iodine contrasts, respectively. When
k = 1, EARE = 0 as expected. It is seen that find EARE errors
increase slightly slower for k < 1 when compared with that
of k > 1. Iodine contrasts shares a little bigger error when
compared with pure water areas but the overall accuracy
is acceptable for k ranging from 0.89 to 1.05, with EARE <
0.08%, indicating less than 1 HU of inaccuracy. These results
validate our proposed weighting strategy in the practical FBP
algorithm for RedCT.
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Figure 6: CT images of water cylinder with iodine contrasts used
in RedCT scan at k = 0.9. Display window: [0.9, 1.6].

(a) (b)

A
R

E

k k

Figure 7: The EARE error for ROI being (a) the entire water
phantom and (b) the four iodine contrasts only.

3.5 Spatial Resolution Comparison

To evaluate the performance of RedCT reconstruction in
terms of spatial resolution, we simulated a tungsten wire with
a diameter of 40 µm at k = 0.9. The modulation transfer
function (MTF) curves were plotted along radial direction
and azimuth direction in Fig. 8, for reconstructions by our
proposed weighted FBP method with no rebinning and by
the rebinning-to-equiangular CT method, respectively. As
expected, interpolation during rebinning-to-equiangular step
costs some loss in spatial resolution, while our weighted FBP
method preserves better MTF values.

4 Discussion and Conclusions

A compact architecture of coplanar transmission and emis-
sion Guidance in Radiotherapy (Co-TeGRT) is a promising
system design to allow PET and CT imaging and MV treat-
ment all be assembled in the same scan plane on a rotating
gantry. Due to the unique data sampling on detector, a re-
laxed equiangular detector CT (RedCT) is established in
Co-TeGRT. For this novel geometry, a practical FBP-type
reconstruction with an innovative weighting strategy before
filtering is explored with higher CT number accuracy and
better spatial resolution. Numerous phantom studies validate

(a) (b)

Figure 8: The MTF curve when k=0.9: (a) the results of radial
direction, (b) the results of ring direction.

our method to be effective and feasible for practical appli-
cations. For the ratio k ranging from 0.89 to 1.05, the EARE
error was < 0.08%, indicating less than 1 HU of inaccuracy
in reconstruction.
In theory, our proposed RedCT reconstruction method could
be easily promoted to a regular equiangular geometry with
source position away from the detector focus, where k is
close to 0 instead of 1 in RedCT. Further study of RedCT
includes using neural network to further optimize the weight-
ing strategy and extending our algorithm into 3D imaging
geometry.
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Abstract In computed tomography, scanning the entire object is some-
times impossible, causing truncated projection data. Reconstruction is
however still possible: using differentiated backprojection, the Hilbert
transform of the object can be calculated and inverted along line seg-
ments in the field-of-view. When two endpoints of the line segment
are outside the object extent, a stable analytic reconstruction formula
exists. When only one endpoint is outside the object extent, every
pixel can be reconstructed, but no inversion formula is known yet.
Uniqueness of the inverse Hilbert transform is nevertheless guaranteed
along such segments, and a numerical inverse can be used. Most pixels
of the field-of-view accept more than one “one-endpoint line segment”
and one can choose the direction; we propose here to select the optimal
direction based on an empirical criterion. Image quality improvement
is assessed against a reconstruction that uses a single direction for
every pixel.

1 Introduction

Conventional reconstruction procedures generally require the
object to fit entirely within the scanner field-of-view (FOV),
as they expect non-truncated tomographic data. However,
in many imaging scenarios, such a condition cannot be met.
Reconstruction must then use truncated projections. Recent
theoretical results show that reconstruction is possible for
some patterns of data truncation using, among other meth-
ods [1], the differentiated backprojection (DBP) followed by
the inversion of the Hilbert transform. The reconstruction of
some subset of the object, called region-of-interest (ROI), is
then possible.
For simplicity, we focus on two-dimensional (2D) parallel
beam tomography, although a generalization of the proposed
method to three-dimensional cone-beam CT is possible. The
source rotates along a 180◦ arc around the object. The scan-
ner FOV is defined as the circular region where all points are
illuminated by every source location. Knowledge of an ap-
proximate object extent Ω is assumed. If the FOV is entirely
contained in the interior of Ω, then the problem is interior
and will not be addressed in this work. We rather focus on the
problem occurring when the FOV partly overlaps the object
extent. The ROI is defined as this overlap: ROI = FOV∩Ω.
Consider any line segment that overlaps Ω and whose two
endpoints lie on the FOV border. The reconstructibility of
this line segment varies depending on the number of its end-
points located inside Ω. When the two endpoints are located
outside Ω, an analytic reconstruction formula can be ap-
plied [2]. When only one endpoint is located outside Ω,
the line segment admits a unique and mathematically stable

reconstruction [3], but no analytic formula is known yet. Un-
like the “two-endpoint line segments”, the “one-endpoint line
segments” can reconstruct any pixel of the FOV. We refer
to the problem of reconstructing such line segments as the
“one-endpoint Hilbert inversion”. This problem can be solved
numerically by several techniques, such as projection onto
convex sets [3] or singular value decomposition (SVD) [4,
5].
To our knowledge, the choice of a particular direction for
the one-endpoint Hilbert line segment is a question that has
never been addressed. In this work, each pixel of the image
is reconstructed using a direction that seems optimal with
respect to an empirical criterion. The reconstruction itself is
achieved using extended SVD (XSVD) inversion [4]. A com-
parison with XSVD that uses a single Hilbert direction [4] is
discussed.

2 Materials and Methods

Let f :R2→R be the sought object such that ∀xxx /∈Ω, f (xxx) =
0. Let p : [0;π[×R→ R be the projections of f , correspond-
ing to the scanner measurements, defined as

p(φ ,r) = pφ (r) =
∫ +∞

−∞
f
(

rαααφ + sβββ φ

)
ds (1)

where αααφ = (cosφ ,sinφ) and βββ φ = (−sinφ ,cosφ). Since
projections are truncated, p(φ ,r) is unavailable for r below
or above a certain threshold in some directions φ .
DBP links the projections to the sought object with

gθ (xxx) =
1

2π

∫ θ+π

θ

∂ p(φ ,r)
∂ r

∣∣∣∣
r=xxx·αααφ

dφ = Hθ f (xxx) (2)

where Hθ is the one-dimensional Hilbert transform of a line
of f in the direction θ ∈ [−π;π[, defined as

Hθ f (xxx) =−
∫ +∞

−∞

f (xxx− tβββ θ )

πt
dt, (3)

βββ θ = (−sinθ ,cosθ) and −
∫

represents the Cauchy principal
value of the integral [2]. Since the derivative is a local opera-
tion, the DBP is not impacted by projection truncation and
yields the correct Hilbert transform of f for points measured
by all projections, i.e., within the FOV. Therefore, f can be
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Figure 1: Notations employed in this work. The line segment L θ

passes through the point xxx with an angle θ . The points aθ
1,...,4 are

defined such that the data are measured on the segment [aθ
1 ,a

θ
3 ], and

the object extent Ω is included in segment [aθ
2 ,a

θ
4 ]. The samples of

ggg are illustrated as the red ticks, and the samples of fff as the green
ticks.

reconstructed inside the FOV by applying an inverse trun-
cated Hilbert transform to the DBP over enough segments to
cover the FOV.
We now focus on the reconstruction of a single pixel xxx∈ROI,
and we omit the xxx dependency of all symbols defined below
for clarity. Let L θ be a one-endpoint line segment that
passes through xxx at some angle θ , and let ∆ > 0 be the
sampling step along L θ . We define ggg ∈ RM as the vector
whose components are defined as

gi−aθ
1+1 = gθ

(
xxx+
(

i− 1
2

)
∆βββ θ

)
for aθ

1 ≤ i≤ aθ
3 (4)

with M = aθ
3 −aθ

1 +1. The integers (aθ
1 ,a

θ
3 ) ∈ Z2 are chosen

such that ggg samples the entire FOV along L θ .
Similarly, the vector fff ∈ RN has its components defined as

f j−aθ
2+1 = f

(
xxx+ j∆βββ θ

)
for aθ

2 ≤ j ≤ aθ
4 (5)

with N = aθ
4 −aθ

2 +1. The integers (aθ
2 ,a

θ
4 ) ∈ Z2 are chosen

such that fff entirely bounds Ω along L θ . Note that the
integers aθ

1,...,4 depend on xxx and θ since the distances between
the FOV borders, Ω borders and xxx vary with θ . The sought
value at xxx corresponds to Equation (5) with j = 0; we thus
have aθ

1 < aθ
2 < 0 < aθ

3 < aθ
4 . If these inequalities do not

hold, then L θ is not one-endpoint. Figure 1 summarizes
these notations.
As shown in Equation (2), the link between fff and ggg is the
Hilbert transform, which, in its discrete form, can be ex-
pressed as H, an M×N matrix whose values are defined
as

Hi−aθ
1+1, j−aθ

2+1 =
1
π

1
i− j− 1

2

for

{
aθ

1 ≤ i≤ aθ
3

aθ
2 ≤ j ≤ aθ

4
(6)

such that H fff = ggg. The θ dependency of fff , ggg and H has been
omitted for clarity. Note the term −1

2 appearing in Equa-
tions (4) and (6): this half-pixel shift improves the recon-
struction resolution [6]. We used here the XSVD procedure,
based on truncated SVD, to reconstruct fff XSVD [4]. The value
at xxx is then f XSVD

−aθ
2+1

, i.e. Equation (5) for j = 0.

Any angle θ such that L θ is a one-endpoint line segment
theoretically works to apply the reconstruction procedure.
Note that points having a two-endpoint line segment should
be reconstructed using the analytic formula [2], but we force
here the usage of one-endpoint line segments for simplic-
ity and to better evaluate the proposed method. We have
previously observed a residual artifact with XSVD and that
some Hilbert directions give better results than others. We
therefore propose to select the direction that minimizes some
criterion C for a given point xxx depending on the problem
parameters aθ

1,...,4, that is

θ̂ = argmin
θ

C
(

aθ
1 ,a

θ
2 ,a

θ
3 ,a

θ
4

)
. (7)

Two different criteria were considered in this study. We
first empirically decided to minimize the distance between
aθ

3 and aθ
4 , as it is the part of the segment that cannot be

reconstructed, relatively to the number of values aθ
3 −aθ

2 that
can be reconstructed. This criterion is modeled as

C1

(
aθ

1 ,a
θ
2 ,a

θ
3 ,a

θ
4

)
=

aθ
4 −aθ

3

aθ
3 −aθ

2
. (8)

A known artifact of XSVD reconstructions is an offset whose
intensity decreases with the distance to the inner FOV bor-
der [4]. We designed another criterion aiming at maximizing
the distance between xxx and the FOV boundary in the direction
θ . This second criterion is expressed as

C2

(
aθ

1 ,a
θ
2 ,a

θ
3 ,a

θ
4

)
=−aθ

3 . (9)

The proposed method was evaluated using computer simula-
tions of the 2D Shepp-Logan phantom scaled up 96 times. A
set of 720 parallel projections of 800 rays each were analyti-
cally computed over an arc of 180◦. The pixel spacing of the
projections was 0.25 mm. Reconstructions were computed
on a 256×256 pixel grid, in which only the pixels within
the FOV were reconstructed. A FOV was simulated by using
the DBP data only from inside a circular region located near
the bottom of the phantom. The estimated object extent is
an ellipse that encompasses the phantom with a 1 % margin.
The sampling step ∆ was set to 0.25 mm. The resulting set-
up is as in Figure 1. The pixel spacing of the reconstruction
was 1 mm. For comparison, the same reconstruction was
performed with the Hilbert direction θ set to 0 (vertical) for
all pixels.
For each pixel of the ROI and for a given angle θ , our im-
plementation analytically computes the locations of the in-
tersections between the segment and the FOV or Ω. The
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Figure 2: (a) and (b): directions and reconstruction when all
directions are vertical. (c) and (d): directions and reconstruction
for criterion C1. (e) and (f): directions and reconstruction for
criterion C2.

optimization problem of Equation (7) is solved numerically
by evaluating its right-hand side for every value of θ with a
0.25◦ step. Then, the DBP is computed on every sample of ggg
to apply the XSVD. All simulations were implemented using
Python 3.8.5, NumPy 1.19.4 and RTK 2.1.0 [7].

3 Results

Figure 2 shows directions and reconstructed images using
either a vertical direction for every pixel (Figures 2a and 2b),
the criterion C1 (Figures 2c and 2d) or the criterion C2 (Fig-
ures 2e and 2f).
Figure 3 shows profiles through two columns of the recon-
structed images displayed in Figures 2b, 2d and 2f. Figure 3a
shows the central column; Figure 3b shows the column lo-
cated at 22 mm on the right hand side of the FOV center. The
profile locations are displayed in Figure 2b.

4 Discussion

Using a single Hilbert direction aligned to the pixel grid to
reconstruct the entire FOV has some advantages: a single

inversion is sufficient to reconstruct a whole line of pixels,
and the procedure is computationally inexpensive. However,
it also has major drawbacks: a single direction is not enough
for a full-FOV reconstruction in many configurations, and the
chosen direction can be sub-optimal for some pixels, deteri-
orating the reconstruction. This procedure was reproduced
and the result is shown in Figure 2b. This reconstruction
also displays slight vertical streaks in the Hilbert direction
because each line is treated as an independent problem. The
method proposed here avoids these limitations, because each
pixel is treated as an independent problem.
Figures 2d and 2f show that the reconstructions are less ac-
curate than that of Figure 2b for pixels lying close to the
FOV inner boundary. This poor quality is probably due to
the interpolation used to compute the DBP in Figures 2d
and 2f, whereas Figure 2b uses exact values, as it is less com-
putationally demanding to do so in a single Hilbert direction.
However, in the rest of the ROI, the quality is higher by the
use of multiple Hilbert directions; this improvement is visible
on Figure 3. The discretization of the angle θ , when solving
Equation (7), may explain the small streak artifacts visible in
the reconstructions.
The pixels close to the interior endpoint are known to be
difficult to reconstruct. We attribute this difficulty to the
decreasing numerical stability of the one-endpoint Hilbert
inversion model [3]. The same instability was observed in
previous works performing one-endpoint reconstructions us-
ing XSVD [4, 5], where it was shown that this instability
creates an offset whose intensity increases towards the in-
terior endpoint. On Figure 3, this effect is clearly visible,
especially looking at the profile of the reconstruction shown
in Figure 2b; the same offset, although not as intense, is ob-
served when each pixel uses its own direction. Interestingly,
the offset is also observed in other works not using SVD
inversion [3, 8–10], suggesting that this effect is not directly
caused by the one-endpoint Hilbert inversion but is instead
intrinsic to the ROI tomography problem.
As an attempt to reduce this offset, the criterion C2 (Equa-
tion (9)) was designed to favor directions that maximize the
distance between the FOV border and the sought pixel. Fig-
ure 3 illustrates the improvements yielded by C2: the offset
is considerably reduced compared to that of a reconstruc-
tion performed in a fixed direction. Figure 2e shows that
the bottom of Ω is reconstructed using almost vertical direc-
tions using this criterion; this observation explains the similar
quality to that of the vertical-only reconstruction, as shown
on the left side of Figure 3a. Criterion C1 also diminishes
the offset, but two areas near the intersections between the
FOV and Ω, visible in Figure 2d, are reconstructed with a
poor quality. Neither C1 nor C2 stands out and the optimal
criterion remains to be found.
The line that connects the two intersection points between
Ω and the FOV boundaries forms a border between two
regions. Pixels located above this border are only crossed
by line segments that are at most one-endpoint, which fits
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(a) Profile through the central column.
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(b) Profile through the column located at 22 mm on the right
hand side of the FOV center.

Figure 3: Two vertical profiles, shown in Figure 2b, of the reconstructions displayed in Figures 2b, 2d and 2f. The x-axis is limited to the
ROI; the y-axis is limited to the grayscale limit [1;1.06].

the proposed approach. On the other hand, pixels that lie
below the line accept at least one two-endpoint segment;
along these segments, an analytic inversion formula should
instead be applied [2] since this two-endpoint inversion is
more accurate than the one-endpoint inversion. However,
full-FOV reconstruction is impossible using two-endpoint
line segments only. A previous work explored the possibility
of combining two- and one-endpoint reconstructions in a
single image [5]; here, for simplicity and to better evaluate
the proposed method, the full FOV is reconstructed using
one-endpoint line segments only, although it is not optimal.

5 Conclusion

We have proposed a method for ROI reconstruction from
truncated projections using one-endpoint Hilbert inversion
techniques. This method selects a different Hilbert direction
for each pixel, chosen to optimize some criterion; here, we
empirically designed two criteria. The proposed method is
able to reconstruct any non-interior ROI tomography prob-
lem, while maintaining a satisfactory image quality. Note-
worthy improvements were observed compared to a similar
method that uses a fixed Hilbert direction for all pixels.
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Abstract Time-of-flight (ToF) energy-dispersive neutron tomography is 

complimentary to X-ray tomographic imaging method aimed at the 

reconstruction of wavelength-dependent material response in every 

three-dimensional volume element. ToF neutron tomography has already 

demonstrated great potential for both mapping of crystallographic 

properties and elemental composition in micrometer scale. However, 

available neutron beams have inherently low fluxes and high ToF 

resolution comes at the cost of prohibitively long exposure times. In this 

paper we investigate application of advanced iterative reconstruction 

algorithms with both spatial and spectral regularisation to reduce 

exposure time. The capability of advanced reconstruction algorithms is 

demonstrated on a specifically designed multi-material sample. 

2 Introduction 

Time-of-flight (ToF) energy-dispersive neutron computed 

tomography (CT) provides a complimentary technique to 

X-ray CT. As neutrons interact with atomic nuclei rather 

than an atom’s electron cloud and can penetrate materials at 

wavelengths comparable to lattice spacings, they can be 

used to investigate the chrystallographic structure of 

materials. Governed by Bragg’s law, coherent elastic 

scattering produces characteristic jumps in the transmitted 

neutron spectrum at wavelength equal twice the spacing 

between lattice planes. As neutrons are uncharged particles 

and can penetrate much deeper into material than X-rays, 

they allow to probe atomic structures in bulk samples. In 

fig. 1, left, we show the wavelength-dependent macroscopic 

total neutron cross-section 𝛴tot (𝜆), [cm−1] for materials 

employed in the present study. The neutron cross-section 

defines probability of interactions to occur, i.e. decrease in 

transmitted intensity. Such acquisition is also commonly 

called Bragg-edge neutron CT due to characteristic shape of 

the transmitted spectrum. 

 
Fig. 1. Left: Theoretical neutron spectra for materials employed in this 

study. Right: White beam (sum of all channels) reconstruction of the 

sample cross-section with the conventional FBP method. Colour 

range was adjusted to highlight low intensity features. 

ToF imaging utilises a pulsed neutron source and 

measures arrival time of each neutron with respect to the 

pulse. Pixellated counting ToF detector discretises recorded 

information into pixel elements, each counting the 

individual incident neutrons and registers each of them in 

one of multiple ToF channels depending on arrival time. 

ToF values are subsequently converted into wavelength 

values. Data acquisition in ToF neutron CT is very time 

consuming since neutron fluxes are typically low 

(compared to synchrotron X-ray sources) and because the 

detected neutrons are shared among multiple ToF channels. 

Thus, prohibitively long exposure time (in order of several 

hours per projection) is needed to acquire sufficiently high 

counts in each ToF channel. In practice, shorter exposure is 

used and acquired multi-channel projections are binned, in 

spatial and/ or spectral dimension, to improve signal-to-

noise ratio [1, 2]. 

Regularised iterative reconstruction has already proven 

to be a viable approach to improve reconstruction quality 

from noisy and/or undersampled data in X-ray CT. Iterative 

reconstruction formulates reconstruction as an optimisation 

problem and allows to incorporate available prior 

knowledge to produce satisfactry results for otherwise 

unsolvable tomographic problems. In spectral tomography, 

priors exploiting structural similarities across energy 

channels are particularly promising. Here, we investigate 

application of two regularisation techniques: Total Nuclear 

Variation (TNV) and a dedicated tailored regularisation 

technique. The former method is a recent regulariser for 

reconstructing spectral CT images which enforces common 

edges across all channels [3-5]. The second technique is 

specifically tailored for Bragg edge neutron CT and 

combines Total Variation (TV) regularisation [6, 7] in the 

spatial dimension and Total Generalised Variation (TGV) 

regularisation [8] in the spectral dimension. TV preserves 

edges and suppresses noise by encouraging sparsity in the 

finite difference domain, while TGV regularisation 

promotes characteristic piece-wise smooth behaviour in the 

spectral dimension. Implementation of the advanced 

reconstruction methods has been made possible by the CCPi 

Core Imaging Library (CIL) reconstruction 

framework [9, 10]. The capability of advanced 
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reconstruction algorithms is demonstrated on a specifically 

designed multi-material sample consisting of aluminium 

cylinders filled with metallic powder of high purity (fig. 1, 

right). Although the case study has been performed on a 

single two-dimensional slice, the results can be generalised 

to the third dimension.  

2 Materials and methods 

2.1. Data acquisiton 

The dataset in the present study was imaged at the Imaging 

and Materials Science & Engineering (IMAT) beamline 

operating at the ISIS spallation neutron source (Rutherford 

Appleton Laboratory, U.K.) [11, 12]. The ToF detector [13] 

has 512×512 active pixels, 0.055 mm pixel size. The 

detector was configured to measure 2843 energy channels 

between 1 Å and 5 Å with wavelength resolutions between 

0.7184⋅10
−3

 Å and 2.8737⋅10
−3

 Å. A set of spectral 

projections was acquired at 120 equally-spaced angular 

positions over 180° rotation. Each projection was acquired 

with 15 min exposure time. Additionally, 8 flat field images 

(4 before and 4 after the sample acquisition) were recorded 

with the same settings. Detector related corrections [14] and 

flat field correction were applied to all projections. Finally, 

spectral images were cropped spatially to 460 pixels and 

binned in the spectral dimension to 339 channels with a 

uniform bin width of 11.5⋅10
−3

 Å.  

In fig. 2 (upper row) we demonstrate sinograms for 

selected individual wavelength channels. Spanning the most 

valuable spectral range for the present sample, they show 

differences in noise levels and intensity of features 

depending on wavelength. The incident spectrum on IMAT 

has a crude “bell shape” with a peak around 2.6 Å [11, 12]. 

Therefore the elevated noise level is noticeable in the 4.5 Å 

wavelength channel. Only three most attenuative materials 

(Cu, Fe and Ni) are visible in sinograms; Zn and Al are 

obscured in higher levels of noise. 

For comparison purposes, the images were 

reconstructed using filtered backprojection implemented as 

FBP in CIL with a Hann filter (fig. 2, bottom row). As 

expected, FBP produces extremely noisy reconstructions. 

Only Ni is clearly visible in the reconstructed cross-section. 

Reconstruction of 4.5 Å wavelength channel is substantially 

noisier due to both lower incident flux and lower neutron 

attenuation of the selected materials. 

 
Fig 2. Top row: Sinograms for selected wavelength channels. Bottom 

row: FBP reconstruction of the selected sinograms. 

2.2. Reconstruction 

In every detector channel 𝑘, 𝑘 =  1, … , 𝐾, where 𝐾 is the 

total number of channels, the measurement model in 

neutron CT can be well approximated by the Beer-Lambert 

law. Let us consider an incident beam of neutrons of given 

intensity 𝐼0 at specific wavelength 𝜆𝑘, the intensity 𝐼 which 

reach the detector element, will be reduced according to: 

𝐼(𝜆𝑘) = 𝐼0(𝜆𝑘) exp(− ∫ 𝜇(𝑥, 𝜆𝑘)d𝑥
𝐿

), 

where 𝐿 is a linear path through the object and 𝜇 is the 

wavelength-dependent attenuation coefficient at the 

physical position 𝑥 in the object. Given an appropriate 

discretisation of Radon transform 𝐴 (projection operator), 

tomographic reconstruction in every wavelength channel 𝑘 

can be modelled as a system of linear equations: 

�̅�(𝜆𝑘) = − ln (
𝐼(𝜆𝑘)

𝐼0(𝜆𝑘)
) ≈ �̅��̅�(𝜆𝑘),            (1) 

where �̅� is the discrete measured data, �̅� is the to-be-

reconstructed attenuation map discretised onto a Cartesian 

grid. The attenuation map �̅� is typically represented as a 

column vector with 𝑁 = 𝐷2 elements (voxels), where 𝐷 is 

the number of elements in a detector row. The discrete 

measured data �̅� is vectorised as a column vector with 𝑀 =
𝑃𝐷 elements (pixels), with 𝑃 being the total number of 

projections. The projection operator �̅� contains 𝑀 × 𝑁 

elements. If 𝑖, 𝑖 = {0, 1, …  𝑀 − 1} and 𝑗, 𝑗 = {0, 1, … , 𝑁 −
1}, then �̅�𝑖,𝑗 is the length of intersection of the 𝑖.th ray with 

the 𝑗.th voxel. 

Similar to low-dose medical CT, the problem (1) is ill-

posed in mathematical sense. Therefore, we seek for a way 

to compensate for the ill-posedeness of the problem by 

incorporating some prior knowledge about the solution. 

Unlike channel-by-channel methods which reconstruct each 

channel individually, we explore methods to jointly 

reconstruct all channels and exploit interchannel 

correlations. Then, the spectral CT data is modeled as 

𝑏 = 𝐴𝑢, 

where 𝑏 and 𝑢 are obtained by stacking 𝐾 column vectors 

�̅�(𝜆𝑘) and �̅�(𝜆𝑘), respectively, and 𝐴 = 𝐼𝐾×𝐾⨂�̅�, ⨂ is the 

Kronecker product, and 𝐼𝐾×𝐾 is the identity matrix of order 

𝐾. The reconstruction problem is formulated as  

arg min{𝐹(𝑢) = 𝑓(𝑏, 𝐴𝑢) + 𝛼𝑔(𝑢)}, 

where 𝑓(𝑏, 𝐴𝑢) is a data fidelity metric which measures the 

discrepancy between the projection of solution 𝑢 and the 

acquired data 𝑏. The regularisation term 𝑔(𝑢) penalises 

undesired solutions and “guides” the optimization 

algorithm towards a solution with expected properties, 

which are commonly formulated in terms of image 

smoothness and sharp boundaries. The parameter 𝛼 

balances two terms and has to be tuned for each specific 

regulariser and dataset. 

TNV is a recent extension of TV for multichannnel 

images [3-5]. TNV encourages the rank-sparsity by 

penalising the singular values of the Jacobian matrix. TNV 

has similar properties to TV regularisation, i.e. it also 
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promotes a sparse image gradient in the spatial dimension, 

but also favours reconstructions with common edges across 

all channels. Consequently, TNV correlates channels and 

improves reconstruction quality by promoting common 

structures in multichannel images. The reconstruction 

problem is then formulated as, 

𝐹(𝑢) = ‖𝐴𝑢 − 𝑏‖2
2 + 𝛼TNV(𝑢).           (2) 

Similar to TV, TNV suffers from a loss of contrast. 

Secondly, TNV does not allow the decoupling of 

regularisation parameters for the spatial and spectral 

dimensions which makes impossible to balance the level of 

regularisation between dimensions. 

Here, we propose a novel tailored regulariser which 

combines TV [6,7] in the spatial dimension with TGV [8] 

the spectral (channel) dimension to jointly reconstruct low-

count multi-channel neutron CT data. The proposed 

approach allows enforcing different image properties in 

respective dimensions. As the TV model captures piece-

wise constant image properties in the spatial dimension, we 

rely on another regulariser to support reconstruction in the 

spectral dimension. Here, we rely on TGV to recover piece-

wise smooth features in the spectral dimension because 

TGV allows balancing the first and the higher-order 

derivatives of images and consequently alleviates the 

staircasing effect inherent to TV. In this case the 

reconstruction problem is formulated as, 

   𝐹(𝑢) = ‖𝐴𝑢 − 𝑏‖2
2 + 𝛽TV𝑥,𝑦,𝑧(𝑢) + 𝛾TGV𝑐(𝑢).    (3) 

Here we use TV𝑥,𝑦,𝑧 to designate a TV operator over three 

spatial dimensions 𝑥, 𝑦 and 𝑧, whereas TGV𝑐 operates over 

the spectral (channel) dimension.  

Both methods (2) and (3) were implemented based on 

the CCPi Core Imaging Library (CIL) [9, 10]. CIL wraps 

the ASTRA toolbox [15] to perform forward- and back-

projection operations and provides a set of various 

regularisers through the CCPi Regularisation Toolkit [16]. 

FISTA [17] and PDHG [18] were used to solve (2) and (3), 

respectively. Regularisation parameters were chosen 

manually to achieve both noise suppression and feature 

preservation in both spatial and spectral dimensions 

(𝛼=0.01, 𝛽=0.0075 and 𝛾=0.3). 

3 Results 

Fig. 3 shows two-dimensional slices for selected 

(individual) wavelength channels reconstructed using the 

regularised iterative methods discussed in this paper. Both 

TNV and TV+TGV demonstrate drastic improvement in 

reconstruction quality and noise suppression. TNV 

produces “patchy” images and smearing of features is 

visible especially between the Cu and Zn cylinders (fig. 3, 

top row). Overall, features appear sharper in the TV+TGV 

reconstruction (fig. 3, bottom row).  

TNV uses a small pixel neighbourhood information to 

correlate structural information along the spectral 

dimension. This acts similarly to a low-pass filter. Thus, 

TNV suppresses ring artifacts visible in FBP reconstruction 

(fig. 2) but causes blurred and enlarged rings especially 

prominent in 4.5 Å channel, where counts are much lower. 

Al has very low neutron attenuation and is invisible in the 

TNV reconstruction due to contrast loss; a known drawback 

of both TV and TNV regularisation methods.  

The TV+TGV reconstruction does not suffer from the 

ring artefacts and the faint Al cylinder is distinguishable in 

the reconstructed slices and profile lines (fig. 4, bottom 

row). Fine features inside the Cu cylinder are also partially 

preserved in the TV+TGV reconstruction (fig. 4, top row).  

 
Figure 3: Two dimensional reconstructions of selected (individual) 

wavelength channels reconstructed with TNV regularisation (top row) 

and with TV+TGV regularisation (bottom row). White lines mark profile 

lines chosen for examination in the next figure. All slices are visualised 

with a common colour range. Colour range was adjusted to highlight low 

intensity features (maximum value of the display range was set to 30% 

of maximum intensity value in the reconstructed volume). 

 

 
Figure 4: Profiles corresponding to the vertical (top row) and horizontal 

(bottom row) white lines in figure 3 (bottom left) passing through the Cu 

and Fe cylinders and the Al and Ni cylinders, respectively. 

 

 
Figure 5: Individual spectra (solid line) reconstructed with TNV and 

TV+TGV for one representative 0.0553 mm3 voxel located within each 

material alongside the theoretical predictions (dotted black line). 
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Individual spectra reconstructed for one 0.0553 mm3 

voxel in each of the 5 materials are plotted in fig. 5 

alongside the theoretical predictions. The voxel locations 

inside the cylinders were chosen arbitrarily. The 

reconstructed spectra for Fe, Ni and Cu closely follow the 

predicted spectra for both TNV and TV+TGV 

reconstructions. The amplified noise visible in the TNV 

reconstructions between 2.5 Å and 3 Å is caused by the 

increased noise levels in input data due to the detector dead 

time [14]. While the TV+TGV produces a much smoother 

spectra the Bragg edges appear to be less prominent due to 

smearing (for instance, small edges around 2 Å in Fe). In 

the case of the TNV regularisation, the noise dominates 

over smaller Bragg edges. For the materials with lower 

neutron attenuation (Al and Zn), TV+TGV clearly 

outperforms TNV as some Bragg edges are visible in the 

reconstructed spectrum, but are completely lost in the noise 

in the case of TNV. 

Reconstruction is an intermediate step in Bragg edge 

imaging. The Bragg edge positions (in terms of d-spacing) 

allows compositional mapping, as each crystalline structure 

has a unique set of lattice spacings and hence a fingerprint 

in the neutron transmitted spectrum. The shape of the 

detected Bragg edges, i.e. deviation from abrupt predicted 

edge, supports characterisation of crystallographic 

properties. Quantitative comparison of the reconstruction 

results in terms of Bragg edge detection and 

characterisation, as well as material decomposition is a 

topic of future work.  

5 Conclusion 

We have demonstrated the capabilities of advanced 

reconstruction methods to improve reconstruction quality of 

low-count ToF neutron CT data. We investigated 

application of two regularisation techniques: the dedicated 

regulariser for multi-channel CT data and the tailored 

regularisation term encoding the prior information about 

neutron spectra. Both regularisation techniques showed 

drastic improvement of reconstruction quality compared to 

the standard FBP method. The tailored regularisation 

provided better reconstruction quality. Our study serves as 

an initial demonstration of a dedicated reconstruction 

technique that facilitates significant reduction of required 

exposure time – a major bottleneck in low flux ToF neutron 

CT studies. 
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Abstract In multi-slice super-resolution reconstruction (MS-SRR),
a high resolution image, referred to as the SRR image, is estimated
from a series of multi-slice images with a low through-plane resolution.
This work proposes a framework based on the Bayesian mean squared
error of the Maximum A Posteriori estimator of an SRR image to com-
pare the accuracy and precision of two commonly adopted magnetic
resonance acquisition strategies in MS-SRR. The first strategy consists
of acquiring a set of multi-slice images in which each image is shifted
in the through-plane direction by a different, sub-pixel distance. The
second consists of acquiring a set of multi-slice images in which each
image is rotated around the frequency or phase-encoding axis by a
different rotation angle. Results show that MS-SRR based on rotated
multi-slice images outperforms MS-SRR based on shifted multi-slice
images in terms of accuracy, precision and mean squared error of the
reconstructed image.

1 Introduction

In conventional magnetic resonance imaging, a direct high
resolution (HR) acquisition with a high signal-to-noise ratio
(SNR) is often impractical due to the long scan time required.
Previous studies have demonstrated the potential of multi-
slice super-resolution reconstruction (MS-SRR) to address
this issue by improving the inherent trade-off between resolu-
tion, SNR, and scan time [1]. The MS-SRR method consists
of estimating an HR image, named SRR image, from a series
of multi-slice images with a low through-plane resolution,
hereafter referred to as the low resolution (LR) images [2].
Two acquisition strategies are more commonly adopted. The
first consists of acquiring a set of LR images in which each
image is shifted in the through-plane direction by a different,
sub-pixel distance [3]. The second acquisition strategy con-
sists of acquiring a set of LR images in which each image
is rotated around the frequency or phase-encoding axis by
a different rotation angle [4, 5]. The rotated scheme allows
for a better sampling of the k-space compared to the shifted
scheme since each LR image samples a different part of the
k-space. Conversely, in the shifted scheme, all the LR images
sample the same part of the k-space, causing the MS-SRR to
rely exclusively on recovering the aliased frequencies in the
slice-encoding direction.
The first comparison among MS-SRR acquisition protocols
based on the two strategies was proposed in [4, 5]. A second
comparison was proposed more recently in the context of fe-
tal imaging, in which the segmentation quality of the SRR im-
age was adopted as a performance criterion [6]. In both cases,

the performance analysis focused on the non-regularized MS-
SRR problem. However, MS-SRR estimation consists of
solving an inverse problem, and regularization is required to
find a stable solution [7]. Therefore, in this work, we extend
the analysis to the regularized case, developing a framework
in which the Bayesian mean squared error (BMSE) of the
Maximum A Posteriori (MAP) estimator is proposed as a
performance criterion [8]. The MAP estimator is built in-
corporating prior knowledge about the reconstruction target.
The BMSE is chosen as a performance criterion to compare
the acquisition strategies in terms of accuracy and precision
for the class of reconstruction targets described by the prior
distribution. The BMSE results are verified with Monte Carlo
simulation experiments.

2 Materials and Methods

2.1 Super-resolution model

Let r ∈ RNr×1 be the vector containing the intensities of
the noiseless HR target magnitude image. Furthermore, let
sm ∈ RNs×1, with m = 1, ..,M, be the vector containing the
intensities of the m-th noiseless LR multi-slice magnitude
image. Then, sm can be modeled as:

sm(r) = D(AF)BG(Φm)r, (1)

with G ∈ RNr×Nr , B ∈ RNr×Nr , D ∈ RNs×Nr linear operators
that describe a geometric transformation, blurring and down-
sampling, respectively. G is a function of the geometric
transformation parameter Φm, which represents the rotation
angle or the shift of the m-th multi-slice image according to
the acquisition strategy. B models the sampling function of
the magnetic resonance imaging (MRI) acquisition method.
For multi-slice acquisitions, the sampling function can be
separated into three functions applied in orthogonal direc-
tions aligned with the MR image coordinates. The in-plane
directions (frequency and phase-encoding) are modelled by a
periodic sinc and the through-plane direction (slice-encoding)
by a smoothed box. D is a function of the anisotropy fac-
tor AF, representing the ratio of the slice thickness to the
in-plane resolution.
The sampling of the LR images can be expressed here
as a matrix-vector multiplication s(r) = Ar where s =
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[sT
1 , ...,sT

M]T ∈ RMNs×1 and A = [AT
1 , ...,AT

M]T ∈ RMNs×Nr

with Am = D(AF)BG(Φm) ∈RNs×Nr . For a detailed descrip-
tion of the implementation, we refer to [9].

2.2 Conditional data distribution

Let s̃ ∈RMNs×1 be the vector containing the intensities of the
M acquired magnitude LR images, subject to noise. Because
of the relatively high SNR of the thick slices composing the
LR images, the noise distribution can be well approximated
by a zero-mean Gaussian distribution [10]. If all voxels are
assumed to be statistically independent and the standard devi-
ation of the noise σ to be temporally and spatially invariant,
the conditional probability density function (PDF) of the data
points p(s̃|r) is equal to the product of the marginal PDFs of
the individual data points and can be expressed as follows:

p(s̃|r) ∝ exp
(
− 1

2σ2 ‖s̃− s(r)‖2
2

)
. (2)

2.3 Prior distribution

The prior distribution is modelled as a stationary Gaussian
Markov Random Field [11]. This corresponds with the as-
sumption of a multivariate Gaussian prior of the form:

p(r) ∝ exp
(
−1

2
(r− r)TK−1(r− r)

)
, (3)

parametrised in terms of its mean r and precision (inverse-
covariance) matrix K−1, which is sparse, positive definite,
and encodes statistical assumptions regarding the value of
each HR image voxel based on the values of its neighboring
voxels. Let ri be the i-th HR voxel and r∂∂∂ i

∈ RNn×1 the
voxels from the neighborhood surrounding ri, where Nn is
the number of neighborhood voxels, and ∂∂∂ i represents the
neighborhood voxels indices. We assume the conditional
probability of the i-th HR voxel given the neighborhood
voxels p(ri|r∂∂∂ i

) to be Gaussian and of the form:

p(ri|r∂∂∂ i
) ∝ exp


−λ 2

2

(
ri− ∑

j∈∂∂∂ i

α jr j,

)2

 , (4)

where ααα = {α j}Nn
j=1 is the vector of the so-called field poten-

tials. It can be demonstrated [12] that Eq. (4) holds if and
only if the joint PDF p(r) assumes the form in Eq. (3) with:

K−1
i, j = λ 2

{
1, i = j,
−α j j ∈ ∂∂∂ i.

(5)

Therefore, the hyperparameters ααα , r, and λ characterize the
prior distribution.

2.4 MAP estimator

The MAP estimator of r maximizes the posterior PDF p(r|s̃)
with respect to r, where p(r|s̃) is defined according to Bayes’

theorem [8] as:

p(r|s̃) ∝ p(s̃|r)p(r). (6)

Therefore, the MAP estimator assumes the form:

r̂ = argmax
r

lnp(r|s̃)

= argmin
r

1
σ2 ‖s̃−Ar‖2

2 +(r− r)TK−1(r− r),
(7)

which admits the closed-form solution:

r̂ =
(
σ−2ATA+K−1)−1 (σ−2ATs̃+K−1r

)
. (8)

2.5 Bayesian MSE

The BMSE is proposed as a performance criterion to com-
pare the two MS-SRR acquisition protocols described in the
introduction section. Let us first define the component-wise
MSE of r̂ as:

MSE(r) j = Es̃

[
(r̂− r)(r̂− r)T

]
j, j
, (9)

where Es̃[.] is the expectation operator over s̃. The MSE can
be decomposed as the sum of a variance term and a squared
bias term:

MSE(r) j = Σ j, j +
[
βββ (r)βββ T (r)

]
j, j
, (10)

where ΣΣΣ ∈ RNr×Nr and βββ ∈ RNr×1 are the covariance matrix
and the bias vector of r̂, respectively. For the MAP estimator
defined in the previous subsection, we have:

ΣΣΣ = σ−2QATAQ, (11)

βββ (r) = QK−1 (r− r) , (12)

with
Q =

(
σ−2ATA+K−1)−1

. (13)

The BMSE of the estimator of r can now be defined from the
MSE as [8]:

BMSE(r) j = Er [MSE(r)] j , (14)

where Er[.] is the expectation operator over r. The BMSE can
also be decomposed as the sum of a variance and a squared
bias term, which can be linked to the MSE components as
follows:

BMSE(r) j =Er [ΣΣΣ] j, j +Er

[
βββ (r)βββ T (r)

]
j, j

=Σ j, j +Er

[
βββ (r)βββ T (r)

]
j, j
,

(15)

where Er [ΣΣΣ] = ΣΣΣ, since ΣΣΣ does not depend on r, and the
squared bias term of the BMSE can be calculated as the
expectation over r of the MSE squared bias component in Eq.
(12):

Er

[
βββ (r)βββ T (r)

]
= QK−1Q. (16)
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To simplify the notation, we define:

RBMSE =
{√

BMSE(r) j

}Nr

j=1
, (17)

v =
{√

Σ j, j
}Nr

j=1 , (18)

b =

{√
Er

[
βββ (r)βββ T (r)

]
j, j

}Nr

j=1
, (19)

where the dependency of RBMSE and b on r was omitted.
In the following sections, we will refer to v and b as the
standard deviation component and absolute bias component
of the BMSE, respectively.

2.6 Acquisition protocols

The acquisition protocols are shown in Table 1. For all the
protocols we fixed M/AF = 2. This choice ensures that
the MS-SRR estimation problem is not under-determined
(M/AF≥ 1) [5] and that the k-space is efficiently sampled
when the LR images are acquired with the rotated scheme(
M > π

2 AF
)

[13]. Furthermore, it ensures that all the ac-
quisition protocols require the same scan time. The HR
protocol is included as a reference and represents a conven-
tional multi-slice acquisition with AF = 1, repeated twice. In
the SRrot protocols, the acquired images are simulated ro-
tated around the phase-encoding axis. The rotation angles are
uniformly distributed in the open interval [0,180), with steps
of 180/M◦. In the SRsh protocols, the acquired images are
simulated shifted in the through-plane direction. The shifts,
expressed in HR voxel indices, are uniformly distributed in
the closed interval [−AF(M−1)/(2M), AF(M−1)/(2M)],
with steps of AF/M.

Protocols AF M ΦΦΦ = {Φm}M
m=1

HR 1 2 [0, 0]◦

SRrot1 1 2 [0, 90]◦

SRrot2 2 4 [0, 45, 90, 135]◦

SRrot3 3 6 [0, 30, 60, 90, 120, 150]◦

SRrot4 4 8 [0, 22.5, 45, 67.5,
90, 112.5, 135, 157.5]◦

SRsh1 1 2 [-0.25, 0.25]
SRsh2 2 4 [-0.75, -0.25, 0.25, 0.75]
SRsh3 3 6 [-1.25, -0.75, -0.25,

0.25, 0.75, 1.25]
SRsh4 4 8 [-1.75, -1.25, -0.75, -0.25,

0.25, 0.75, 1.25, 1.75]

Table 1: MS-SRR acquisition protocols.

2.7 Prior hyperparameters estimation

The translational symmetry of the acquisition strategies along
the phase-encoding axis was exploited to evaluate the frame-
work in 2D, thereby reducing computational complexity and

memory consumption. In order to estimate the prior hyper-
parameters, a training dataset was generated. The dataset,
composed of 500 synthetic noiseless HR 2D T1-weighted
(T1-w) magnitude brain images of size 120×120, was simu-
lated starting from 10 anatomical brain models available in
the Brainweb database [14]. The images, each representing
an independent realization of r, were simulated with different
acquisition planes (sagittal, transverse, and coronal) and T1
contrast. Additionally, each image was slightly rotated to sim-
ulate different head orientations, where the rotation angles
were independently sampled from a Gaussian distribution
with mean 0 and standard deviation 1. The hyperparameters
ααα and λ were estimated from the images within the training
dataset using the kernel-regression approach proposed in [15]
from the non-zero voxels within the training dataset and their
respective 3×3 neighborhoods. All the elements of the prior
mean r were set equal to the mean intensity of the non-zero
voxels within the training dataset. The choice of setting the
prior mean of all voxels equal to the same constant ensures
the prior to be invariant to the positioning (translation) of the
head within the field of view.

2.8 Protocols comparison

We assumed the images acquired with the HR protocol to
have an SNR = 20, where the SNR was defined as the ratio
of the mean intensity of the brain voxels within the train-
ing dataset to the standard deviation of the noise. The thus
obtained standard deviation of the noise was fixed for all pro-
tocols, resulting in an SNR that increases with AF, as more
signal is received from thicker slices. The BMSE as well
as its separate squared bias and variance components were
computed for each acquisition protocol using the closed-form
expressions derived in the subsection 2.5.

Figure 1: Boxplots of the RBMSE and of the BMSE standard
deviation component v and absolute bias component b computed
inside a ROI.
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Figure 2: Monte Carlo simulation results for the protocols HR, SRrot4 and SRsh4. s̃n, r, r̂ represent the n-th acquired LR image, ground
truth image and estimated SRR image, respectively. The mean absolute bias, the mean standard deviation, and the mean RMSE values
computed inside the brain mask are reported.

2.9 Monte Carlo simulation

A 2D T1-w axial brain slice, initially excluded from the
training dataset, was used as ground truth (GT). The acquisi-
tion process was simulated for the protocols HR, SRrot4 and
SRsh4 using the MS-SRR forward model in Eq. (1), and the
simulated images were corrupted with noise, as described
in the previous subsection. The Conjugate Gradient method
[16] was used to solve the minimization problem in Eq. (7).
Absolute bias, standard deviation, and RMSE maps were
computed from 100 noise realizations for each protocol.

3 Results and Discussion

The distributions of the RBMSE maps inside a region of
interest (ROI) for all the acquisition protocols are reported in
Fig. 1, where the ROI was defined as the part of the field of
view common to all the acquired images of all the acquisition
protocols. The SR protocols based on the rotated acquisition
scheme SRrot showed lower RBMSE values compared to the
HR protocol and the SR protocols based on the shifted ac-
quisition scheme SRsh. Increasing the AF led to an RBMSE
improvement for the SRrot protocols, while the SRsh proto-
cols showed the opposite trend. This difference is caused by
both the absolute bias component b, which increases severely
with AF for the SRsh protocols, and the standard deviation
component v, which reduces significantly with AF for the
SRrot protocols. The results of the Monte Carlo simulation

for the HR, SRrot4 and SRsh4 protocols are reported in Fig.
2. The close agreement between the Monte Carlo results and
the BMSE results demonstrates that the prior distribution
was able to describe the statistics of the target image. The
observed difference in terms of RBMSE between the SRrot
and SRsh protocols (up to a factor 2, approximately) suggests
that adopting the rotated acquisition scheme over the shifted
scheme in a MS-SRR experiment can lead to a substantially
reduced scan time while preserving the same MSE of the
estimated SRR image. The main limitations of this work are
the assumptions that the image registration parameters and
the point spread function of the MRI acquisition process are
perfectly known. The effect on the current analysis of nonide-
alities, such as motion artifacts and inconsistent modelling
of the slice profile, will be the subject of future work. Ad-
ditionally, real data experiments will be included to validate
the proposed framework. Furthermore, we plan to extend the
current study by applying the optimal experimental design
theory principles to find the optimal acquisition settings for
an MS-SRR experiment in terms of BMSE.

4 Conclusion

The potential of the BMSE framework for optimal experi-
ment design was demonstrated by comparing two conven-
tionally adopted MS-SRR acquisition protocols. The MS-
acquisition strategy based on rotated multi-slice images out-
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performed the strategy based on shifted images in terms of
estimation accuracy and precision, evaluated by the squared
bias and variance terms of the BMSE of the MAP estima-
tor, respectively. The results confirmed and extended the
conclusion of [4, 5] and [6] to regularized MS-SRR.
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Abstract The Synergistic Image Reconstruction Framework (SIRF) is
a research tool for reconstructing data from multiple imaging modali-
ties, currently most prominently PET and MR. Included are acquisition
models, reconstruction algorithms, registration tools, and regularisa-
tion models. In this work, we demonstrate the capabilities added since
SIRF 2.0. PET/MR cardiac imaging results are presented with estima-
tion of respiratory motion from the MR data, and motion compensation
combined with various regularisation strategies used for both MR and
PET reconstruction. The use of SIRF to facilitate this work enabled a
range of techniques to be compared quickly and efficiently.

1 Introduction

Current trends in medical imaging continue to focus on the
increased use of multiple modalities for imaging. Different
properties of each modality can be combined together to
complement each other and increase diagnostic power. One
prominent example is simultaneous positron emission tomog-
raphy (PET) and magnetic resonance (MR), where the speed
and resolution of MR is able to improve upon the limitations
of PET imaging and provide quantitative functional imaging
with reduced imaging times and improved resolution.
As such, there is considerable interest in the development
and refining of algorithms to share information between the
previously independent images. This can be done subsequent
to image reconstruction [1], or preferably by combining the
modalities during the reconstruction process itself [2]. How-
ever, this is only feasible when used in combination with
motion estimation and correction strategies to prevent mis-
alignment. Research into such techniques requires consider-
able software infrastructure for reading and converting data,
modelling acquisitions, reconstructing images, registration,
etc. Medical imaging hardware vendors do often provide
such infrastructure, however, it is often cumbersome or im-
possible to modify the internal components of these software
required for such research. The purpose of the Synergistic
Image Reconstruction Framework (SIRF) is to provide an
open source software (OSS) tool to facilitate investigation

into such algorithms.
Other OSS packages for image reconstruction are available
and include: Gadgetron [3, 4] and the Berkeley Advanced
Reconstruction Toolbox (BART) [5], which reconstruct MR
data; the Software for Tomographic Image Reconstruction
(STIR) [6], NiftyPET [7] and Customizable and Advanced
Software for Tomographic Reconstruction (CASToR) [8]
which have varying support for PET, SPECT and CT; and
the Reconstruction Toolkit (RTK) [9], with CBCT, CT and in
the future SPECT support. However, none of these packages
support a diverse range of modalities, specifically combining
MR and tomographic imaging. We are therefore developing
SIRF [10–12] to address this gap.
SIRF development is led by the Collaborative Computational
Platform on Synergistic Reconstruction for Biomedical Imag-
ing CCP SyneRBI www.ccpsynerbi.ac.uk. SIRF uses
several of the above mentioned packages as “engines” and
integrates them into a consistent framework. The software
includes documentation on exporting scanner data; function-
ality for converting and reading the data from supported hard-
ware; modules for reading and writing acquisition data and
images; acquisition models and reconstruction algorithms
able to reconstruct images from acquisition data; models for
regularising image reconstructions, some of which are able to
model synergism between the modalities; and data process-
ing tools for registering images to account for gantry shifts
and patient motion. SIRF integrates with another OSS called
the Core Imaging Library (CIL) [13, 14], which provides
advanced optimisation and regularisation methods.
In this work, we demonstrate the currently implemented
motion estimation and compensation strategies, together with
examples of regularisation models in a cardiac PET/MR
application.
Please note that since the submission of the conference ab-
stract, SIRF 3.1 has been released [15]. In addition, some of
the results in these proceedings were published recently [11]
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as part of a Special Issue on Synergistic Image Reconstruc-
tion [16, 17].

2 Methods and results

To be able to do motion correction, the data are split into
several motion states, usually called “gates”. There are nu-
merous techniques for performing the motion correction, see
a recent review on strategies for PET-MR [18]. The most
common methods are the reconstruct-transform-add (RTA)
scheme [19, 20], in which correction is performed after recon-
struction, and the motion-compensated image reconstruction
(MCIR) scheme [21, 22], in which the motion is incorpo-
rated into the acquisition model, one for each gate. Both of
schemes need the motion to be known. One common way to
determine the required motion information is to reconstruct
motion resolved images (i.e., one for each gate) and then
estimate the spatial transformation between the gates using
image registration [19, 23, 24].
In the following, we present an example of the above-
described framework using an in vivo cardiac scan. A si-
multaneous PET/MR scan was performed on a patient 182
min after the injection of 341 MBq 18F-FDG. Data was ac-
quired for 3:18 min during free-breathing.

2.1 Respiratory motion estimation and correction
for cardiac MR

In this section, a demonstration is given of the estimation of
respiratory motion from a 3D non-Cartesian MR scan. The
motion information is then used in an MCIR to improve the
MR image quality. A new acquisition model was combined
with the iterative reconstruction schemes available in CIL to
ensure high image quality, even for highly undersampled data.
3D non-rigid motion fields are obtained using spline-based
image registration and then applied during image reconstruc-
tion to minimise respiratory motion artifacts.

2.1.1 Golden Radial Phase Encoding

Non-Cartesian MR sampling schemes are of great interest
for motion-estimation and motion-correction. Even if the
data are separated retrospectively into different motion gates
(e.g., different phases of the breathing cycle), the k-space
data are still well distributed in k-space covering both high
and low spatial frequencies. In addition, high image quality
can be achieved even from very few acquired k-space points
(i.e., high undersampling) utilising iterative image reconstruc-
tion schemes. Here, a golden radial phase encoding (GRPE)
sampling scheme was used [25, 26]. This is a 3D acquisi-
tion scheme which combines Cartesian frequency encoding
(i.e. along kx) with non-Cartesian sampling in the 2D phase-
encoding plane ky−kz. The MR acquisition used here was
a three-point Dixon scan (echo times: 1.2, 2.7 and 4.2 ms)
with a field-of-view of 400× 400× 400 mm and a spatial

resolution of 1.9 mm along foot-head and 3.2×3.2 mm in
the transverse plane. In the following, only the first echo was
used.
SIRF was extended to use the non-uniform fast Fourier trans-
form (NUFFT) which allowed for the transformation between
Cartesian image data and non-Cartesian k-space data.

Figure 1: End-expiratory (end-exp) and end-inspiratory (end-
insp) gate reconstructed without and with total variation (TV)
regularisation. The horizontal line represents the superior-most
diaphragm position in the reference gate, end-expiration.

2.1.2 Self-gating and Reconstruction of respiratory
gates

For the GRPE sampling scheme, the central (ky = kz = 0)
kx-line is acquired repeatedly. This allows for the extraction
of a self-navigator signal [27, 28]. Each gate was then recon-
structed using the implementation of fast iterative shrinkage-
thresholding algorithm (FISTA) [29] in CIL with spatial TV
regularisation [30].
Fig. 1 shows the end-expiration (which was later used as refer-
ence for the MCIR) and the end-inspiration gates, comparing
both reconstruction algorithms. Changes in the anatomy dur-
ing the breathing cycle mainly along the foot-head direction
are clearly visible. The TV regularisation leads to suppres-
sion of undersampling artifacts and an improved depiction of
the anatomy, which is beneficial for the next step.

2.1.3 Estimation of respiratory motion fields

A non-rigid image registration scheme was then used to cal-
culate the 3D respiratory motion fields from the respiratory
gates. Motion deformation fields were estimated using a
pairwise image registration, using the SIRF wrapper to the
NiftyReg spline-based registration algorithm [31].

2.1.4 Motion-corrected MR image reconstruction

The MCIR optimisation problem was solved with FISTA.
Fig. 2 shows the final MCIR images reconstructed with
FISTA with regularisation. MCIR leads to a clear reduction
of respiratory motion artifacts (e.g., blurring of anatomical
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Figure 2: Uncorr: image reconstruction without motion correction
with blurring due to respiratory motion clearly visible (white arrow
heads). MCIR+TV: MCIR with TV regularisation. MCIR leads to
a clear reduction of motion blurring and improves the visualisation
of the anatomy. TV reduces undersampling artifacts and further
improves image quality.

structures such as the liver and the heart). TV further im-
proves image quality by minimising residual undersampling
artifacts while ensuring a clear depiction of the anatomy.

2.1.5 Motion-corrected PET image reconstruction

The motion fields from the previous section were used to
reconstruct a motion-corrected PET image. We first esti-
mated a coordinate transformation between the PET and MR
images to cope with, for instance, gantry misalignment by
performing a rigid registration between simultaneous MR
and PET images reconstructed without attenuation correction
(AC).
The GRPE acquisition was used for the separation of fat and
water tissue and the calculation of a segmentation-based AC
map [32] in the reference position. The construction of the
MR-based AC map was not carried out in SIRF as it required
segmentation tools not yet implemented in SIRF. The AC
map was then deformed to each of the gates. An average
AC map was computed for the ungated data. Randoms and
scatter were computed from the ungated data and evenly
divided over the gates.
Data were then reconstructed as follows: a single iteration of
OSEM (24 subsets) [33] was used for initialisation of relaxed
OSSPS (90 iterations, 7 subsets) [34] with resolution mod-
elling and a quadratic Gibbs prior. Local weights were used

Figure 3: Comparison of (relaxed) OSSPS reconstructions with-
out motion correction (top) and with gating and RTA (bottom).
Both reconstructions after 420 updates with regularisation strength
α = 0.0005.

in the prior to obtain approximately uniform resolution [35].
Two example reconstructions are shown:

• no motion correction, i.e., using the ungated data

• RTA, where each gate was reconstructed separately, and
resulting images were warped back to the reference
position using the MR-derived deformation fields and
then averaged.

3 Discussion and Outlook

We have presented recent improvements of SIRF, concen-
trating on motion correction and its integration with CIL
for regularised reconstruction. Respiratory gates were re-
constructed from a non-Cartesian 3D MR, and non-rigid
respiratory motion fields were obtained using the NiftyReg
integration in SIRF. These motion fields were then used for
motion-compensation of both MR and PET.
We used MCIR for the MR reconstruction, while the pre-
sented example for PET reconstruction used RTA. However,
RTA is known to have limitations due to count statistics of
the gated data [36]. Please refer to [11] for an example of
MCIR for PET with SIRF.
We intend to continue to develop SIRF for researchers to
be able to exploit synergy in multi-modal, multi-contrast,
multi-time point information for a greater range of appli-
cations. We welcome contributions via https://github.
com/SyneRBI/SIRF.
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Abstract Quantitative dual-energy computed tomography may im-
prove the accuracy of treatment planning in radiation therapy. Of
special interest are algorithms that can estimate material composition
of the imaged object. One example of such an algorithm is the 2D
algorithm DIRA. The aim of this work is to extend this algorithm to
3D so that it can be used with cone-beam helical scanning in multi-
slice spiral CT. In the new algorithm, the parallel FBP method was
replaced with the weighted FBP method from Siemens. We used the
implementation available from the FreeCT project. Its performance
was tested using a mathematical phantom consisting of six ellipsoids.
The algorithm substantially reduced the beam-hardening artefacts, and
simultaneously artefacts due to approximate reconstruction, after ten
iterations for bone (and even earlier for soft tissues). Compared to
Alvarez-Macovski’s base material decomposition, DIRA-3D-wFBP
does not require geometrically consistent projections and hence can
be used in dual-source CT scanners. Also, it can use several tissue-
specific material bases at the same time to represent the imaged object.

1 Introduction

Dual-energy computed tomography (DECT) may improve
the accuracy of radiation treatment planning [1]. The field
may especially benefit from algorithms providing quantitative
information about CT numbers or material composition of
the imaged object. The latter is provided by projection-based
basis material decomposition (PBBMD) and image-based ba-
sis material decomposition (IBBMD) methods [2]. PBBMD
methods, such as the well-known Alvarez-Macovski’s base
material decomposition [3], require geometrically consistent
projections and only two base materials can be assigned for
the whole object. IBBMD methods can use any number of
tissue-specific material doublets or triplets, nevertheless the
methods suffer from beam hardening artefacts caused by the
polyenergetic projection data. Better results are achieved by
applying Alvarez-Macovski’s base material decomposition
before IBBMD [4] or by using model-based iterative recon-
struction algorithms, like MDIR [5] or DIRA [6] developed
by the authors. The original DIRA algorithm is based in
2D projections and 2D FBP. It uses two- and three-material
decomposition to tissue-specific, user-defined base material
doublets and triplets for the characterization of the imaged
object. The output from DIRA are several base material im-
ages as well as two monoenergetic images. If desired, it is
possible to generate any monoenergy image from the base
material images.
Clinical scanners shorten acquisition times by using helical

(spiral) scanning and multi-row detectors. Reconstruction is
performed by FBP or iterative algorithms, where backpro-
jection is part of the inner loop algorithm [7]. Examples of
FBP algorithms for helical scanning are Siemens’ weighted
FBP (wFBP) [8] and the PI-method [9], which are approx-
imate only, and Katsevich’s FBP [10], which is exact. In
[11] and [12], a 3D version of DIRA was presented, where
the 2D FBP was replaced with the PI-method. Both the PI
and Katsevich’s methods discard projection data outside the
Tam window, which makes them less favorable in clinical
environment compared to the wFBP method.
The aim of this paper is to develop a DIRA algorithm for 3D
helical geometry that uses wFBP. More detailed information
about DIRA-3D-wFBP is in [13].

2 Theory

2.1 Material Decomposition

Two-material decomposition assumes that a mixture is com-
posed of two materials. This decomposition determines mass
fractions, w1 and w2, of the two base materials and the mass
density, ρ , of the mixture. Three-material decomposition
assumes that a mixture consists of three base materials. This
decomposition determines mass fractions, w1, w2 and w3,
and the mass density of the mixture, which is calculated as
ρ−1 = ∑3

k=1 wk/ρk, where ρk and wk are the mass density
and mass fraction, respectively, of the kth material. In both
methods, the mass fractions are normalized so that ∑k wk = 1.
More information on the resulting systems of linear equations
is in [6].

2.2 Forward projection generation

The logarithm of attenuation, here referred to as the polyen-
ergetic projection P, is calculated as

P = ln
I0

I
, (1)

where I and I0 are the detector responses with and without,
respectively, the imaged object. The intensity I0, is calculated
for an ideal energy integrating detector as

I0 =
∫ Emax

0
EN(E)dE, (2)
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where E is the photon energy and N(E) is the energy spec-
trum of photons emitted from the x-ray tube. The intensity I
is calculated as

I =
∫ Emax

0
EN(E)exp

[
−
∫

L
µ(x,y,z,E)dl

]
dE, (3)

where µ(x,y,z,E) is the linear attenuation coefficient (LAC)
of pixel (x,y,z) at energy E and

∫
L dl is a line integral through

the object. This calculation is time consuming since the line
integrals must be calculated for all energies in the energy
spectrum. The calculation of projections change slightly
when material decomposition is introduced. The line inte-
grals are calculated through volume fractions of the different
base materials. The intensity I is then

I =
∫ Emax

0
EN(E)exp

[
−∑

k
µk(E)lk

]
dE, (4)

where µk is the LAC of the kth base material and lk is com-
puted as

lk = ρ−1
k

∫

L
ρ(x,y,z)wk(x,y,z)dl, (5)

where ρk is the tabulated density of the kth base mate-
rial, ρ(x,y,z) is the calculated density in voxel (x,y,z) and
wk(x,y,z) is the mass fraction of the kth material in voxel
(x,y,z). The density ρ and the mass fractions wk are obtained
from the two-material or three-material decomposition.
A monoenergetic projection PEi , where Ei, i = 1,2 is a spe-
cific energy, is calculated as

PEi = ∑
k

µk(Ei)lk. (6)

The line integral
∫

L dl can be calculated using a 3D version
of Joseph’s method [14].

2.3 The Dual-source helical CT geometry

Fig. 1 represents the geometry of a dual-source helical CT-
scanner. In the figure, κ is the cone-angle, γ is the fan-angle
and P represents the pitch of the helix. κmax is the maximum
value of the cone angle and is called cone-beam angle. γmax

is the maximum value of the fan angle and is called fan-beam
angle. The s-axis is aligned with the z-axis and starts at the
cross-section C between the central ray and the z-axis. The
blue and red spherical markers represents the X-ray sources.
The detectors are cylindrical, with axes parallel to the z-axis,
and they travel in unison with their corresponding X-ray
source in a helical trajectory around the z-axis. Projection
data from this geometry can be reconstructed with weighted
filtered backprojection (wFBP) [8]. The wFBP-method is
not an exact method and for large cone-beam angles, small
artefacts become visible in the reconstructed images.

Figure 1: Dual-source helical CT geometry. Image source: [12]

2.4 DIRA-3D-wFBP

DIRA-3D-wFBP is an extension of the 2D algorithm DIRA
presented in [6] and a modification of DIRA-3D presented
in [11] and [12]. The algorithm is illustrated in Fig. 2 and
performs the following steps:

1. Obtain helical cone-beam measured polyenergetic pro-
jections, PM,Ui , for two different tube voltages, Ui, i =
1,2, giving PM,U1 and PM,U2 , see Fig. 1.

2. Use wFBP to reconstruct from these projections so
that the reconstructed LAC at energy Ei is µi = ∆µi +
µPi , where µPi is the reconstructed LAC from mono-
energetic calculated parallel projections at energy Ei

and ∆µi is the result of reconstructing from PM,Ui−PUi ,
where PUi are the calculated cone-beam projections. For
the first iteration, PUi = PEi = 0 and thus µi is the recon-
struction from the PM,Ui only.

3. Perform automatic threshold segmentation on µ1 and
µ2.

4. Classify tissues using the material decomposition meth-
ods (section 2.1).

5. Calculate polyenergetic projections PUi for cone-beam
geometry, see equations (1), (2) and (4).

6. Calculate monoenergetic projections PEi for parallel ge-
ometry, see equation (6).

Points 2-6 are repeated a predefined number of times.
To formulate DIRA in mathematical terms, set

µµµ =

(
µ1
µ2

)
, PM,U =

(
PM,U1

PM,U2

)
, (7)

for the reconstructed images and the measured projections,
respectively. Furthermore, denote the filtered backprojection
operators BC and BII; the former represents wFBP working
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Figure 2: A flowchart of the DIRA-3D-wFBP algorithm.

with cone-beam projections, the latter represents ordinary
parallel FBP. Set

PU =

(
PU1

PU2

)
, PE =

(
PE1

PE2

)
, (8)

for the projection operator for polyenergetic projections and
monoenergetic projections, respectively. These projection
operators include the automatic tissue segmentation and clas-
sification. The linear attenuation coefficient µµµ(n+1) obtained
at the (n+1)th iteration is

µµµ(n+1) = BC(PM,U)−BCPU(µµµ(n))+BIIPE(µµµ(n)). (9)

Ideally, the calculated polyenergetic projections PU(µµµ(n))
converge towards the measured projection PM,U. The (n+
1)th iteration then gives µµµ(n+1) ≈BIIPE(µµµ(n)), which is the
filtered backprojection result of the monoenergetic projec-
tions. The generation of monoenergetic projections followed
by backprojection in DIRA serves as a regularization [6].

3 Methods

The DIRA-3D-wFBP algorithm was implemented according
to the description in sections 2.4 and 3.2. It was tested in the
geometry described in section 3.1.

3.1 Mathematical phantom and projection geometry

The phantom consisted of six ellipsoids, see Fig. 3. Two
ellipsoids consisting of protein and water had their centers
located at slice 26. Four ellipsoids consisting of adipose
tissue, lipid, protein and compact bone had their centers
located at slice 10. The scanning geometry for the cone-beam
projection generation is shown in figure 3. The parameters
were: number of projection angles = 800 (0−799), number
of helix turns = 2, helical pitch = 32 voxels, fan-beam angle
γmax = 25.13◦, cone-beam angle κmax = 6.26◦, detector
size = 192×64 pixels, voxelsize ∆x = ∆y = ∆z = 2.76 mm,
reconstructed volume size 128×128×48 voxels.

air

muscle

adipose

lipid

compact bone

reconstruc−
tion area

800

400

slice 10
slice 14
slice 26

200

600

x

0

slice 30 403 mm

protein water

z, rotation axis

Figure 3: Top: Phantom slice at z = 10. Bottom: The scanning
geometry of the semi-parallel projection generation through the
phantom showing projection number 0,200,400,600 and 800 and
highlighting slice positions at z = 10,14,26,30.

3.2 Implementation details

The program take [15] was used for the cone-beam projec-
tion generation. One of its functionalities is to calculate line
integrals through voxel volumes using an extended version
of Joseph’s method [14]. The “measured” cone-beam pro-
jections were simulated using the line integrals in (4) with
lk =

∫
L mk(x,y,z)dl, where mk are the masks for the differ-

ent ellipsoids of different materials. Energy spectra for the
x-ray tube voltages of 80 and 140 kV with Sn filtration were
used. The chosen mono-energies where E1 = 50.0 keV and
E2 = 88.5 keV.

At each iteration, reconstructed volumes µ1 and µ2 were
threshold segmentented into air, soft tissue and bone regions.
Air was then decomposed into a (lipid, water) doublet, soft
tissue was decomposed into a (lipid, protein, water) triplet
and bone was decomposed into a (compact bone, bone mar-
row) doublet. As a consequence, the ellipsoid containing
bone was decomposed into the (compact bone, bone marrow)
doublet and the other ellipsoids were decomposed into the
(lipid, protein, water) triplet.

The calculated cone-beam polyenergetic projections were
computed using equations (1), (2), (4) and the calculated par-
allel monoenergetic projections were were computed using
(6). The generation of parallel projections with subsequent
reconstruction was done slice by slice. The number of paral-
lel detector elements was 128 and the number of projection
angles was 400, with the angular interval [0◦,180◦).

A GPU-focused implementation of wFBP from the FreeCT
Project was used [16].
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3.3 Error calculation

The relative error of reconstructed LAC was estimated as
δ (µ̄) = (µ̄−µt)/µt , where µt is the tabulated value and µ̄
is the average of the calculated LAC in a spherical region of
interest (ROI). The ROI was defined as a sphere with a radius
of one third of the evaluated ellipsoid radius (in the x,y plane)
and positioned in the center of the evaluated ellipsoid.

4 Results

Fig. 4 shows how the reconstructed LAC for the different
materials in slice 10 changes with iteration number for the
energies E1 = 50.0 keV and E2 = 88.5 keV. The LAC for
compact bone at low energy is the only LAC that shows a
clearly notable improvement, changing from approximately
59.80 m−1 in iteration 1 to 79.14 m−1 in iteration 10, and to
79.30 m−1 in iteration 25. Notwithstanding, Fig. 5 shows that
the relative error of the LAC in all the six different ellipsoids
converged to a value close to zero already after 10 iterations
(and even earlier for soft tissues).

Figure 4: Reconstructed LAC images of the phantom for iterations
1, 2, 3, 10 and 25, slice 10, photon energies E1 = 50.0 keV (top
row) and E2 = 88.5 keV (bottom row).

Figure 5: The relative errors of the LAC in the six different
ellipsoids as a function of the number of iterations and photon
energies (a) E1 = 50.0 keV and (b) E2 = 88.5 keV.

Fig. 6 shows the suppression of approximate-reconstruction
artefacts for slice 14. The LAC was restricted to the interval
[−1, 1]m−1, since the approximate-reconstruction artefacts
are mainly visible in the air region, where the LAC is close
to zero. Note that the shape of the artefacts for low and high
energies is different; the reason being that the X-ray sources
are positioned 90◦ with respect to each other.

Figure 6: Suppression of approximate-reconstruction artefacts.
Images of reconstructed LAC (in m−1) in slice 14 for iterations
1, 2, 3, 10, and 25 and photon energies E1 = 50.0 keV (top row)
and E2 = 88.5 keV (bottom row). The range of LAC values was
restricted to the interval [−1, 1]m−1.

5 Discussion and Conclusion

We have presented DIRA-3D-wFBP, a model-based iterative
reconstruction algorithm for helical cone-beam scanning to
be used in multislice spiral CT. The two dual energy X-ray
sources were placed orthogonally and on different helices.
DIRA-3D-wFBP performs material decomposition of the im-
aged object within the iterative loop, Weighted FBP (wFBP)
is used for reconstruction within the iterative loop.
DIRA-3D-wFBP generated two monoenergetic image vol-
umes, free from beam-hardening caused by the polyenergetic
projection data. Also artefacts caused by the approximate
reconstruction in wFBP were eliminated.
As mentioned in the introduction, DIRA also produces sev-
eral base material images. They were not shown here, how-
ever. If desired, it is possible to generate any monoenergy
image from the base material images.
The algorithm was evaluated using computer simulations
with a simple phantom consisting of ellipsoids of different
materials. More work is needed to test the stability of the
algorithm in the presence of quantum noise. Also more com-
plicated phantoms, as well as real data should be evaluated.
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Abstract Computed tomography (CT) is the most extensively used
imaging modality capable of generating detailed images of a patient’s
anatomy for diagnostic and interventional procedures. Within CT re-
search, radiation dosage reduction is a topic of importance, with recent
advances in low-dose or limited-angle imaging. However, few studies
have considered possibilities of 2D-to-3D stereo image reconstruc-
tion methods applied to CT reconstruction. In this study, we develop
modified 2D-to-3D encoder-decoder neural network architectures to
reconstruct CT volumes from single and dual-view radiographs for
patient-specific planning and dose reductions through optimized tube
voltage and current modulations. We then validate the developed
neural networks on synthesized chest radiographs from a large-scale
publicly available thoracic CT dataset. Finally, we assess the viabil-
ity of the proposed transformational encoder-decoder architecture on
both common image similarity metrics and quantitative clinical use
case metrics, a first for 2D-to-3D CT reconstruction research. Re-
sults indicate the dual-input neural network shows promise improved
scan planning, dose modulation, and other advanced scout/surview
radiographic applications.

1 Introduction

X-ray computed tomography (CT) is an extensively used
imaging modality that captures three-dimensional anatom-
ical structures, primarily for clinical and research applica-
tions. Conventional CT scanners involve measuring individ-
ual radiographic projections in a circular or helical pattern,
rotating around the entire body to produce detailed, high-
resolution volumetric data which provide significant diagnos-
tic advantages over two-dimensional radiographic modalities.
Through state-of-the-art reconstruction techniques such as
filtered back-projection (FBP) and iterative reconstruction
(IR), modern CT scanners are able to produce high-resolution
volumetric images of a patient’s anatomy [1]. However, by
measuring hundreds of radiographic projections at varying
angles, full-dose CT scans entail considerable radiation expo-
sure to patients, raising numerous health concerns. Prior re-
search efforts have focused on reducing the radiation dosage
required for volumetric CT scans [2]. Such efforts include
reconstructing full-dose CT scans from low-dose CT scans
or limited-angle scans [3]. Additionally, in recent years the
appeal of deep learning and artificial intelligence in the medi-
cal imaging domain has inspired several studies investigating
deep-learning-facilitated CT reconstruction. Notable studies
involve transforming and denoising low-dose CT scans with
convolutional autoencoders and convolutional neural network
(CNN) facilitated limited-angle reconstruction [4, 5]. Within
the specific subfield of 2D-to-3D CT reconstruction, Shen
et al investigate deep learning methods for single-view ra-

diographic projections [6]. Few studies investigate stereo
2D-to-3D CT reconstruction problems. Notably, Katsen et al
develop a CNN to reconstruct three-dimensional knee bone
segmentations from pairs of two-dimensional knee radio-
graphs [7]. However, the challenge of reconstructing thoracic
CT scans from two opposing projections has not been in-
vestigated before. In this study, we develop and implement
single-view and dual-view encoder-decoder neural networks
for few-view radiographic CT reconstructions. Then, we train
both neural networks on synthetic x-ray/CT data pairs and
determine clinical viability through both quantitative image
similarity and use-case-specific metrics for exam planning
and dose modulation.

2 Methods

2.1 Encoder-Decoder Architecture

Figure 1: Schematic diagram of proposed deep learning frame-
work for volumetric CT scout (surview) scan reconstruction

We consider the problem of volumetric CT reconstruction
from single or dual 2D projection(s) as an image translation
task with an additional transformation component to increase
image dimensionality. Our formulated solution is defined
as a modified encoder-decoder neural network architecture
with convolutional layers. The larger neural networks con-
sist of three subnetworks: one or two input representation
networks, a feature transformation network, and a feature
generation network. Considering coronal and sagittal radio-
graphic projections X1 and X2, our goal is to generate an
estimated output CT volume Y pred. We define two deep learn-
ing mapping functions to encompass the task of volumetric
reconstruction, F1 and F2, such that F1(X1) = Y pred and
F2(X1,X2) = Y pred.

2.2 Representation Subnetwork

The representation subnetwork(s) are tasked with reducing
the input 2D radiograph dimensionalities into smaller latent

450



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

Figure 2: Architecture of single-input neural network based on
Shen et al, featuring a representation subnetwork, a transformation
subnetwork, and a generation subnetwork. The number of channels
is indicated by the number below each hidden layer.

Figure 3: Architecture of novel dual-input neural network, fea-
turing four distinct modules: two representation subnetworks, a
bifurcated transformation subnetwork, and a generation subnet-
work. The number of channels is indicated by the number below
each hidden layer.

tensor(s). Considering input radiograph X1 and output la-
tent tensor L1, the single-view representation subnetwork,
abstracted as F , is applied such that F(X1) = L1. In the case
of the dual-view neural network, two representation subnet-
works with identical architectures process input radiographs
in opposing views. Considering input radiographs X1 and X2
in the coronal and sagittal planes, respectively, and respec-
tive output tensors L1 and L2, the representation subnetworks
F1 and F2 are applied such that F1(X2) = L2, F1(X2) = L2.
Each arrow in the representation subnetworks (a) in Fig. 2,
and Fig. 3 represent convolutional layers.

2.3 Transformation Subnetwork

The transformation subnetwork, denoted as (b) of Fig. 2
and Fig. 3, is tasked with combining the latent tensor rep-
resentations of each radiographic projection and increasing
dimensionality. Considering transformation subnetwork T ,

latent tensor L, and reshaped latent tensor R, the single-view
subnetwork is invoked such that T (L) = Z. In the dual-view
architecture, both previously generated latent tensors L1 and
L2 are concatenated to form a higher-dimensionality latent
tensor Z. Hence, we give the operation as T (L1,L2) = Z.
In both variants of the transformation subnetwork, a single
convolution with kernel size 1x1x1 is invoked to learn the
new reshaped spatial hierarchies.

2.4 Generation Subnetwork

The generation subnetwork is the final component of the
developed set of encoder-decoder neural networks, and is
tasked with enlarging the reshaped latent tensor into a final
output volume. Considering reshaped latent tensor Z and
final output CT Y pred, the generation subnetwork, abstracted
as G, is invoked such that G(Z) =Y pred. The data flow of the
hidden convolutional layers in the generation subnetwork is
given in (c) of Fig. 2 and Fig. 3.

2.5 Synthetic Paired Dataset

To train both neural networks, we synthesize a paired x-
ray/CT training dataset from existing CT datasets. The Lung
Image Data Consortium (LIDC) dataset totals 1050 helical
thoracic CT scans in the DICOM format, compiled from
seven academic centers and eight medical imaging compa-
nies. Each exam contains both volumetric pixel information
as well as relevant scan parameters (slice thickness, tube
current, etc) [8]. The synthetic radiograph creation process
involves simulating beams passing through CT volumes from
an x-ray point source. To calculate the intensities of each
radiograph, the number and distance of intersections between
traversed voxels of each ray must be calculated. Once the
traversed voxels and their respective distances are calculated,
the radiographs can be synthesized with the Beer-Lambert
Law for the attenuation of light [9].

2.6 Training Details

To determine the accuracy of both single-view and dual-
view architectures, both neural networks are trained on the
synthesized x-ray/CT paired dataset. For both models, an
initial learning rate of 0.0002 on the Adam optimizer is used
to minimize the mean-squared-error (MSE) loss function
via stochastic gradient descent and backpropagation. All
training is conducted on two SLI-connected NVIDIA Tesla
P100 GPUs, each with 16GB of VRAM. Model weights
are saved locally every 10 epochs, and the training process
automatically terminates after convergence. The weights
with the lowest average loss are preserved and serialized.
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Figure 4: Reconstruction results viewed in axial, coronal, and sagittal planes. Displayed are (a) ground truth slices, (b) slices reconstructed
from the single-input network, (c) true positive/false positive/false negative map for single-input reconstruction, (d) absolute error map for
single-input reconstruction, (e) slices reconstructed from the dual-input network, (f) true positive/false positive/false negative map for dual-
input reconstruction, and (g) absolute error map for dual-input reconstruction. The key for the true-positive/false-positive/false-negative
maps (c, f) are shown at the bottom, along with a HU colormap for subfigures (d, g).

3 Results and Discussion

3.1 Image Similarity Metrics

For quantitative evaluation, four common image similarity
metrics are calculated: mean-squared error (MSE), mean-
average error (MAE), structural similarity (SSIM), peak
signal-to-noise ratio (PSNR). Additionally, a new metric
is developed to quantify anatomical similarity of lung and
tissue segmentations in the resultant three-dimensional scout
(3D-scouts) outputs. The DICE score is used to quantify
the accuracy of the segmentations produced by the neural
networks.

Model MAE MSE SSIM PSNR DICE

Single 0.0013 0.0012 0.8893 29.4531 0.9401
Dual 0.0004 0.0009 0.9396 31.5240 0.9676

Table 1: Image similarity metrics for single and dual view recon-
structions

Reconstruction results from both neural networks are dis-
played in Fig. 4 and Table 1. The single-view neural network
is capable of accurately reconstructing scout CTs from a
single radiograph, as indicated by the error maps (d), true-

positive (TP) /false-positive (FP) /false-negative (FN) maps
(c), reconstructed slices (b), and MSE/MAE/SSIM/PSNR
scores. The dual-view model demonstrates higher overall
performance, as shown by the higher MSE, MAE, and SSIM
scores and error maps with lower overall HU error intensities
(g). However, as given by the nearly identical TP/FP/FN
maps and DICE scores, both architectures have similar struc-
tural/spatial segmentation capabilities, with the dual-view
model still outperforming the single-view model. Higher
PSNR scores yielded by the dual-view neural network in-
dicate increased effectiveness in denoising and artifact re-
duction. These observations indicate that the addition of
an extra sagittal radiograph input improves structural/spatial
accuracies as well as reducing artifacts.

3.2 Use-Case-Specific Metrics

Both neural networks are also validated on case-specific met-
rics for clinical applications. The applicability of both ar-
chitectures to attenuation correction applications is assessed
through radiodensity distribution similarity. Reconstructed
volumes from both neural networks are normalized to a
Hounsfield Unit (HU) scale and partitioned into histogram
bins, allowing for a qualitative assessment of radiodensity
similarity. The histograms of the two CNNs indicate con-
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Figure 5: Histograms of Hounsfield Units (HU) of ground truth
CT scan (blue), single-view reconstruction (red), and dual-view
reconstruction (green).

siderable similarity but fail to model peaks/valleys of the
ground truth distribution, as shown in Fig. 5. Moreover,
smoother distributions generated by the neural networks, as
compared to distinct ground truth distributions, indicate con-
siderable uncertainty in estimating radiodensity distributions
for diagnostic purposes.

Figure 6: Volumetric external bodies and volumetric water equiv-
alent areas (Aw) for ground truths and generated volumes. Dis-
played are meshes created from the water-equivalent-areas (Aw)
of a ground truth volume (a), a volume generated by the single-
view neural network (b), and a volume generated by the dual-view
neural network (c).

Additionally, radiation dose modulation is often necessary
in volumetric imaging applications to minimize radiation ex-
posure while maintaining image quality [10]. We develop a
methodology to determine dose modulation parameter calcu-
lation accuracy from reconstructions of both neural networks.
From the methodology described in [11], we calculate water-
equivalent area (Aw) and water-equivalent diameter (Dw).
We calculate average water-equivalent-diameter accuracies
for both neural networks, with the single-view architecture
scoring 0.911 and the dual-view architecture scoring 0.925.
Additionally, estimated patient shapes derived from Dw (a,
b, c) are displayed in Fig. 6. Note significant similarities in
the mesh geometries between ground-truth (a), single-view
reconstructions (b), and dual-view reconstructions (c). Based
on these data, the two neural networks, especially the dual-
view variant, demonstrate considerable promise in serving as
a replacement or alternative to dose modulation facilitated by
conventionally reconstructed CT volumes.

4 Conclusion

In this investigation, we refine and develop two encoder-
decoder neural networks for CT reconstruction from ultra-
sparse radiographic projections. The developed models are
trained and validated on synthetic x-ray/CT paired data. Both
the single and dual-view networks perform well on image
similarity and use-case-specific metrics, with results indicat-
ing the dual-view CNN outperforming the single-view CNN
in most cases. These data indicate that the developed deep
neural networks are a promising method for CT reconstruc-
tion from only one or two radiographic projections. Potential
applications include automatic kVp selection, automatic pro-
tocol or scan parameter selection, improved scan planning by
the operator, and dose modulation procedures.
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Abstract In computed tomography (CT) imaging, an optimization-
based method with directional total-variation (DTV) constraints has
demonstrated its advantage for image reconstruction from limited-
angular-range data. The DTV optimization problem contains two
DTV constraints, which are upper-bounded `1 norms of an image’s
partial derivatives along x and y axes, while the scan angular range is
symmetric to the y axis in the coordinator system. DTV constraints
along different directions, however, may not have equal impact on
image reconstruction from limited-angular-range data. In this work,
we investigate the impact of each single DTV constraint on image
reconstructions. We first design two convex optimization problems,
each of which contains a single image DTV constraint, and develop
single-DTV algorithms for solving the problems. We then carry out
a simulation study with a numerical bar phantom, collect data over a
variety of limited-angular ranges, and reconstruct images by using the
single-DTV algorithms. Results show that, for image reconstruction
from limited-angular-range data, the algorithm employing a single
DTV constraint along x axis is more effective than that using a single
DTV constraint along y axis in terms of eliminating artifacts.

1 Introduction

Recent advances in iterative reconstruction method with
directional image constraints [1, 2] have gained attention
for computed tomography (CT) image reconstruction from
limited-angular-range data. In our previous work [3, 4], we
have designed a convex optimization problem with direc-
tional total-variation (DTV) image constraints and developed
a DTV algorithm based upon a general convex primal-dual
algorithm [5–8] for solving the problem. Results of our
previous study have demonstrated that the DTV algorithm
can accurately reconstruct cross-section images, and that it
can considerably diminish artifacts observed otherwise in
reconstructions by use of existing algorithms.
The DTV constraints are defined as upper-bounded l1-norms
of image’s partial derivatives along two orthogonal directions
[3, 4]. As the limited-angular range is symmetric to one
direction (e.g., y axis) but not to the other (x axis), the DTV
constraints along different directions may not have equal
impact on image reconstruction performance. It is thus of
interest and significance to investigate image reconstruction
with each single DTV constraint from data collected over
limited-angular ranges, and to evaluate the corresponding
impact on reconstruction performance.
In the work, we first design two convex optimization prob-
lems, each of which contains a single image DTV constraint,
along y or x axis. We then achieve image reconstruction by
developing convex primal-dual optimization algorithms [5–8]

to solve the single-DTV optimization problems. For compar-
ison, we also consider several existing algorithms including
FBP and our previously developed DTV [3, 4] algorithms. A
numerical bar phantom is designed for mimicking the cross-
section of a phantom in industrial-CT imaging application.
Using the phantom, we demonstrate that the DTV constraint
along the x axis is more effective than that along the y axis in
terms of eliminating artifacts due to limited-angular range.

2 Materials and Methods

2.1 Data generation

In this work, we carry out a simulation study by using a
numerical bar phantom which is discretized on a 150×210
image grid of size 0.15×0.15 cm2, as shown in panel (a) of
Fig. 2. We generate data from the numerical bar phantom
with a fan-beam CT configuration, with a pair of source and
detector rotating over a limited-angular range, as illustrated
in Fig. 1. The scan angular range is α which is symmetric to
the y-axis. The source-to-rotation-axis and source-to-detector
distances are 100 cm and 150 cm, respectively. The linear
detector consists of 512 detector bins of size 0.11 cm. Using
the configuration, we generated noiseless data from the nu-
merical bar phantom over a variety of angular ranges with an
angular interval of 1◦ per view. In particular, we in this work
focus on image reconstruction from data collected over the
limited-angular range of 30◦.

2.2 Single-DTV optimization program

In this study, we consider two optimization programs with
single DTV constraint along y or x axis, which are defined in
Eqs. (1) and (2) below:

f? = argmin
f

{
1
2
‖H f−g[M ] ‖2

2

}

s.t. ||Dyf||1 ≤ ty, and fi ≥ 0,
(1)

and

f? = argmin
f

{
1
2
‖H f−g[M ] ‖2

2

}

s.t. ||Dxf||1 ≤ tx, and fi ≥ 0,
(2)

455



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

α

Figure 1: Illustration of a fan-beam CT scan configuration over limited-angular range α .

where vector g[M ] of size M denotes discrete measured data;
vector f of size N is a 2D discrete image; fi is the entry i
of f; H the system matrix of size M×N, with element h ji

representing the intersection length of ray j within pixel i;
matrices Dy and Dx of size N×N denote an image’s partial
derivative along y and x axes, respectively; vectors Dyf and
Dxf are of size N; || · ||1 indicates the `1-norm of the input
vector; and parameters ty and tx depict the upper bounds on
the DTV constraints along y and x axes. For simplicity, we
refer to the optimization program in Eq. (1) with a single
DTV constraint along y axis as the YDTV program, and that
in Eq. (2) with a single DTV constraint along x axis as the
XDTV program.

2.2.1 Reconstruction algorithm

With the designed YDTV and XDTV optimization programs
in Eqs. (1) and (2), we derive algorithms as new instances of
the convex primal-dual (CPD) algorithm [5, 6] by tailoring
the proximal problems in the CPD algorithm to each of the
programs, and refer to the new algorithms as YDTV and
XDTV algorithms, respectively.
The developed image reconstructions involve several recon-
struction parameters that can either affect the final solution or
have impact on the convergence rate. In particular, constraint
parameters ty in the YDTV program and tx in the XDTV
program are the most important parameters that specify the
optimization programs and confine the feasible solution set.
In this study, we compute the DTV values from the truth
phantom image, referred to as ty0 and tx0, and use them as the
DTV constraint parameters for studies in Sec. 3.
It is worth noting that the YDTV and XDTV programs are

convex, which should be mathematically exactly and nu-
merically accurately solved by the corresponding algorithms.
Therefore, we also define algorithm’s convergence conditions
[4, 6–9] that specify the stopping criteria and determine the
final solution to the designed optimization program. Details
of the convergence conditions can be found in Ref. [4].

2.3 Reconstruction algorithms for comparison

For comparison, we also reconstruct images by using the
FBP algorithm and CPD algorithms for solving a data-`2-
minimization problem in Eq. (3),

f? = argmin
f

{
1
2
‖H f−g[M ] ‖2

2

}
s.t. fi ≥ 0, (3)

and our recently developed image DTV constrained data-`2-
minimization problem in Eq. (4),

f? = argmin
f

{
1
2
‖H f−g[M ] ‖2

2

}

s.t. ||Dxf||1 ≤ tx, ||Dyf||1 ≤ ty, and fi ≥ 0,
(4)

where terms and symbols have been specified in Sec. 2.2.
We refer to the CPD algorithms for solving optimization
programs in Eqs. (3) and (4) as L2 and DTV algorithms,
respectively.

3 Results

3.1 Algorithm verification study

Although the YDTV and XDTV algorithms can theoretically
solve the convex optimization programs in Eqs. (1) and
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(b) FBP (c) L2

(e) YDTV (f) XDTV(d) DTV

(a) Phantom

Figure 2: Numerical bar phantom (a) and images reconstructed by use of FBP (b), L2 (c), DTV (d), YDTV (e), and XDTV (f) algorithms
from data collected over angular range of 30◦. Display window [0.1, 0.5] cm−1.

(2), we must also establish in numerical studies that these
algorithms can indeed accurately solve the optimization pro-
grams in terms of yielding the convergence conditions up to
the computer precision. In particular, we have carried out
a simulation study using data generated from the numerical
bar phantom over 2π angular range, and the result confirms
that the convergence conditions of the each algorithm are
satisfied up to computer precision.
With the algorithms numerically verified, we present below
some of the study results exploring the performance each
algorithm for image reconstruction from data over the limited-
angular range.

3.2 Reconstruction from 30◦-data

Using the YDTV and XDTV algorithms developed, we recon-
struct images from the noiseless bar-phantom data collected
over the limited-angular range of 30◦, as described in Sec.
2.1. We show the YDTV and XDTV reconstructions in pan-
els (e) and (f) of Fig. 2. For references, we also show FBP,
L2, and DTV results in panels (b), (c), and (d) of Fig. 2,
respectively. It can be observed that severe artifacts and struc-
ture distortion exist in the FBP and L2 reconstructions, and
most structures cannot be identified. The DTV reconstruc-
tion, however, is free of artifacts and visually identical to
the truth bar phantom. By inspecting the YDTV reconstruc-
tion, we observe that although it generally outperforms FBP

and L2 results in terms of artifact reduction, artifacts and
distortion are still visible. The XDTV reconstruction, on the
other hand, shows significant improvement comparing to its
YDTV counterpart, and is visually identical to the truth bar
phantom.

3.3 Reconstruction as a function of iterations

Reconstructions of the bar-phantom images above were ob-
tained when the DTV algorithm’s convergence conditions
are satisfied. We also investigated how the reconstructions
of the bar phantom evolve as functions of the iteration num-
ber. In particular, we focus on reconstructions by use of the
DTV, XDTV, and YDTV algorithms. We show in Fig. 3
reconstructions of the bar phantom at iteration 10, 500, 1000,
5000, and 20000, along with the final convergent reconstruc-
tion. It can be observed that the DTV reconstruction at about
iteration 5000 and the the XDTV reconstruction at about
iteration 20000, visually resemble their final convergent re-
constructions, respectively, which are also visually identical
to the truth image. The YDTV reconstruction becomes visu-
ally similar to its final convergent reconstruction at iteration
5000, which suffers from considerable limited-angular-range
artifacts such as distortion and streaks.
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Figure 3: Image reconstructions by use of the DTV (row 1), XDTV (row 2), and YDTV (row 3) algorithms at iteration 10 (column 1),
500 (column 2), 1000 (column 3), 5000 (column 4), and 20000 (column 5), along with final convergent reconstruction (column 6).

4 Discussion & conclusion

In the work, we have developed and investigated algorithms
for image reconstruction with a single DTV constraint from
data collected over limited-angular ranges. For references,
we also use the existing FBP, L2, and DTV algorithms to
reconstruct images. Results show that the XDTV algorithm
is more effective than the YDTV algorithm in terms of elimi-
nating artifacts for reconstruction from limited-angular-range
data. It is worth noting that XDTV reconstruction is equiv-
alent to the DTV reconstruction by setting tx to tx0 and ty
to infinity. It is therefore of interest in the future to inves-
tigate DTV reconstruction with tx = tx0 and varying ty, and
study how different ty parameters impacts the performance
of DTV reconstruction. In addition, for future studies, we
will investigate the XDTV and YDTV algorithms, as well as
the DTV algorithm, for image reconstruction from limited-
angular-range data containing inconsistencies, such as noise,
beam hardening, and scatter.
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Abstract:  Lung cancer causes the highest cancer-related death rate 
among all cancers.  The most effective approach to reduce the death rate 
is to detect the precursor, i.e. the pulmonary nodules, at as early stage as 
possible.  Current clinical-low-dose computed tomography (i.e. 1.05 mSv 
LDCT) screening has shown great value for detecting nodules of 5 mm 
and larger.  This exploratory study aims to clinically demonstrate the 
potential of ultra-low-dose CT (i.e. 0.12 mSv ULDCT) to accomplish the 
same task by fully 3D reconstruction from pre-log data, instead of the 
current CT reconstruction from post-log data.  A patient with a 4 mm 
nodule was recruited undergoing a clinical LDCT, followed by a research 
ULDCT scan.  Reconstructions of these scans were assessed by a thoracic 
radiologist in terms of both image quality and nodule detectability.  Our 
fully 3D reconstruction from the research pre-log data performed 
comparably with the current clinical-low-dose CT from the post-log data.  

Keywords: Lung cancer screening, Ultra-low-dose CT, Pre-log 
reconstruction, Pulmonary nodule detection. 

1 Introduction 
 
  Current low-dose computed tomography (LDCT) 
screening for detection of the lung cancer precursor, i.e. the 
pulmonary nodules, has demonstrated a reduction of 24% 
of the death rate [1].  As a massive screening modality, 
LDCT operating at ~1 mSv dose level remains a concern 
due to the potential risk of radiation-induced cancer [2].  
Ultra-low-dose computed tomography (ULDCT) operates 
in a dose regime that is a factor of 10 lower than clinical-
low-dose CT techniques [3], reaching a level of patient dose 
similar to a chest x-ray exam (~0.1 mSv), which makes it an 
attractive modality for the screening of lung nodules [4].  
Other potential applications of ULDCT include 4D dynamic 
imaging, attenuation correction for PET/CT imaging, and 
virtual CT colonoscopy screening, etc. 

Model-based iterative reconstruction (MBIR) has been a 
powerful algorithmic technique for CT dose reduction and 
image quality improvement [5], [6].  Reduction of patient 
dose of up to 80% relative to filtered backprojection (FBP) 
reconstruction has been reported [4]. Most MBIR 
algorithms developed for clinical applications operate in the 
post-log data domain, i.e., x-ray transmission data are first 
logarithmically transformed to post-log line integral values 
before being fed to the reconstruction algorithm.  Post-log 
MBIR can leverage existing pre-correction steps for the 
FBP algorithm, but transforming data to post-log domain 
can cause loss of information, especially in the ultra-low-
dose  regime [7].  In ULDCT, the mean number of x-ray 
photons received per detector cell exposure is commonly in 
the range of tens [8], [9], and photon starvation is 

commonplace.  The detector measurements may be zero due 
to the quantum nature of x-ray and even become negative 
due to the detector electronic noise [9]–[12], in which case 
the logarithm simply cannot be taken.  These non-positive 
values must be either discarded [13], replaced by some 
artificial positive values [8], corrected by some recursive 
mean-preserving operations [14], or interpolated by 
sinogram smoothing or denoising methods [15], [16].  
When the extent of such pre-correction is aggressive, such 
as in ULDCT, handling and logarithmically transforming 
such photon-starved measurements can cause strong bias 
and artifacts in post-log reconstructed images. 

Compared with post-log MBIR, pre-log MBIR 
incorporates Beer’s law in the forward model and use 
appropriate statistical model to directly reconstruct images 
from pre-log x-ray transmission measurements.  Pre-log 
MBIR has the potential to achieve further dose reduction 
capability beyond post-log MBIR by fully incorporating the 
information in photon-starved detector measurements into 
image reconstruction.  Various pre-log MBIR algorithms 
have been proposed in the literature [17]–[21], and has 
recently been shown to be feasible to be applied to clinical 
CT data [22], achieving promising improvement of image 
quality in ultra-low-dose scans. 

The present study is an initial effort to evaluate the 
potential of pre-log MBIR in the context of ultra-low-dose 
lung nodule screening CT and its impact to nodule detection 
capability.  A patient with a 4 mm nodule was recruited 
undergoing a clinical-low-dose scan, followed by a research 
ultra-low-dose scan.  Reconstructions from the pre-log and 
post-log datasets of the clinical-low-dose and research 
ultra-low-dose scans were performed.  We compared 
images reconstructed by pre-log MBIR, post-log MBIR, 
and FBP at both the clinical-low-dose and the ultra-low-
dose levels.  A thoracic radiologist assessed these 
reconstructions in terms of image quality and nodule 
detectability. 

2 Theory 
 

We use a unified MBIR framework to reconstruct CT 
images from either pre-log or post-log CT data. Major 
components of the MBIR framework include a CT forward 
model, a maximum a posterior (MAP) statistical model, 
and an iterative solver. 
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CT forward model 

We use a discrete-discrete forward model of CT imaging 
system: 

 𝑦ො ≜ 𝐸[𝑦] = 𝐼𝑒ି([𝐀𝒙]), 𝑖 = 1, … , 𝑀  

where 𝑦ො  is the ensemble mean of the 𝑖th  detector 
measurement 𝑦; 𝒙 ∈ ℝே is a vector denoting the image to 
be reconstructed; 𝐼 > 0 is an air measurement; 𝐀 = {𝑎} 
with 𝑎 ≥ 0 is an 𝑀 × 𝑁  system matrix representing the 

Radon or x-ray transform; and [𝐀𝒙] ≜ �̂� ≜ ∑ 𝑎𝑥
ே
ୀଵ  is 

the line integral value along ray 𝑖 ; 𝑓(∙) is a function to 
model the beam-hardening effect due to a polyenergetic x-
ray beam passing through the object and detector.  In this 
study 𝑓(∙) is approximated by a polynomial obtained from 
detector calibration procedures. 

MAP statistical model 

The reconstructed image 𝒙ෝ ∈ ℝே  is the one that 
maximizes a posterior probability given the measurement 
vector 𝒚 ∈ ℝெ: 

𝒙ෝ = argmin
𝒙

Φ(𝒙|𝒚). 

The cost function Φ(𝒙|𝒚) consists of a data likelihood term 
and an image-space regularization term: 

 Φ(𝒙) ≜ −𝜙(𝒙) + 𝑈(𝒙) 

= −  ℎ(𝑦|[𝐀𝒙])

ெ

ୀଵ

+   𝑏𝜌൫𝑥 − 𝑥൯

ே

வ

ே



, 

where the data likelihood term 𝜙(𝒙) is the sum of the log-
likelihood ℎ(𝑦|�̂�) of individual measurements (assuming 
the noise in the 𝑦 ’s is statistically independent), and the 
regularization term 𝑈(𝒙) is a Markov random field (MRF) 
with 𝑏 representing the penalty strength between pixel 𝑗 
and 𝑘, and 𝜌(⋅) being a prior potential function. 

In pre-log reconstruction, we use shifted Poisson (SP) 
log-likelihood: 

ℎ୮୰ୣ୪୭(𝑦|�̂�) = ൫𝑦 + 𝜎ଶ ൯log൫𝐼𝑒ି(ො) + 𝜎ଶ ൯

− ൫𝐼𝑒ି(ො) + 𝜎ଶ ൯, 

where 𝜎ଶ is the variance of the detector electronic noise. 

In post-log reconstruction, we use a Gaussian model, 
bypassing Beer’s law and leading to a linear weighted-least-
squares formulation with respect to �̂� : 

ℎ୮୭ୱ୲୪୭(𝑦|�̂�) = −
1

2
𝑊(�̂� − 𝑝)ଶ 

where 𝑊 is the estimated inverse variance of 𝑝 and 

 
𝑝 ≜ 𝑓

ିଵ ൬log
𝐼

max(𝑦 , 𝛿)
൰ 

is the post-log data obtained by taking logarithm of the ratio 
between the pre-log data and the air scan, followed by the 

beam-hardening correction 𝑓
ିଵ .  Small or non-positive 

values in 𝑦  are clipped by an threshold 𝛿  [8][23].  The 
weight factor is determined by [6]: 

𝑊 = 𝑓
ᇱ(𝑝)ଶ

𝑦
ଶ

𝑦 + 𝜎ଶ , 

where small or non-positive values in 𝑦 are also clipped by 
the threshold 𝛿. 

Image update equations 

We use a preconditioned gradient descent algorithm for 
both pre-log and post-log reconstructions.  The image 
update equation for pre-log reconstruction is: 

𝑥ො
(ାଵ)

= 𝑥ො
()

+
1

𝑚

 

ቐ 𝑎 ൭𝑓
ᇱ൫�̂�

()
൯

𝑦ො
()

𝑦ො

()
+ 𝜎ଶ

൱ ൫𝑦ො
()

− 𝑦൯
ெ


൩ −  𝑏𝜌′൫𝑥ො

()
− 𝑥ො

()
൯

ே

வ

ቑ 

 

where the preconditioner 𝑚 ≜ ∑ ൣ𝑎𝑦൫∑ 𝑎
ே
 ൯൧ெ

 .  The 

error sinogram 𝑦ො
()

− 𝑦  is evaluated in the pre-log domain 
thus can accommodate non-positive values in 𝑦. 

The image update equation for post-log reconstruction is: 

𝑥ො
(ାଵ)

= 𝑥ො
()

+
1

𝑚
 

ቐቈ 𝑎 ቆ𝑓
ᇱ(𝑝)ଶ

𝑦
ଶ

𝑦 + 𝜎ଶ ቇ ൫𝑝 − �̂�
()

൯
ெ


 −  𝑏𝜌′൫𝑥ො

()
− 𝑥ො

()
൯

ே

வ

ቑ 

 

where the error sinogram 𝑝 − �̂�
() is evaluated in the post-

log domain, and the WLS weights 𝑊 = 𝑓
ᇱ(𝑝)ଶ ௬

మ

௬ାఙమ  are 

fully pre-determined (after clipping non-positive values). 

3 Experiments 
 
  We compared different reconstruction algorithms with 
patient data acquired as part of clinical work-up for lung 
nodule screening at Stony Brook University Hospital, 
approved by institutional review board approval and with 
written informed consent.  Both a clinical-low-dose and an 
ultra-low-dose dataset were acquired for comparison.  The 
scans were acquired on a GE Lightspeed VCT scanner (GE 
Healthcare, Waukesha, WI), with 64-row collimation, a 
helical pitch of 0.516, and 1.0 s rotation.  The clinical-low-
dose dataset was acquired with the standard lung nodule 
screening CT protocol at 120 kVp and automatic mA 
modulation (1.05 mSv).  The ultra-low-dose dataset was 
acquired with a research protocol at 80 kVp and 10 mA 
(0.12 mSv). For each dataset, three reconstruction 
algorithms were compared: FBP with standard kernel, Post-
log MBIR, and Pre-log MBIR. 

All images were reconstructed on a 512×512 grid with a 
field-of-view of 50 cm, an in-plane pixel size of 0.98 mm, 
and a slice thickness of 0.625 mm.  In post-log MBIR, the 
threshold 𝛿 was set to 10ିହ relative to the air scan.  The 
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threshold is roughly equivalent to the attenuation of about 
57 cm of water (assuming 𝜇ୖ = 0.2 cmିଵ at 60 keV).  
In this initial study 𝜎ଶ  was set to 0.  All MBIR 
reconstructions used the distance-driven forward and back 
projectors [24] and the q-GGMRF regularization [6].  
Regularization strengths were empirically selected.  All 
MBIR reconstructions were initialized with the 
corresponding standard FBP images and run 2000 iterations 
for practical convergence. 

These six reconstructed volumetric images were de-
identified by their reconstruction algorithms and randomly 
displayed to the thoracic radiologist, who had all the 
visualization tools in current clinical setting to exam each 
volumetric image.  The radiologist firstly scored the image 
diagnostic quality by a range from 1 (worest quality) to 10 
(highest quality) and then scored the confidence on 
detection of the 4mm nodule in the range from 1 to 10. 

4 Results 
 

Fig. 1. shows reconstructed CT images produced by 
different reconstruction algorithms at the two dose levels.  
The ultra-low-dose FBP reconstruction is extremely noisy.  
The ultra-low-dose post-log MBIR image contains much 
less noise but still shows strong artifacts and negative bias.  
The pre-log MBIR algorithm shows remarkable 
improvement of HU accuracy relative to post-log MBIR, 
almost fully removing the dark shading in the image, and 
the appearance of lung and chest wall are comparable to the 
clinical-low-dose reference image.  At clinical-low-dose, 
the post-log and pre-log MBIR images appear very 
comparable. Figs. 2 and 3 show the horizontal profiles 
through the center portion of the images for more 
quantitative comparison. 

  
Fig. 2. Image profiles through the center of reconstructed images from 
the clinical-low-dose data. The profiles of post-log and pre-log MBIR 
images closely overlap. 
 

 
Fig. 3. Image profiles through the center of reconstructed images from 
the ultra-low-dose data. The FBP image is extremely noisy.  The post-
log MBIR image contains much less noise but shows strong bias on the 
order of 100 HU in the central area.  The pre-log MBIR image gives 
remarkable improvement of HU accuracy when compared with post-log 
MBIR. 

Table 1 shows the scores of the thoracic radiologist on the 
six reconstructions in terms of image quality and nodule 
detectability. It should be noted that in this initial study the 
regularization parameters used in pre-log and post-log 

Fig. 1. Examples of images reconstructed from clinical-low-dose 
and ultra-low-dose data with different algorithms. Window 
width/level = 1500/-500 HU. 
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MBIR algorithms have not been optimized for the specific 
clinical task. Nevertheless, at either dose levels, the pre-log 
MBIR received the highes score among all reconstruction 
options. At clinical-low-dose level, post-log and pre-log 
MBIR images revceived different scores, although they are 
visually very similar, as indicated by the image profiles in 
Fig. 2. The lower score of post-log MBIR image at clinical-
low-dose might be attributed to slight over-regularization 
when compared with the pre-log MBIR image, which will 
be fine-tuned in future studies, after which post-log MBIR 
is expected to match pre-log MBIR scores at clinical-low-
dose. At ultra-low-dose level,  post-log MBIR may also be 
poentially improved by more advanced post-log low-signal 
correction techniques [16]. 

Table 1.  Scores of Image Quality and Nodule Detectability 

Reconstruction Algorithms Image Quality Nodule Detectability 

Post-log MBIR (ultra-low-dose) 1 1 

FBP (ultra-low-dose) 2 2 

Pre-log MBIR(ultra-low-dose) 4 4 

Post-log MBIR (clinical-low-dose) 6 6 

FBP (clinical-low-dose) 7 7 

Pre-log MBIR(clinical-low-dose) 10 10 
 

5 Conclusion and Discussion 
 

We applied pre-log MBIR to lung nodule screening CT 
with an ultra-low-dose research protocol that has not been 
used in routine clinical practice.  Our results show that at 
the ultra-low-dose level, pre-log MBIR can remarkably 
improve the overall visual impression and quantitative 
accuracy when compared with post-log MBIR and FBP, 
thanks to its ability to better incorporate the information 
from photon-starved measurements. More importantly, the 
performance of our fully 3D pre-log reconstruction at the 
ultra-low-dose (0.12mSv) level approaches that of the FBP 
at the clinical-low-dose (1.05mSv) level, indicating a great 
potential of fully 3D reconstruction of ultralow-dose CT 
screening for the pulmonary nodules or the precursor of 
lung cancer.  This clinical observation concurs with our 
simulation study of characterizing the pre-log Bayesian CT 
reconstruction by the relationship between radiation dose 
level and tissue texture measure [21].    Pre-log MBIR may 
play an important role in enabling ultra-low-dose lung 
screening CT applications. Future work will entail further 
adjustment of algorithm parameters based on the clinical 
feedback.  
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Abstract In this paper, we present a method for removing streak
artifacts from reconstructions of sparse cone beam CT (CBCT) projec-
tions along circular trajectories. The differentiated backprojection on
2-D planes is combined with convolutional neural networks for both
artifact reduction and the ill-posed inversion of the Hilbert transform.
Undersampling errors occur at different stages of the algorithm, so
the influence of applying the neural networks at these stages is investi-
gated. Spectral blending is used to combine coronal and sagittal planes
to a full 3-D reconstruction. Experimental results show that using a
neural network to reconstruct a plane-of-interest from the differen-
tiated backprojection of few projections works best by additionally
providing FDK reconstructed planes to the network. This approach
reduces streaking and cone beam artifacts compared to the direct FDK
reconstruction and is also superior to post-processing CNNs.

1 Introduction

For several years, convolutional neural networks (CNNs) and
deep learning have found their way into medical imaging
and CT image reconstruction. CNNs are especially benefi-
cial for closely approximating complex tasks since they are
trained with domain-specific data and in most cases need less
computation time during inference than their exact analytical
counterparts. However, training CNNs on 3-D data sets is
usually not feasible due to the large memory requirements
and is often stripped down to 2-D problems or patch-based
3-D approaches.
In medical interventions, surgeons usually use fluoroscopic
images to guide them during the operation. This keeps the
dose on both the surgeons and patients low but does not
provide correct spatial information due to distortions of the
cone beam projections. This can be overcome using CBCT
reconstructions but increases the dose. To keep the radiation
as low as possible, the number of projections or the radiation
per projection must be minimal, both of which introduces
different kinds of artifacts in the final reconstructions. The
approach proposed in this work will focus on the first case of
a reduced number of projections.
There are algorithms that are able to reduce the streaking
artifacts caused by a low number of projections, but many
of them are not applicable in an interventional setting due to
their computation time, especially for iterative methods.
Han et al. [1] combine a factorization approach of the 3-D
problem onto 2-D planes using the differentiated backprojec-
tion (DBP) of [2] with a CNN-learned inversion of the Hilbert
transform to remove cone beam artifacts. As shown by [3],
the DBP is less prone to artifacts caused by truncated pro-

jections that are also usually acquired during interventions,
e.g. to reconstruct volumes of interest. Keeping the radiation
dose low by reducing the number of projections also creates
artifacts in the DBP domain. However, the following sections
will show that CNNs can be used to reduce these artifacts
and outperform post-processing FDK reconstructions with
CNNs of the same architecture.

2 Mathematical Preliminaries

2.1 Differentiated Backprojection

Following the notation of [1], let f (x) denote the scanned
object. Acquired cone beam projections are treated as X-
ray transforms D f (a,θ) from source locations a(λ ) along a
circular trajectory of radius R

a(λ ) = R · [cosλ ,sinλ ,0]T , λ ∈ R, (1)

along lines of direction θ ∈ S2 ⊂ R3 such that

D f (a,θ) =
∫

R
f (a+ tθ)dt. (2)

Applying the partial derivative along the source trajectory
and backprojecting between the source locations a(λ ),λ ∈
[λ−,λ+] results in the differentiated backprojection (DBP)

g(x) =
∫ λ+

λ−

1
‖x−a(λ )‖

∂
∂ µ

D f (a(µ),θ)
∣∣∣∣
µ=λ

dλ , (3)

which is related to the object function f (x) by the Hilbert
transform.

2.2 Factorization onto 2-D Planes

Eq. 3 can be evaluated on 2-D planes perpendicular to the
circular source trajectory, i.e. parallel to the z-axis, which
allows this 3-D problem to be converted to successive 2-D
problems [2]. If the chosen plane-of-interest P contains the
source locations a(λ−) and a(λ+), then g(x) is the convo-
lution of the Hilbert kernel over lines of the object f from
x to a(λ−) and from x to a(λ+). This suggests a deconvo-
lution algorithm to retrieve the object function f (x) on P .
CNNs can be trained to approximate this ill-posed deconvo-
lution problem without much computational effort (during
inference), in contrast to analytical algorithms [1, 2].
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3 Method

3.1 Discretization Errors and Sparse Views

Applying the DBP algorithm to real world data necessarily
introduces discretization errors: (1) Cone beam projections
are inherently discrete, so D f (a(λ ),θ) can only be evaluated
for discrete subsets of λ and θ , (2) the partial derivative
∂D f /∂λ needs to be approximated as well as (3) the integral
in Eq. 3. Theoretically exact reconstructions can only be
achieved for planes parallel to the z-axis containing a(λ±).
(4) This limits the resolution of the reconstructed volume (out-
of-plane) to the distance of neighboring source locations.
A low number of projections makes these errors even more
prominent. Sticking to the approach of [1], the partial deriva-
tive ∂D f /∂λ is approximated using the view-dependent dif-
ferentiation of [4], which only involves choosing a resolution
parameter that is set to ε = 2×10−3 empirically for a good
trade-off between accuracy and resolution.

3.2 Approach

The errors caused by discretization occur at different stages in
the reconstruction algorithm. For this reason, it is necessary
to dedicate different networks to these stages and evaluate
if combined networks can approximate the Hilbert inversion
with errors from different stages more accurately than others.
In total, six networks are trained. (1) For comparison, a
post-processing network is trained that enhances the FDK
reconstruction of 36 projections for sagittal or coronal slices.
(2) A network that enhances the DBP (Eq. 3) of 36 projec-
tions to approximate the DBP of fully sampled projections.
(3) A Hilbert inversion network that inverts fully sampled
DBP planes. (4) Like (3) but with an additional FDK re-
constructed (360 projections) plane as input. (5) A Hilbert
inversion network that inverts DBP planes from 36 projec-
tions and enhances them to approximate reconstructions of
fully sampled projections. (6) Like (5) but with an additional
FDK reconstructed (36 projections) plane as input.
All networks share the same U-Net-like architecture except
for the number of input/output channels and are trained on
both coronal and sagittal planes-of-interest.
For the final reconstructions, the following combinations
of networks are investigated: Network (1) for comparison
(fdkconv). Network (2) + Network (3) (s2f_inv). Net-
work (2) + Network (4) (s2f_inv3). Network (5) (inv_sp).
Network (6) (inv_sp3).

3.3 Spectral Blending

As described in [1], the reconstructed planes of the different
Hilbert directions can be combined using spectral blending
in order to minimize the missing frequency information. A
bow-tie mask is multiplied with the Fourier transforms of the
reconstructed planes and added. The masks are chosen such
that the frequency information from both planes complement

Method NMSE PSNR SSIM
[%] [dB] [%]

fdkconv 2.05 81.02 99.67
s2f_inv 3.02 80.17 99.45
s2f_inv3 6.95 75.73 98.67
inv_sp 2.95 80.70 99.42
inv_sp3 1.05 84.06 99.83

Table 1: Errors w.r.t. ground truth of reconstructions from coronal
planes-of-interest averaged over axial planes.

each other. By angular blurring of the mask, frequency infor-
mation that is contained in both planes can be combined, as
well.

3.4 Datasets and Training

The data of eleven subjects from the CT Lymph Nodes col-
lection [5] of The Cancer Imaging Archive [6] is used, con-
sisting of reconstructed volumes of the abdomen that serve as
ground truth. Cone beam projections were generated using
the CTL toolkit [7] equiangularly along a circular trajectory
with a source to detector distance (SDD) of 1000 mm and a
source to isocenter distance (SID) of 750 mm. The flat panel
detector consists of 1024×1024 elements with a pixel size
of 1 mm2 (cone angle of 54.2°).
A slightly modified U-Net [8] with a depth of 5 is used. The
encoder doubles the number of layers after each average
pooling, whereas the decoder halves the number of layers
after each bilinear upsampling. SGD is used as the opti-
mizer with a weight decay of 1×10−4 and a learning rate
of 5×10−2 that gradually drops to 1×10−2 by a factor of
0.8 after every 10 epochs of no improvement in validation
loss. Every network was trained for 300 epochs using mean
squared error (MSE). Eight subjects were used for training,
two for validation and the remaining one for testing. For
faster convergence, the reconstructed planes are normalized
between 0 and roughly 1 by dividing by the 99th percentile
of all axial planes of all datasets. Similarly, the Hilbert planes
are normalized by dividing by the standard deviation of all
Hilbert planes of all datasets. Random horizontal flips were
used as augmentation during training.

4 Results

Tab. 1 shows the mean errors of axial slices using coronal
planes-of-interest for the different combinations of networks
as described in Sec. 3.2, which include normalized mean
squared error (NMSE), peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM). The lowest
errors are achieved using inv_sp3, followed by the simple
post-processing network fdkconv. All other combinations
result in worse errors, the worst being s2f_inv3 with an
NMSE which is almost seven times higher than the best
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fdkconv

s2f_inv

s2f_inv3

inv_sp

inv_sp3

Figure 1: Exemplary reconstruction of different methods. Left:
using coronal planes-of-interest. Right: after spectral blending.

Method NMSE PSNR SSIM
[%] [dB] [%]

fdkconv 1.69 81.99 99.71
s2f_inv 3.29 79.33 99.42
s2f_inv3 8.06 75.06 98.38
inv_sp 2.99 79.97 99.47
inv_sp3 1.19 83.50 99.81

Table 2: Errors w.r.t. ground truth of reconstructions from sagittal
planes-of-interest averaged over axial planes.

inv_sp3. An important thing to note here is that the addi-
tional FDK plane of Network (4) was reconstructed using 360
projections while training, whereas during the inference for
the combination with Network (2), only 36 projections were
available for the FDK reconstruction and necessarily intro-
duced streaking artifacts. The other combinations s2f_inv
and inv_sp have only slightly worse errors than fdkconv.
The left column of Fig. 1 shows an axial slice reconstructed
from coronal planes using the different methods. Except
for s2f_inv3, all combinations result in less discontinuous
reconstructions than fdkconv. s2f_inv seems to smooth
out highly absorbing tissues. The best visual appearance for
this slice is achieved using inv_sp with the least discontinu-
ities and the highest edge preservation. As described earlier,
s2f_inv3 necessarily performs worse because of the way
it was trained. However, since the streaking artifacts are
very prominent, it can be assumed that Network (4) mainly
focuses on the FDK input rather than the DBP plane.
The same behavior as in Tab. 1 can be seen in Tab. 2, but

Figure 2: Top: Masks without (left), 45° (center) and 90° blurring
(right). Bottom: Error metrics for inv_sp3 reconstructions after
spectral blending depending on blurring radius of masks.

Method NMSE PSNR SSIM
[%] [dB] [%]

sparse_fdk 15.80 72.09 96.95
fdkconv 1.39 82.86 99.76
s2f_inv 1.98 81.53 99.64
s2f_inv3 7.87 75.17 98.44
inv_sp 1.80 82.14 99.67
inv_sp3 0.90 84.61 99.84

Table 3: Errors after spectral blending. sparse_fdk shows the
errors of an FDK reconstruction from 36 projections for reference.

here for sagittal planes-of-interest. Interestingly, all errors
are slightly worse than their counterpart on coronal planes-
of-interest except for fdkconv. For brevity, the qualitative
results are not shown.

4.1 Spectral Blending

The blurring radius of the bow-tie mask for the spectral blend-
ing of reconstructions from coronal and sagittal planes-of-
interest seems to be an essential parameter for the quality
of the final reconstructions, as prior tests have shown. The
influence of different blurring radii is shown in Fig. 2 for
inv_sp3. There seems to be an almost linear dependency
between the radius and the different error metrics: the higher
the radius, the closer the reconstruction to the ground truth.
This is reasonable because more and more frequencies from
both planes are accounted for when increasing the radius. For
this reason, the blurring radius is set to 90°.
Tab. 3 shows the errors of the different methods after spectral
blending. Compared to the reconstructions without spectral
blending, the errors are even lower. For the best method
inv_sp3, the NMSE is reduced by 0.15 % and 0.19 % com-
pared to coronal and sagittal plane-of-interest reconstruc-

465



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 19 - 23 July 2021, Leuven, Belgium

tions.
The right column of Fig. 1 shows the reconstructions after
spectral blurring. Almost all methods benefit from the addi-
tional sagittal information. Visual differences cannot be ob-
served for s2f_inv3 because of the focus of Network (4) on
the FDK input which does not incorporate different informa-
tion for sagittal or coronal planes. The reconstruction using
inv_sp introduces some additional discontinuities, probably
caused by the worse quality of the network on sagittal planes.

5 Discussion

In general, only one of the proposed combinations in fact im-
proves the simple post-processing baseline fdkconv, which
is inv_sp3. A possible explanation for this is that, compared
to the other combinations, inv_sp3 can directly learn to ex-
tract the most useful information from both the sparse view
FDK (which already contains correct frequency information)
and DBP (which is able to incorporate information of trun-
cated projections as well as different information from sparse
views compared to FDK). The other combinations do not
include the FDK reconstruction (inv_sp and s2f_inv) or
are not trained end-to-end (s2f_inv and s2f_inv3), which
does not allow the gradients to flow back completely.
As described earlier, the additional input of Network (4) was
the FDK reconstruction of 360 projections while training and
of 36 projections while testing s2f_inv3. For further tests,
the output of fdkconv could be used as this additional input
to be closer to what the network was trained on.
Moreover, there is a significant difference in accuracy of all
networks between coronal and sagittal planes, which might
be caused by less variance in the sagittal planes. Additional
data or different augmentation techniques could resolve this.
The spectral blending results in even lower errors but depends
on the masks that are used. The almost linear dependency
of the blurring radius of the mask on the final error metrics
(Fig. 2) suggests increasing the radius even further or using
masks of non-bow-tie shape.
We discovered that all networks including some kind of
Hilbert inversion need high learning rates ≥ 10−2. Setting
them lower resulted in both higher loss values and less robust
trainings, which seems rather counter-intuitive. Trainings
with learning rates between 10−4 and 10−5 (cf. [1]) did not
converge at all, which might be related to the data set or
normalization of the data.
To further increase the reconstruction quality, it is conceiv-
able to additionally input neighboring planes-of-interest to
the networks to gain more spatial information. In addition,
the effect of choosing different values for ε for creating the
partial derivatives was not investigated and needs further tests.
The code is available on Github1.

1https://github.com/phernst/sparse_dbp

6 Conclusion

In this paper, an approach for enhancing CT reconstructions
from sparse cone beam projections combining convolutional
neural networks and differentiated backprojection was pre-
sented. Since errors caused by undersampling of the tra-
jectory occur at different stages of the algorithm, analytical
steps and CNNs were joined in different combinations to find
the optimal strategy. We discovered that inverting the sparse
view backprojection with a CNN from 36 projections works
best when additionally providing the FDK reconstruction to
the network, increasing the PSNR by almost 3 dB and 1.5 dB
compared to a simple post-processing CNN for coronal and
sagittal planes-of-interest, respectively. Spectral blending
further increases the PSNR to 84.61 dB when using a radially
blurred bow-tie mask.
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Abstract The development of computed tomography (CT) image re-
construction methods that significantly reduce patient radiation expo-
sure, while maintaining high image quality is an important area of
research in low-dose CT imaging. We propose a new method for CT
image reconstruction that combines penalized weighted-least squares
reconstruction (PWLS) with regularization based on a union of un-
dercomplete (and alternatively overcomplete) sparsifying transforms
learned from datasets. The proposed cost function can be efficiently
solved by alternating between an image update step and a sparse cod-
ing and clustering step. Simulations on the XCAT phantom show
that for low-dose levels the proposed method significantly improves
the quality of reconstructed images compared to PWLS reconstruc-
tion with a nonadaptive edge-preserving regularizer and is compara-
ble with the previous union of learned.

1 Introduction

Model-based image reconstruction (MBIR) methods also
known as statistical image reconstruction methods [1] im-
prove computed tomography (CT) image quality while
greatly reducing patient exposure to potentially harmful lev-
els of radiation. MBIR methods can be divided into two cat-
egories: nonadaptive methods and learning-based methods.
Edge-preserving (EP) regularization is widely used for non-
adaptive image reconstruction. For learning-based methods,
dictionary learning [2] has shown promising performance in
CT image reconstruction, but the efficacy is limited by ex-
pensive sparse coding, e.g., with the orthogonal matching
pursuit (OMP) algorithm. Ravishankar and Bresler [3] pro-
posed efficiently learning square sparsifying transforms (ST)
for images. In contrast to the often highly non-convex and
NP-hard dictionary learning problems, the transform model
can be learned efficiently [4] due to the simple thresholding-
based sparse coding solution in the transform domain. The
square transform learning approach was later extended to
handle overcomplete transforms [5], and shown to outper-
form synthesis dictionary learning (K-SVD) for image de-
noising, while being faster.
Zheng et al. [6] proposed a PWLS-ST method which has
demonstrated the superior performance of learned ST for
low-dose CT reconstruction. Zheng et al. [6] then extended
PWLS-ST to learning a more general union of square spar-
sifying transforms (ULTRA). Deep neural networks (NNs)
have been applied to low-dose CT image reconstruction
problems. Early works use the powerful mapping capacity
of deep learning to transform noise contaminated CT images
into the desired high quality images [7]. However, the global

mapping capability in deep learning also leads to the funda-
mental challenge of generalizability issue that causes some
artificial features when test images are not similar to training
images.
In this work, we propose a PWLS-Union-UST (PWLS-
Union-OST) method (UST and OST denote undercom-
plete sparsifying transforms and overcomplete sparsifying
transforms, respectively) which combines the penalized
weighted-least squares (PWLS) estimation with regulariza-
tion based on a union of pre-learned undercomplete (over-
complete) sparsifying transforms. We propose efficient al-
gorithms for learning and reconstruction and show that the
proposed scheme outperforms conventional PWLS-EP and
is comparable to PWLS-ULTRA with the image quality
improving somewhat with increasing transform size in our
schemes.

2 Problem Formulations

2.1 Learning a Union of Undercomplete Sparsifying
Transforms

To learn a Union of UST {ΩΩΩk}K
k=1 (ΩΩΩk ∈ Rm×l , m < l) from

N′ (vectorized) image patches, we optimize:

min
{ΩΩΩk ,Zi,Ck}

K

∑
k=1

{
∑

i∈Ck

{
∥ΩΩΩkXi −Zi∥2

2 + γ2∥Zi∥0

}

+µ ∑
l ̸=m

⟨ΩΩΩkl ,ΩΩΩkm⟩2 +η ∑
m
(∥ΩΩΩkm∥2

2 −1)2
}

(P0)

Problem (P0) groups the training signals Xi ∈ Rl into K
classes according to the transforms that best sparsify them,
and Ck denotes the set of indices of patches matched to the
kth cluster. {Zi}N′

i=1 denotes the sparse codes of the training
signals (vectoried patches) {Xi}N′

i=1. ΩΩΩkm means the mth row
of the kth transform matrix ΩΩΩk. The l0 "norm" counts the
number of non-zeros in a vector. The term ∥ΩΩΩkXi −Zi∥2

2
is called the sparsification error and measures the deviation
of the signals in the transform domain from their sparse
approximations. The penalties µ ∑l,m,l ̸=m ⟨ΩΩΩkl ,ΩΩΩkm⟩2 and
η ∑m(∥ΩΩΩkm∥2

2−1)2 together help control the condition num-
ber of ΩΩΩkΩΩΩT

k . The parameters µ = µ0∥XCk∥2
F and η =

η0∥XCk∥2
F , where µ0 > 0 and η0 > 0 are constants and XCk

is a matrix whose columns are the training signals in the kth
cluster. The weight ∥XCk∥2

F for the penalties allows them to
scale similarly as the sparsification error term. The param-
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eter γ = γ0∥X∥F , and the weight ∥X∥F for the sparse codes
scale appropriately with the data.

2.2 Learning a Union of Overcomplete Sparsifying
Transforms

To learn a Union of OST {ΩΩΩk}K
k=1 (ΩΩΩk ∈ Rm×l , m > l) from

N′ (vectorized) patches, we solve:

min
{ΩΩΩk ,Zi,Ck}

K

∑
k=1

{
∑

i∈Ck

{
∥ΩΩΩkXi −Zi∥2

2 + γ2∥Zi∥0

}
−λ logdet

(
ΩΩΩT

k ΩΩΩk

)

+µ ∑
l ̸=m

⟨ΩΩΩkl ,ΩΩΩkm⟩2 +η ∑
m
(∥ΩΩΩkm∥2

2 −1)2
}

(P1)

The terms µ ∑l,m,l ̸=m |⟨ΩΩΩkl,ΩΩΩkm⟩|2, η ∑m(∥ΩΩΩkm∥2
2−1)2 and

λ logdet
(
ΩΩΩT

k ΩΩΩk
)

together help control the conditioning and
incoherence of ΩΩΩk. The parameter λ = λ0∥XCk∥2

F . Note that
unlike (P0), where ΩΩΩk has more columns than rows, it has
fewer columns than rows in (P1), and the log determinant
penalty allows controlling the condition number of ΩΩΩT

k ΩΩΩk
[5].

2.3 LDCT Reconsturction

We solve the following optimization problem to reconstruct
an image x ∈ RNp from noisy sinogram data y ∈ RNd using
a pre-learned Union of transforms [6] {ΩΩΩk}K

k=1:

min
x≥0

1
2
∥y−Ax∥2

W +βR(x) (P2)

where W = diag{wi} ∈ RNd×Nd is a diagonal weighting
matrix with elements being the estimated inverse variance
of yi, A ∈ RNd×Np is the system matrix of a CT scan, the
parameter β > 0 controls the noise and resolution trade-off,
and the regularizer R(x) based on a union of UST {ΩΩΩk}K

k=1
is defined as:

R(x)≜ min
{z j ,Ck}

K

∑
k=1

∑
j∈Ck

{
∥ΩΩΩkP jx− z j∥2

2 + γ2∥z j∥0

}
. (1)

The operator P j ∈Rl×Np extracts the jth patch of l voxels of
x as P jx. The regularizer includes a sparsification error term
and a l0 "norm"-based sparsity penalty with weight γ2.

3 Algorithms

3.1 Algorithm for Learning a Union of Sparisifying
Transforms

We use an alternating algorithm to solve (P0) that alter-
nates between updating {ΩΩΩk} (transform update step) and
{Zi,Ck} (sparse coding and clustering step). The algorithm
for (P1) is similar and so we describe for (P0) below.
In the first step called transform update step, we solve prob-
lem (P0) with {Zi,Ck} fixed as follows:

min
{ΩΩΩk}

K

∑
k=1

∑
i∈Ck

∥ΩΩΩkXi −Zi∥2
2 +

K

∑
k=1

{
µ ∑

l ̸=m
⟨ΩΩΩkl ,ΩΩΩkm⟩2

+η ∑
m
(∥ΩΩΩkm∥2

2 −1)2
}
.

(2)

We use the nonlinear conjugate gradient (CG) method to up-
date each ΩΩΩk in (2). The details are shown in Algorithm 1.

Algorithm 1 Learning a Union of Undercomplete Sparsify-
ing Transforms
Inputs: initial transform: {ΩΩΩ0

k}K
k=1, the step size α (could be also ob-

tained by line search), the parameters µ0 and η0, the training matrix X,
number of outer iterations P, number of inner iterations N.
Outputs: learned transform {Ω̃ΩΩP

k }K
k=1

for p = 0,1,2, . . . ,P−1 do
for k = 0,1,2, . . . ,K −1 do

(1) Transform Update: with {Z̃p
i , C̃

p
k } fixed,

Initialization:
for n = 0,1,2, . . . ,N −1 do

▽ΩΩΩ(n)
k
∥ΩΩΩ(n)

k Xi − Z̃p
i ∥2

F = 2ΩΩΩ(n)
k XiXT

i −2Z̃p
i XT

i = G(n)
1

▽ΩΩΩ(n)
k

∑l ̸=m

⟨
ΩΩΩ(n)

kl ,ΩΩΩ(n)
km

⟩2
= 2

(
C(n)ΩΩΩ(n)

k −B(n)
)
= G(n)

2

▽ΩΩΩ(n)
k

∑m ∥(ΩΩΩ(n)
km∥2

2 −1)2 = D(n)

The matrices C(n) and B(n) above have entries c(n)i j =⟨
ΩΩΩ(n)

ki ,ΩΩΩ(n)
k j

⟩
and b(n)i j = c(n)ii (ΩΩΩ(n)

k )i j . The matrix D(n) ∈

Rm×l has entries d(n)
i j = 4(ΩΩΩ(n)

k )i j(∑
l
q=1 (ΩΩΩ

(n)
k )

2

iq −1).

G(n) = G(n)
1 +µ0∥XC̃p

k
∥2

F G(n)
2 +η0∥XC̃p

k
∥2

F D(n)

if n = 0 then
d(n) =−G(n)

else
d(n) =−G(n)+

∥G(n)∥2
F

∥G(n−1)∥2
F

d(n−1)

end if
ΩΩΩ(n+1)

k = ΩΩΩ(n)
k +αd(n)

end for
end for
Ω̃ΩΩp+1

k = ΩΩΩ(N)
k

(2) Sparse Coding and Clustering: with Ω̃ΩΩp
k fixed,

the optimal cluster membership for each Xi is: k̂i =
argmin1≤k≤K ∥Ω̃ΩΩp

k Xi −Hγ (Ω̃ΩΩ
p
k Xi)∥2

2 + γ2∥Hγ (Ω̃ΩΩ
p
k Xi)∥0 +

µ0∥Xi∥2
2 ∑l ̸=m

⟨
Ω̃ΩΩp

kl ,Ω̃ΩΩ
p
km

⟩2
+ η0∥Xi∥2

2 ∑m(∥Ω̃ΩΩp
km∥2

2 − 1)2.

Then the optimal sparse codes are Z̃(p+1)
i = Hγ (Ω̃ΩΩ

p+1
k̂i

Xi).
end for

In the sparse coding and clustering step of (P0) (or (P1)), we
solve for {Zi,Ck} with fixed {ΩΩΩk} as follows:

min
{Zi,Ck}

K

∑
k=1

∑
i∈Ck

{
∥ΩΩΩkXi −Zi∥2

2 + γ2∥Zi∥0

+µ0∥Xi∥2
2 ∑

l ̸=m
⟨ΩΩΩkl ,ΩΩΩkm⟩2 +η0∥Xi∥2

2 ∑
m
(∥ΩΩΩkm∥2

2 −1)2
}
.

(3)

For each k, we can replace Zi in (3) with the optimal sparse
codes, Zi = Hγ(ΩΩΩkXi), where the hard-thresholding oper-
ator Hγ(·) sets entries with magnitude less than γ to zero,
leaving other entries unchanged. Then, the optimal cluster
membership for each Xi can be obtained as:

k̂i = argmin
1≤k≤K

∥ΩΩΩkXi −Hγ (ΩΩΩkXi)∥2
2 + γ2∥Hγ (ΩΩΩkXi)∥0

+µ0∥Xi∥2
2 ∑

l ̸=m
⟨ΩΩΩkl ,ΩΩΩkm⟩2 +η0∥Xi∥2

2 ∑
m
(∥ΩΩΩkm∥2

2 −1)2.
(4)

Then the optimal Ẑi = Hγ(ΩΩΩk̂i
Xi).

3.2 LDCT Reconstruction Algorithm

We use an alternating algorithm to solve (P2) that alternates
between upating x (image update step), and {z j,Ck} (sparse
coding and clustering step).
In the image update step, With {z j,Ck} fixed, (P2) reduces
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Algorithm 2 Image Reconstruction Algorithm
Inputs: initial image x̃(0), pre-learned {ΩΩΩk}, threshold γ , α = 1.999,

DA ⪰ AT WA, DR ≜ 2β ∑N
j=1 PT

j P jλmax(ΩΩΩT
k ΩΩΩk), number of outer itera-

tions T , number of inner iterations N, and number of subsets M.
Outputs: reconstructed image x̃(T ), cluster indices C̃(T )

k reconstructed
image: x̃

for t = 0,1,2, . . . ,T −1 do
(1) Image Update: with {z̃(t)j , C̃(t)

k } fixed,

Initialization: ρ = 1, x(0) = x̃(t), ζ (0) = g(0) =
MAT

MW(AM x̃(t)−yM),h(0) = DAx̃(t)−ζ (0)

iteratively update x using OS-LALM [6] with N iterations and M
ordered subsets
x̃(t+1) = x(NM)

(2) Sparse Coding and Clustering: with x̃(t+1)

fixed, the optimal cluster membership for each Xi is:
k̂ j = argmin1≤k≤K ∥ΩΩΩkP jx̃(t+1)−Hγ (ΩΩΩkP jx̃(t+1))∥2

2 +

γ2∥Hγ (ΩΩΩkP jx̃(t+1))∥0. Then the optimal sparse codes are

z̃(t+1)
j = Hγ (ΩΩΩk̂ j

P jx̃(t+1)).
end for

to the following weighted least squares problem:

min
x≥0

1
2
∥y−Ax∥2

W +β
K

∑
k=1

∑
j∈Ck

{
∥ΩΩΩkP jx− z j∥2

2 + γ2∥z j∥0

}
. (5)

We solve the problem using the relaxed linearized aug-
mented lagrangian method with ordered-subsets (relaxed
OS-LALM) [8]. The algorithmic details are shown in Al-
gorithm 2. In the sparse coding and clustering step for (P2),
with x fixed, we update {z j,Ck} by solving:

min
{z j ,Ck}

K

∑
k=1

∑
j∈Ck

{
∥ΩΩΩkP jx− z j∥2

2 + γ2∥z j∥0

}
. (6)

The optimal cluster membership for each Xi is:
k̂ j = argmin

1≤k≤K
∥ΩΩΩkP jx−Hγ (ΩΩΩkP jx)∥2

2 + γ2∥Hγ (ΩΩΩkP jx)∥0. (7)

Then the optimal sparse codes are z j = Hγ(ΩΩΩk̂ j
P jx).

4 Experiment Results

4.1 Experiment Setup

We trained both a UST and an OST (1 cluster) along with a
union of UST and OST (5 clusters) from 5 different slices of
an XCAT phantom [9] using (P0). We extracted 8×8 over-
lapping image patches with a patch stride of 1 pixel from the
five 512×512 XCAT slices.
We simulated a 2D fan-beam CT scan using a 1024× 1024
XCAT phantom slice, which is different from the learning
slices, with pixel dimensions ∆x = ∆y = 0.4883mm. Noisy
(Poisson noise) sinograms of size 888× 984 were numeri-
cally generated with GE LightSpeed fan-beam geometry cor-
responding to a monoenergetic source with 104 incident pho-
tons per ray and no scatter. We reconstructed a 512× 512
image with a coarser grid, where ∆x = ∆y = 0.9766mm.
To compare the performance quantitatively, we computed
the root mean square error (RMSE) in Hounsfield units (HU)
for the reconstructed images. For a reconstructed image x̂,

RMSE is defined as
√

∑Np
j=1(x̂ j − x⋆j)2/Np, where x⋆j denotes

the down-sampled true image intensity at the jth pixel loca-
tion and Np is the number of pixels in the phantom support
(a circle removes all the background area outside the image
that is not interesting).

4.2 Transform Learning and LDCT Reconstruction
Results

We evaluate PWLS-UST (OST) and compare its perfor-
mance to PWLS-EP [8] and PWLS-ST [6]. We ran 2000
iterations of the CG algorithm to make sure the learned
UST and OST completely converged. For training the UST
(transform size: 56 × 64), we chose parameters, γ = 100,
α = 3× 10−14 and λ0 = µ0 = 10−1. We also tuned param-
eters to train an OST (128× 64) and other different sizes
of UST. Figure 1 shows the pre-learned UST and the OST.
Each row of these transforms is displayed as an 8×8 patch.
During image reconstruction, we used the image obtained af-
ter a few iterations of the PWLS-EP method as initialization
for the adaptive schemes to realize faster convergence. We
set γ as 20 and β as 1.5× 105 for PWLS-UST (56× 64) to
achieve a good trade-off between reconstructed image qual-
ity and convergence speed. In each iteration, we ran 2 inner
iterations of the image update step. We ran 500 outer itera-
tions to ensure convergence.
We tuned the parameters of all transform learning-based
PWLS methods to obtain the best performances. Figure
2 shows the reconstructed images with PWLS-EP, PWLS-
OST (128× 64), PWLS-ST, and PWLS-UST (56× 64 and
48× 64) along with the ground truth. We can observe that
PWLS-OST reduces the severe noise and artifacts observed
in the PWLS-EP image, and reconstructs more details of the
image such as the zoom-in areas. Table 1 lists the RMSE
and SSIM values for ST, EP, UST of different sizes and OST.
The metrics improve with increasing transform size.

Table 1: RMSE and SSIM values for the testing image with EP,
OST, ST and UST with different transform sizes.

EP OST(128×64) ST UST(56×64)

RMSE 39.4 35.5 36.5 36.5

SSIM 0.892 0.965 0.963 0.960

UST(48×64) UST(40×64) UST(32×64) UST(24×64)

RMSE 36.6 36.6 36.7 37.0

SSIM 0.956 0.956 0.955 0.948

4.3 LDCT Results with Unions of Learned Trans-
forms

Next, we evaluate PWLS-Union-UST (and OST) and com-
pare its performance to PWLS-EP and PWLS-ULTRA [6].
We ran 2000 iterations of the CG algorithm to make sure the
learned unions of transforms completely converged. For a
Union of UST (transform size: 56× 64), we chose parame-
ters, γ = 50, α = 10−14 and λ0 = µ0 = 10−2. We also tuned
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(a) learned OST (b) learned UST (c) learned UST (d) learned UST (e) learned UST (f) learned UST
(128×64) (56×64) (48×64) (40×64) (32×64) (24×64)

Figure 1: Rows of the learned sparsifying transform (only 1 cluster) shown as 8 × 8 patches for (a) learned OST (128×64), (b) learned
UST (56×64), (c) learned UST (48×64), (d) learned UST (40×64), (e) learned UST (32×64) and (f) learned UST (24×64).

PWLS-EP PWLS-OST
(128×64)

PWLS-ST PWLS-UST
(56×64)

PWLS-UST
(48×64)

PWLS-Union-OST
(128×64)

PWLS-ULTRA PWLS-Union-UST
(56×64)

PWLS-Union-UST
(48×64)

Reference

Figure 2: Comparison of reconstructions of XCAT phamtom with PWLS-EP, PWLS-OST (128×64), PWLS-ST, PWLS-UST (56×64),
PWLS-UST (48×64), PWLS-Union-OST (128×64), PWLS-ULTRA, PWLS-Union-UST (56×64), PWLS-Union-UST (48×64) and
Reference. The display window is [800, 1200] HU. The incident photon intensities I0 = 104.

parameters to train a Union of OST (128× 64) and Unions
of UST with different sizes.

Table 2: RMSE and SSIM values for the testing image with
Union-OST, ULTRA, and Union-UST with different transform
sizes. We use 5 clusters.

Union-OST Union-UST Union-UST
(128×64) ULTRA (56×64) (48×64)

RMSE 34.0 34.4 34.7 35

SSIM 0.967 0.967 0.967 0.966

Union-UST Union-UST Union-UST
(40×64) (32×64) (24×64)

RMSE 35.2 35.6 35.8

SSIM 0.965 0.959 0.957

We used the image obtained after a few iterations of the
PWLS-EP method as initialization to obtain faster conver-
gence for the adaptive methods. We set γ as 15 and β as
5× 105 for PWLS-Union-UST (56× 64) to achieve a good
trade-off between reconstructed image quality and conver-
gence speed. We ran 500 outer iterations of PWLS-Union-
UST (OST) for convergence and ran 2 inner iterations of
the image update step. We also tuned the parameters of all
reconstruction algorithms for best RMSE and SSIM.

Figure 2 shows the reconstructed images with PWLS-Union-
OST, PWLS-ULTRA and PWLS-Union-UST (56× 64 and
48× 64) along with the ground truth. The zoom-in areas
show that PWLS-Union-OST can reconstruct image details
better. Moreover, the union of transforms approaches outper-
form the corresponding single transform (1 cluster) schemes.
Table 2 lists the corresponding RMSE and SSIM values
with Union-OST, ULTRA, and different sized transforms
in Union-UST. The Union-OST scheme achieves the best
RMSE and SSIM.

5 Conclusion

We propose a new method for CT image reconstruction that
combines the conventional PWLS estimation with a regular-
izer involving a pre-learned union of undercomplete (over-
complete) sparsifying transforms. We demonstrated that the
proposed PWLS-Union-UST (PWLS-Union-OST) method
outperformed the PWLS-EP method (which uses a fixed fi-
nite differencing type sparsifying model) in terms of image
quality in low-dose simulations. The proposed method is
also comparable with PWLS-ULTRA (that uses a union of
pre-learned square sparsifying transforms), with RMSE im-
proving somewhat with increasing transform size. In future
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work, we will apply the proposed methods to clinical data.
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Abstract The spatial resolution of clinical multi-slice CT is mainly 
limited by the size of CT detector cells. Upgrading the entire CT detector 
array to one with finer-pitched cells is expensive for widespread 
application. Here we propose a novel high-resolution CT scheme, named 
Zoom-In Partial Scans (ZIPS), to improve the resolution of clinical CT 
scanners without a costly upgrade of the detector array. Unlike a 
conventional CT scan where a region of interest (ROI) is positioned at 
the center of the scanner’s field of view, in ZIPS CT the ROI is positioned 
off-center to increase the geometric magnification of the ROI and 
overcome the resolution limit of the detector cell size. A ZIPS 
reconstruction algorithm is developed to merge two off-center limited-
angle partial scans to form a single high-resolution image of the ROI. The 
proposed ZIPS technique was evaluated in a CatSim simulation 
environment. Improvement in modulation transfer functions from 30% 
to 100% relative to a conventional centered scan was observed.  
 
Keywords: high-resolution CT, magnification, limited angle, image 
reconstruction 

1 Introduction 

  Revealing finer anatomical details in CT imaging has long 
been sought in clinical areas such as inner ear imaging and 
assessment of bone microstructure. Various efforts have 
been devoted to the improvement of spatial resolution of 
clinical multi-slice CT. Some high-resolution scanners are 
based on a redesign of the entire CT detector array to one 
with half-pitched cells [1]–[3], which are costly for 
widespread clinical application as the number of detector 
cells would quadruple. Some experimental scanners 
combine flat panel detector technology with a standard 
clinical CT gantry to achieve high resolution [4]–[6], but the 
slow read out speed, marked hysteresis effects, and high 
scatter-to-primary ratio preclude their use in many standard 
clinical CT applications. Specialty CT scanners, such as 
high-resolution extremity or dental CT [7]–[9] are less 
ubiquitous and accessible, and their small bore size and 
limited X-ray tube power preclude imaging of larger 
anatomies such as the spine and pelvis.  

  Here we propose a novel CT scanning scheme, named 
Zoom-In Partial Scans (ZIPS), to improve the intrinsic 
spatial resolution of CT imaging of a local region of interest 
(ROI) without upgrading the CT detector array. Unlike 
conventional CT imaging where the ROI is placed at the 
center of the scanner’s field of view (FOV), ZIPS CT 
introduces a novel off-center scanning scheme to increase 
the geometric magnification of the ROI when projected 
onto the detector, combined with a small focal spot size. The 
high magnification can “zoom in” the ROI to overcome the 
resolution limit imposed by the detector cell pitch. For 

rotating-gantry-based CT, because the high magnification 
of an off-center ROI can only be achieved over a limited 
angular range, i.e., when the X-ray source rotates on the 
same side as the ROI relative to the rotation center, we call 
such an off-center scan a Zoom-In Partial Scan (ZIPS). We 
utilize two partial scans to acquire the complete high-
resolution projection data of the ROI. A ZIPS image 
reconstruction algorithm is developed to merge the two 
partial scans and reconstruct a single high-resolution image 
of the ROI. 

  In this paper we introduce the ZIPS CT scheme, show the 
feasibility of an initial ZIPS reconstruction algorithm, and 
evaluate improvement of the spatial resolution in a CatSim  
[10] simulation environment. Modulation transfer functions 
(MTF) and examples of reconstructed images are presented 
as results. 

2. Theory  

Magnification of an off-center ROI 

  On a clinical CT scanner, the fan-beam magnification ratio 
at the isocenter is typically ~1.7X (source-to-detector 
distance ≈  1 m, source-to-isocenter distance ≈  0.6 m). 
However, an off-center ROI can have higher magnfication  
(Fig. 1). The magnification can reach up to ~2.5X for an 
ROI at 20 cm off center when the X-ray source rotates on 
the same side as the ROI. The magnification can further 
reach up to ~3.3X for an ROI at 30 cm off center. The 
diameter of the bore opening of a modern clinical CT 
scanner is typically about 80 cm. Depending on the patient 
size and the anatomy of interest, a patient may be positioned 
off center when possible to increase the magnification of an 
ROI. We intend to utilize the high magnification of the off-
center ROI to acquire high-resolution projection data and 
overcome the resolution limit of the detector cell size.  
 
  As the CT gantry rotates, however, the magnification ratio 
of an off-center ROI varies. Fig. 2 plots the magnification 
ratio as a function of projection angles. Relatively high 
magnification is achieved over a limited angular range 
(about 90°) when the source rotates on the same side as the 
ROI relative to the isocenter. However, the magnification is 
reduced when the X-ray source is on the opposite side of the 
ROI.  
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Fig 1. Illustration of the higher magnification of an off-center scan. The 
high magnification combined with a small focal spot can improve the 
spatial resolution of imaging. 

 

 
Fig. 2. The magnification ratio of an off-center ROI plotted as a function 
of projection ray angle. Zero ray angle is defined as when the X-ray 
source is closest to the ROI. (based on source-to-detector distance ≈ 1.1 
m, source-to-isocenter distance ≈ 0.63 m.) 
 
Dual partial scans 

  In order to acquire high-resolution data over the complete 
Radon projection space of the ROI, we propose a dual 
partial scan scheme. As illustrated in Fig. 3, the patient is 
scanned at two bed positions. The scanner bed remains still 
during each of the two scans. After the first scan is 
completed, the patient is translated to the second bed 
position, where the second scan is performed. Each of the 
two scans acquires high-resolution projection data of the 
ROI over a limited angular range (about 90°). The two 
partial scans together acquire high-resolution projection of 
the complete Radon space (180°). More generally, let 
(𝑑ଵcos𝜑ଵ, 𝑑ଵsin𝜑ଵ)  and (𝑑ଶcos𝜑ଶ, 𝑑ଶsin𝜑ଶ)  denote 
positions of the ROI (relative to the iso-center) in the two 
scans, respectively. For the configuration shown in Fig. 3, 
𝑑ଵ = 𝑑ଶ, 𝜑ଵ = 45°, 𝜑ଶ = 135° (angle zero is defined at 12 
o’clock position), and the scanner bed only moves up or 
down between the two partial scans.  In general, 
|𝜑ଵ − 𝜑ଶ| ≈

గ

ଶ
, so that the two partial scans cover 

complimentary angular ranges of high-resolution data, and 
the two partial scans together cover the complete Radon 

space of the ROI with high resolution. The exact 
displacement between the two scans may not be known 
exactly and will be estimated by a registration algorithm. 

 

Fig. 3. Illustration of the concept of ZIPS CT. Two limited-angle partial 
scans are utilized to acquire high-resolution projection data of the ROI in 
complementary angular ranges. 
 
  Fig. 4 represents the acquired Radon samples in each 
partial scan in the ROI’s local coordinate system, i.e., with 
respect to the center of the ROI, to visualize how the two 
partial scans acquire high-resolution projection data in 
complementary angular ranges. In the 𝑖th partial scan, a line 
integral sample (𝑟, 𝜃)  relative to the iso-center can be 
mapped to a line integral sample (𝑟′, 𝜃′) in the ROI’s local 
coordinate system through 𝑟ᇱ = 𝑟 − 𝑑 sin(𝜃 − 𝜑)  and 
𝜃ᇱ = 𝜃. As shown in Fig. 4, in the first partial scan, high-
resolution data (indicated by larger markers) are acquired 
over the angular range [0, 90°]. In the second partial scan, 
high-resolution data are acquired over the angular range 
[90°, 180°].  

 

   
Fig. 4. Illustration of the sampling of the Radon space in the two partial 
scans. The samples are represented in the ROI’s local coordinate system. 
Larger markers indicate higher-resolution samples due to higher 
magnification of the ROI.  
 

ZIPS CT Reconstruction 

  Because each partial scan covers only half of the Radon 
projection space with high resolution, these spatial 
frequencies from the two partial scans need to be properly 
merged by an image reconstruction algorithm to form a 
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regular reconstructed image. To show the feasibility, we 
developed an initial approximate algorithm for joint 
reconstruction from the two partial datasets. In this method, 
we perform a Parker-weighted filtered backprojection (FBP) 
reconstruction from each of the partial datasets, then we 
merge the resulting images in Fourier space 

𝒙୧୮ୱ = ℱିଵ(𝑚ℱ𝒙ଵ + (1 − 𝑚)ℱ𝑇𝒙ଶ), 

where the output 𝒙୧୮ୱ  is a high-resolution ZIPS 

reconstructed image, ℱ  and ℱିଵ  denote the Fourier 
transform and its inverse, 𝒙ଵ  and 𝒙ଶ  are the Parker 
weighted half-scan reconstruction from the two partial 
scans respectively, 𝑇  is a registration operator that 
compensates for the displacement of the ROI between the 
two partial scans, 𝑚 is a Fourier-domain mask to select a 
90º angular range of spatial frequencies from  𝒙ଵ or 𝒙ଶ 

𝑚(𝜌cos𝜁, 𝜌sin𝜁) = ൝
1, when |𝜁 − 𝜑ଵ + 𝑘𝜋| ≤

𝜋

4
0, otherwise

 

 
Fig. 5 shows an example of the Fourier-domain mask 𝑚. 

 
Fig. 5. An example of a Fourier-domain mask that extracts a 90º 
angular range of spatial frequencies from a partial reconstruction 
(𝜑ଵ = 45°, 𝜑ଶ = 135°). 
 
  It should be noted that because of the shorter distance 
between the X-ray source and the off-center ROI, a 
relatively short rotation of the scanner gantry can cover a 
relatively large angular range of spatial frequencies of the 
ROI. We calculated that to acquire a 90° range of projection 
rays with respect to an off-center position, the X-ray source 
only needs to rotate by an angle 𝛼 = 90⁰ −

2 sinିଵ(𝑑 √2𝑅⁄ ) , where 𝑑  is the offset relative to the 
isocenter, and 𝑅  is the source-to-isocenter distance. For 
example, 𝛼 ≈ 63° for 𝑅 = 600 mm and 𝑑 = 200 mm, and 
𝛼 ≈ 49°  for 𝑅 = 600  mm and 𝑑 = 300  mm. Therefore, 
the 90° limited-angle high-resolution projection data in 
each partial scan can be acquired with less than 90° of 
gantry rotation. The X-ray flux can be modulated down 
outside the small angular range to reduce patient dose.  

3 Simulation Results 

  The proposed ZIPS technique was evaluated in a CatSim 
[10] simulation environment with a detector cell pitch of 
1.1 mm, source-to-isocenter distance of 626 mm, and 

source-to-detector distance of 1098 mm. A 50 m diameter 
tungsten wire phantom contained in a 5 cm diameter water 
cylinder and a line pair gauge phantom contained in a 22 cm 
diameter water cylinder were scanned. The phantoms were 
placed at the isocenter, 20 cm off-center, 30 cm off-center, 
and 35 cm off-center.   
   
  For high-resolution imaging with ZIPS CT, the X-ray focal 
spot size needs to be sufficiently small. We evaluated four 
focal spot sizes in this study: 0.8 mm, 0.4 mm, 0.3 mm, and 
0.1 mm.  A 10° anode angle was modeled in the simulation. 
High-resolution imaging also requires sufficient CT angular 
sampling rate to reduce azimuthal blur. Three angular 
sampling rates were evaluated in this study: 1000 views/rot,  
4000 views/rot, and 8000 views/rot. 
 
  The line pair gauge was scanned with a 70 keV 
monochromatic X-ray and a tube current of 800 mA. Both 
X-ray quantum noise and detector electronic noise were 
modeled. The rotation period of the CT gantry was 1 s, 2 s, 
and 4 s, for conventional CT, ZIPS CT with 20 cm offset, 
and ZIPS CT with 30 cm offset, respectively. The slower 
gantry speeds in the ZIPS CT experiments were intended to 
approximately compensate for the very short source 
trajectory over which the high-resolution data can be 
acquired (approximately 63° with 20 cm offset, and 49° 
with 30 cm offset, compared with the full 360°  for the 
conventional CT). We expect that mA modulation can be 
used in ZIPS CT so that patient dose will not significantly 
increase relative to a conventional CT scan, which will be a 
future topic. 
 
  All CT images were reconstructed on a 1024x1024 grid 
over a ROI of 10 cm diameter. A standard fan-beam FBP 
algorithm with Shepp-Logan ramp filter was used for image 
reconstruction. In ZIPS CT reconstruction, Parker 
weighting was applied to the CT sinogram to exclude the 
low-resolution portion of sinogram from the reconstruction. 
The Parker-weighted reconstructions from the two partial 
scans were merged in Fourier domain to form the ZIPS 
reconstructed image.  
 
  Fig. 6 shows the azimuthally averaged MTF measured on 
the reconstructed image from a noiseless simulation of the 
wire phantom. MTF@10% measured with the standard 
clinical CT (wire at the isocenter) was 10 lp/cm. Reducing 
the focal spot size and increasing the angular sampling rate 
only marginally increased the MTF@10% to 11 lp/cm in 
standard CT, because the bottleneck of spatial resolution in 
this case is the detector cell size. In ZIPS CT, MTF@10% 
measured with 20 cm offset, 30 cm offset, and 35 cm offset 
was 13 lp/cm, 17 lp/cm, and 20 lp/cm, respectively, which 
correspond to 30% to 100% (two-fold) improvement of 
spatial resolution relative to the conventional centered scan.  
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  Fig. 7 shows reconstructed images of the line pair gauge 
phantom from noisy simulations. The 400 µm features are 
not distinguishable in the standard CT images but they are 
clearly revealed by the ZIPS CT images. The visual 
sharpness and contrast of 500 µm and 600 µm features are 
also improved by the ZIPS CT compared with the standard 
CT. 
 

 
Fig. 6. MTFs measured with a 50 m diameter wire. ZIPS CT 
provides 30% to 100% improvement of spatial resolution relative 
to the standard CT. 
 

 
Fig. 7. Reconstructed images of a line pair gauge phantom with 
different CT techniques.  

4 Conclusion and discussion 

  We proposed a ZIPS CT technique to improve the spatial 
resolution of rotating-gantry-based CT scanners without 
upgrading the CT detector array to one with finer-pitched 

cells. ZIPS CT introduces a novel dual partial scan scheme 
and leverages the high magnification of off-center ROIs to 
improve spatial resolution. Promising simulation results 
showed that ZIPS CT can achieve up to two-fold (100%) 
improvement of the MTF when compared with standard 
CT. Clear improvement of visual detectability of fine 
features was observed with a line pair gauge phantom. ZIPS 
CT does not require an upgrade of the CT detector array and 
thus has the potential to be applied to existing clinical CT 
systems. ZIPS CT is also orthogonal to pure algorithmic 
resolution-boosting methods and a combination may give 
further improvement. Future work includes more advanced 
ZIPS reconstruction algorithms, image registration between 
the two partial scans, and evaluation of patient dose.  
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Abstract During Single-photon emission computed tomography, 

attenuation correction has been shown to enhance image quality and 

increase the quantitative accuracy of the images. A common method of 

acquiring attenuation maps is from attached CT-based scanners, but these 

systems can have significantly higher cost than SPECT-only systems. 

Herein, we report preliminary results which shows that we can generate 

realistic synthetic attenuation maps from SPECT emission data without 

the need for CT-based attenuation data.  

Our method utilizes a deep learning network called a GAN, which 

were trained on a collection of 100 different realistic digital brains 

phantoms. Prior to training, phantoms acquisitions were simulated and 

reconstructed using the configuration of the AdaptiSPECT-C dedicated 

brain imaging system. The resulting synthetic attenuations maps 

achieved a high-level of accuracy when compared to ground truth, with 

a low average Normalized Root Mean Square Error of 0.1454 and 

Structural Similarity Index Measure of .99 across all test sets.                          

1 Introduction 

Single-photon emission computed tomography 

(SPECT) is a widely used imaging technique that provides 

3D images of the targeted radiotracer in-vivo distribution. 

A contributing factor to its widespread clinical use is the 

reduced cost of owning and operating SPECT systems, 

which can further be reduced by the omission of an 

anatomical acquisitions such as MRI or CT for 

generating/obtaining attenuation maps to be used in 

attenuation/scatter compensation. With such systems, it is 

often still desirable to perform attenuation/scatter correction 

during the reconstruction as it has been shown to enhance 

image quality [1] and quantitative accuracy [2]. Multiple 

alternatives for generating the linear attenuation correction 

factors at the SPECT tracer energy without a combined 

CT/MRI system are available, such as using additional 

stand-alone CT or MRI imaging systems. However, the 

latter approaches have the downside of needing to register, 

resize, and transform these images into the SPECT space, 

as well as to increasing acquisition time and cost, and 

patient radiation exposure (in case of CT). For the 

AdaptiSPECT-C project [3], we have taken a different 

approach by which mitigates the limitation of the previous 

methods by attempting to estimate the patient specific 

attenuation factors from the emission data itself using deep 

learning. Our approach uses a Generative Adversarial 

Network (GAN) approach, like the one Shi et al [4] used for 

cardiac perfusion imaging, but our approach differs in that 

we apply our method for a dedicated brain SPECT system. 

In that sense, our work is more similar to that of Chen et al. 

[5] where our focus is on modelling the soft-tissue and 

cortical bone of the head. Unlike Chen et al., we instead of 

utilizing a conventional convolutional neural network 

(CNN), our technique focuses on employing a GAN 

optimized for Image-to-Image translation.    

2 Materials and Methods 

2.1 Dataset 

Herein, we employed a dataset consisting of a family of 

100 realistic digital head and brain phantoms [6] generated 

from the morphometric analysis of brain shape and volume 

[7]. Each phantom used for training our GAN, was derived 

from the anatomy of a unique volunteer patient which has 

wider distribution of shape, size, brain folds than other 

phantoms and provided up to two hundred different labeled 

tissue regions. Each phantom was simulated for 99mTc-

HMPAO perfusion imaging with the 5-pinhole 

configuration of the dedicated brain imaging system 

AdaptiSPECT-C [8]. A total number of 24 million detected 

counts million consistant with imaging a clinically 

appropriate activity level for an imaging period of 20 

minutes, as per clinically at our site. Additionally, the 

counts correspond to an equal imaging time based on the 

simulated sensitivity compared to clinical imaging with a 

dual-head parallel system commonly used in brain SPECT 

procedures [8,9]. 

The ground truth attenuation maps were composed of 

four attenuation regions (i.e. air, soft tissue, bone, brain). 

The linear attenuation coefficients at 140.5 keV (i.e. 99mTc 

principal energy) of these regions were exported from the 

GATE software [10]. In-house software derived from 

GATE [11], was used to compute forward projections with 

attenuation modeling and reconstructing the projections 

with Pixel-based Ordered Subset Expectation Maximization 

[12] without attenuation compensation for 7 iterations with 

a matrix size of 1203 and 2mm voxels. 

2.2 Data Pre-processing 

The training dataset was organized by pairing each of 

100 reconstructed images with the corresponding ground 

truth attenuation maps. A sample slice of SPECT image and 

its corresponding attenuation map can be seen in Fig. 2. 

Both images were edge-padded to a size of 1283 to match 
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the input size of the network. Augmentations in the form of 

random rotation and horizontal flips were performed for 

each image-map pair. essentially tripling the dataset size. 

For rotation, the image-map pair is rotated for the same 

angle randomly sampled between ±10 degrees. This would 

make the network robust against slight perturbations in head 

orientation which could be induced during acquisition. The 

horizontal flip results in a new pair of image-map which 

closely resembles a real-life pair due to the symmetry in the 

original pair but slight variations. The entire dataset, 

including augmented images, was split into 5-folds, 

stratified by subject group to ensure proportionate 

distribution into train and validation. 

2.3 Network Architecture 

We used a deep learning framework called a Generative 

Adversarial Network (GAN) to synthesize synthetic 

attenuation maps from emission data only. GANs can be 

considered as two separate deep learning networks, 

consisting of a Generator network and Discriminator 

network, which are in competition to outperform each other 

in a specific task. For this project, the task is to synthesize 

plausible attenuation data from emission data only. Our 

specific network architecture was inspired by Vox2Vox 

[13], which tries to solve the Image-to-Image translation 

problem [14](in our case volume-to-volume), by 

conditionally training a generator in the form of an encoder-

decoder network (see Fig. 1a), to learn a translation process 

from one image type (emission image) to another 

(attenuation map). For this work, the generator is 

conditioned on the 100 unique emission image sets, for 

which each exhibit a wider variety in shape of the 

anatomical structures of real humans (see [6] for more 

details) in order to produce attenuation maps consistent with 

that person’s physiology. Additional structural details 

regarding the generator sub-network can be found in [15] 

(U-Net). Input to the generator consists only of 

reconstructed SPECT images without attenuation 

compensation. The output is a synthetic attenuation map of 

the same size and is matched against a similar-sized ground 

truth attenuation map. 

The second half of the GAN network (i.e., the 

Discriminator, see Fig. 1b) consists of a convolutional 

neural network CNN, which is trained to distinguish 

between real and synthetic attenuation maps. The 

discriminator was implemented as a CNN in the style of 

Patch-GAN [14], which takes input pairs of reconstructed 

SPECT images and attenuation maps (alternating synthetic 

and real) and produces an output indicating its prediction 

for identifying the synthetic attenuation map. Typical 

discriminator outputs would provide a binary decision (one 

bit, indicating a prediction) on whether the input image was 

synthetic. Instead our discriminator produces an output of 

size 83, which can be interpreted as the confidence level for 

the prediction at patched regions of the input voxels (i.e., 

inverse of the quality of the synthetic attenuation map). In 

other words, the discriminator tries to model high-

frequencies features in the attenuation map by considering 

correctness of structure in N3 patches from the original and 

provides a corresponding prediction level for each patch. 

This allows a flexible size input, which can be adapted to 

the image sizes that are multiples of 8. 

2.4 GAN Image-to-Image Translation Training 

The loss function LG (eq. 1) used for training the 

generator G was a weighted sum of two different loss 

functions, the first being the L2 norm between a tensor of 

ones and the output of the discriminator D on the synthetic 

attenuation map produced by the generator and the second 

being the L1 norm between the ground truth attenuation map 

AGT and synthetic attenuation map AS. The L2 norm part is 

useful for incorporating feedback, indirectly from the 

discriminator, in order to learn how to generate images 

which the discriminator finds indistinguishable from the 

ground truth. Whereas the L1 part of the equation ensures 

the generated attenuation maps are similar to the original 

ground truth maps. 

𝐿𝐺 = 𝐿2[1, 𝐷(𝐴𝑠)] + 𝛼𝐿1[𝐴𝐺𝑇, 𝐴𝑆]  (eq. 1)  

 

The loss function LD (eq. 2) used for training the 

discriminator was the average of two different loss 

functions, the L2 norm between a tensor of ones and the 

output of the discriminator D for input SPECT image and 

ground truth attenuation map AGT and the L2 norm a tensor 

of zeros and of the output of the discriminator D for input 

SPECT image and synthetic attenuation map AS produced 

by the generator. In other words, it is the average of the 

discriminator’s predictions for both the ground truth and 

synthetic attenuation maps.  

  

𝐿𝐷 = 𝐿2[𝐷(𝐴𝐺𝑇), 1] +  𝐿2[𝐷(𝐴𝑆), 0] (eq. 2) 

 

Fig.1: The GAN network architecture diagram. Part A on top shows the 

overall structure of the generator, which is used to create the attenuation 

maps. Notice the U-Net type shape. Part B on the bottom shows the 

Discriminator network, whose is trained to differentiate between synthetic 

and ground truth attenuation maps. The structure of this network follows 

a typical CNN type structure. 
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Training was performed using the Adam optimizer with 

a learning rate of 2e-4 for both the generator and 

discriminator and β1=0.5 and β2=0.999 as was done in [14]. 

Dropouts with a rate of 0.2 was performed after every 3D 

convolution in the bottleneck section of the Generator. This 

provides regularization in the network training which has 

been shown to improve training in conditional-GANs and 

avoid mode collapse [14]. Training was implemented using 

the PyTorch framework [16] and run on a Nvidia GeForce 

GTX 1080 Ti GPU. Each fold was trained for 200 epochs, 

which required approximately 5 hours per fold. 

3 Results 

The accuracy of attenuation map generation process was 

determined from the difference between the ground truth 

attenuation map and the predicted attenuation map. The 

difference was quantified as the normalized root mean 

square error (NRMSE) between the two maps. For each 

fold, we calculated the mean and standard deviation of the 

normalized root mean square error between the synthetic 

and ground truth attenuation maps for all data/phantom in 

the validation set (i.e., not part of training for that fold). The 

results of these calculations are listed in Table 1. 

Qualitatively, as illustrated in Fig. 2, we show slice 67 of a 

set of reconstructions (top row), attenuation maps (middle 

row) from a validation subject which highlights our results.  
Table 1: Average Normalized Root Mean Squared Error (NRMSE) and 

Peak Signal to Noise Ratio (PSNR) across the overall phantom dataset 

after a 5-fold cross-validation. 

Fold # 1 2 3 4 5 

Avg. 

NRMSE 

.265±.014 .121±.020 .115±.012 .117±.015 .109±.007 

Avg. 

PSNR 

39.9± 
.683 

47.4± 
1.64 

47.9± 
1.28 

47.7± 

1.31 

48.5± 
.717 

The left column presents the ground truth and the middle 

and right column are the generated and uniform attenuation  

 maps, respectively. The uniform attenuation map was 

created by setting all the tissue values from the ground truth 

to a uniform value consistent with a soft tissue linear 

attenuation coefficient at 140.5 keV.  

During the training, we also calculated the Structural 

Similarity Index Measure (SSIM) and the Dice scores to 

assess the performance and accuracy of the GAN network 

in estimating attenuation maps. Again, each metric was 

calculated only for the output of the validation sets of the 

network for each fold then averaged across all folds. SSIM 

was calculated between the ground truth and synthetic 

attenuation maps after converting the attenuation maps to 

discrete representation (i.e., 4 distinct values representing 

the 4 tissue types) through a thresholding of the continuous 

values from the networks output.  This representation is 

necessary for calculating the Dice scores and more accurate 

for calculating the SSIM metrics. All linear attenuation 

coefficient values less than 0.1 cm-1 were set to 0, values 

between 0.1 and 0.19 were set to 1, and values greater than 

0.19 were set to 2. The threshold parameters were 

determined after creating the confusion matrices for the 

outputs and balancing the voxels for the 3 classes. 

Air Dice Score Brain & Soft tissue 

Dice Score 

Bone Dice 

Score 

SSIM 

0.99 0.97 0.83 0.99 

Table 2: Average Dice scores for the 3 classes and average SSIM for 

the overall output after a 5-fold cross-validation. 

4 Discussion 

4.1 Analysis 

From the results, it can be seen that our method produces a 

plausible set of attenuation maps from the out of the deep 

learning network. In particular, we are encouraged by the 

faithful and accurate recreation of the different shapes of the 

tissue values, reaching a Dice score of 0.99 for the outline 

(air) and 0.97 for the soft tissues (brain, soft tissue, muscle, 

etc.). For the cortical bone, a Dice score of 0.83 is also quite 

encouraging and not unexpected as the bone voxels 

represent the least frequent tissue type and therefore the 

network has less opportunity to learn these shapes (similar 

Fig 2. Results comparing ground truth, predicted by DL, and uniform 

attenuation maps in reconstruction. Top row, from left to right shows 

the reconstructed activity phantoms with corresponding attenuation 

maps (middle row). Qualitatively, the reconstructions show the ground 

truth and DL predicted are very similar in appearance with slightly 

more differences visible in the uniform attenuation map. 

Fig. 3: Dice/overlap images illustrating the process of thresholding and 

discretizing the continuous output values. 
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to a class imbalance problem). Additionally, the NRMSE 

and PSNR values are also quite encouraging, and with the 

exception for Fold 1, the values hover between 0.109-0.121. 

This might be explained by a slight screen-door effect that 

occurs on some of the images which can be attributed to our 

method of deconvolution. 

4.2 Work To be done 

Going forward, we plan to explore the approach of 

training the network to output discrete attenuation values 

and compare this type of training to the current method of 

using a continuous output and thresholding the values to 

discretize them. This will provide us the opportunity to 

utilize a variety of different techniques that can be borrowed 

from the Semantic Segmentation research, which will might 

help mitigating the need to optimize the threshold values by 

training the networks to learn this from the data.   

Currently, our bone tissue categorization does not 

consider or differentiate different types of bone structures 

within the head. We would like to expand our categorization 

to include both compact and spongy bone regions to more 

accurately account for their attenuation. Additionally, we 

plan to include noise levels within our training scheme and 

plan to accurately account for variations in uptake and 

shorter acquisition times than we are currently modelling 

with the noise-free images. We hope this will more 

realistically model clinical acquisitions for use in future 

studies. Our plan is to perform both fine-tuning with noisy 

images as well as retraining from scratch with the noisy 

images only using the same family of digital phantoms.  

Finally, we expect that photons/counts coming from 

higher attenuation and absorptions areas are mostly 

scattered/attenuated and therefore might not be detected in 

the photopeak window. We would like to incorporate scatter 

windows to improve bone recovery by including scatter in 

the simulation, reconstruction, and training. 

5 Conclusion 

In this work, we have utilized a deep learning network 

called a GAN which is able to generate realistic-looking, 

plausible attenuation maps with high-level of accuracy 

(SSIM of 0.99) from the emission data alone. The training 

of this network was performed using a family of realistic 

digital phantoms for which acquisitions were simulated and 

reconstructed using the 5-pinhole configuration of the brain 

dedicated AdaptiSPECT-C system. 
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Abstract Model Observers (MO) are useful tools for assessing task-
based image quality in medical imaging systems. Detection and char-
acterization of anatomical structures in clinical imaging are some of
the most significant tasks of MOs. Various linear model observers
have been widely applied for these tasks with great success. However,
we are unable to deploy such observers without a high prior knowl-
edge of the task, the signal, and the background. Additionally, most
model observers currently used in medical imaging research are used
to optimize single modality systems such as standalone CT or PET
scanners. In this paper, we aim to solve these problems by means
of a Convolutional Neural Network (CNN). We employ supervised
learning with CNNs to approximate the Human Observer (HO) for a
signal-known-exactly and background-known-statistically (SKE/BKS)
signal detection task. We use this observer in a novel multi - modality
imaging setting. First, we propose a CNN-based anthropomorphic
model observer to predict human observer detection performance for
PET images. Then, we suggest another CNN-based MO for multi -
modal PET and CT images. We trained both networks using 160 sets
of joint PET/CT images of a dataset from the MICCAI2020 HECK-
TOR challenge, and tested on 41 patients from the same dataset. Our
CNN - MOs have high accuracy in detecting the lesions present in the
image (AUC = 0.95). Furthermore, our MOs degrade monotonically
with increase in noise levels, similar to how a HO would. Including
both modalities into an MO results in improved lesion detection perfor-
mance, especially in the presence of image noise, compared to single
modality CNN - MOs.

1 Introduction

Image quality is assessed by the performance of some "ob-
server" on a specific pre - defined task. The observer (either
a human or a mathematical model) measures how well the
desired information for a given task can be extracted. Model
Observers (MOs) have been widely used in medical domain
in classification tasks, such as a task that requires classifying
patients into healthy vs. diseased, or estimation tasks, such
as a task that requires estimating the volume of a tumor[1, 2].
Image evaluation for a particular trial with Human Observers
(HOs) can be challenging due to limitations in time, money
and availability of trained and certified observers. Observer
’jitter’ is also a problem hindering reproducibility of results,
even with the same HO on the same data over time [3]. There-
fore to address such problems, researchers have focused on
the development of a reliable MO that assists rapid, accurate,
efficient, tireless and repeatable assessment of a particular
task or parameter. While the mathematical and linear MOs
follows the performance of the HO in different tasks (e.g.
Channelized Hotelling Observer (CHO) observer model to
assess image quality of X-ray angiography system[4]), the
performances are still suboptimal in many cases. Further-
more, the signal and background need to be very specifically

(a) CT image (b) PET image (c) segmentation im-
age

Figure 1: Sample images of MICCAI2020 HECKTOR challenge
dataset. This dataset contains (a) aligned CT (window [-100, 200])
and (b) PET images, along with (c) segmentation masks

(a) low level noise (b) mid level noise (c) high level noise

Figure 2: Sample of noisy image in at 3 different levels of (a) low
level noise, (b) medium level noise, (c) high level noise

designed for mathematical observers to be useful.
In recent years, with the growth in popularity of Artificial In-
telligence (AI) and Deep Learning (DL), there have been nu-
merous studies applying convolutional neural network (CNN)
as MOs in various tasks e.g. detection, characterization and
localization of lesion in the image. DL based MOs perfectly
reflect the non-linearity of the observer within the network,
producing more accurate performance.
The first work that uses DL for MO was proposed by Mas-
sanes et al. [5] in 2017, where they trained a CNN to perform
detection and localization of a small Gaussian object in the
presence of a correlated noise. De Man et al.[6] compared
DL based and human observer performance for detection
of simulated lesions. Kim et al. [7] implemented an ideal
observer model using CNNs for breast CT images. Lorente
et al. [8] introduced a DL based MO based on U-Net for a
localization task. Fan et al. [9] suggested a DL based MO
that replicated human observerd for PET imaging.
However, DL based MOs have received little study in multi
- modal imaging systems where there are different sources
of information for a possible lesion detection task. In this
study, we propose two DL based MOs. The first proposed
MO introduces a CNN to detect the presence of abnormalities
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Figure 3: Structure of first proposed network

Figure 4: Structure of second proposed network

in small patches of PET images. The second proposed MO
introduces a network which analyses PET and CT image
patches for same task simultaneously. We also analyze MO
performance in presence of different levels of random noise.

2 Methods

2.1 Data preparation

In this study we use the dataset from the MICCAI 2020
HECKTOR challenge, which includes multi - modal PET/CT
scans from 201 different patients, collected at 4 different sites
in Switzerland. Each set includes FDG-PET, CT and a ground
truth volume labeled by experts. These scans were head and
neck scans containing oropharyngeal tumors. This dataset
was available at https://www.aicrowd.com/challenges/miccai-
2020-hecktor. We perform patchwise tumor detection, so
that our CNN - MOs could later be used for both detection
and localization. First, we resampled all images into a fixed
size, determined by a bounding box of the lesion provided
by the challenge organizers, and subsequently divide them
into small non-overlapping patches. Therefore, the dataset
contained 204800 image patches of size 16×16. To test the
performance of our CNN - MOs in a noisy situation, we
added Poisson noise to the Radon transform of the images.
This resembles the noise present in clinical PET/CT images.

We created 3 datasets in which 3 different levels of random
Poisson noise (Poisson λ = 10, 1, 0.1) were applied to the
original images. Figure 1 displays the original images in
the dataset, while Figure 2 displays artificially created noisy
images.
In previous studies[7, 9–11] evaluation is based on 2 or 4
Alternative-Forced Choice (2AFC or 4AFC) to detect le-
sion presence or absence. Since we are using CNN - MOs,
we instead classify each patch independently, as a signal
present/signal absent binary task.
For training labels, we use the ratio of labeled tumor tissue
to the whole patch size. Let Vli be the sum of lesion pixels
in the i-th patch or lesion volume and Vpi be the sum of i-th
patch pixels or total patch volume. The i-th patch label Li is
calculated according to Eq. 1.

Li =
Vli

Vpi
(1)

2.2 Training the Networks

We divided the dataset into a training set of 160 patients
(163840 patches) and a test set containing 41 patients (40960
patches) and employed data augmentation by means of hori-
zontal and vertical flipping. To focus on soft tissue, the CT
data was preprocessed by windowing all values outside of
the range [−100, 200] HU.
The first network consisted of two 3×3 convolutional layers
with 16 and 32 feature maps respectively, with Leaky Recti-
fied Linear Unit (Leaky ReLU) [12] activation functions, two
2×2 max-pooling layers, one global average pooling, and
one fully connected layer as shown in Figure 3. This network
was trained for single modality lesion detection task in PET
images.
The second proposed network which was aimed at multi-
modality image assessment has a Y-shape structure. It con-
tains two branches of convolutional blocks to analyze PET
and CT images separately. Apart from the difference in
the first convolutional layer kernel size of 5× 5 in the CT
analyzing branch, both branches are identical to the previ-
ously presented network. The outputs of these two branches
are reshaped and passed through a fully connected layer as
shown in Figure 4. The network architectures were selected
empirically.
In this study we focused on image patches of size 16×16,
however, the use of a global average pooling layer in both net-
works enables us to process image patches of arbitrary sizes.
Patch-wise assessment not only enables tumor detection, but
also enables tumor localization.
Since most of the labels are zero (no lesion in the patch), the
dataset is highly unbalanced. To avoid gradients vanishing,
we modified the MSE loss function for our network. Addi-
tionally, we desired the network to focus more on the patches
that contain lesions. Therefore, the errors of non-zero labels
(with lesion patches) are weighted 4 times (selected empiri-
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Table 1: RMSE and AUC results of proposed networks for test set

First Network Second Network
PET images CT images joint PET/CT

RMSE AUC RMSE AUC RMSE AUC
No additional noise 5.3×10−4 0.95 22.6×10−4 0.86 4.2×10−4 0.95
low-level noise 5.8×10−4 0.92 86.2×10−4 0.58 5.0×10−4 0.94
mid-level noise 10.4×10−4 0.85 89.7×10−4 0.57 7.0×10−4 0.90
high-level noise 15.1×10−4 0.65 90.3×10−4 0.54 12.4×10−4 0.77
AUC across all noise levels 0.79 0.64 0.86

Table 2: Specificity and Sensitivity results

First Network Second Network
PET images CT images joint PET/CT

sensitivity specificity sensitivity specificity sensitivity specificity
No additional noise 0.877 0.877 0.771 0.772 0.881 0.882
low-level noise 0.841 0.841 0.574 0.573 0.874 0.875
mid-level noise 0.769 0.768 0.573 0.573 0.827 0.828
high-level noise 0.610 0.610 0.557 0.558 0.700 0.700

cally) more than errors of patches with zero labels (see Eq. 2).
Li is i-th patch label and Pi is i-th patch network prediction.

L=
1
N

N

∑
i

εi× (Pi−Li)
2 with εi =

{
0.25, if Li = 0
1, else.

(2)

We used the Adam optimizer[13] for training with a learning
rate of 5e−4 and a batch size of 64. We trained the network
for 30 epochs with a modified Mean Squared Error (MSE)
loss function (Eq. 2).

3 Experiments and results

The evaluation of the CNN-MO was done by measuring the
performance of the trained CNN-MO on a simple tumor
detection/localization task. The images were divided into
overlapping patches of fixed size, and the CNN-MO was inde-
pendently tasked with delivering a single signal present (pos-
itive) and signal absent (negative) response for each patch.
Patches where any amount of tumor was present were defined
as positive, while patches with no tumor whatsoever were
defined as negative.
To examine performance under noisy conditions, we report
the performance of all networks with and without noise by
computing the Area Under the Curve (AUC) of the patchwise
detection task, as well as the sensitivity and specificity. The
Root Mean Squared Error (RMSE) of the results is reported
as well. Table 1 shows the RMSE and AUC results of these
tests, while Table 2 shows the sensitivity and specificity of
the detection tasks at different noise levels.
We tested all networks in presence of 3 different levels of
noise to analyse performance. Network uncertainty increases

with increase in noise level, as shown by the decrease in AUC
in Table 1 (Spearman Coeffecient = 1) and Figure 5. This
resembles the decline in detection performance with increase
in noise levels as shown by HOs [1].
Results indicate that CT images contain less significant in-
formation regarding lesions (AUC = 0.86) compared to PET
images (AUC = 0.95). Integrating both modalities does not
improve detection accuracy in the no noise case (AUC =
0.95), however, the integrated modalities improve the detec-
tion performance with the increase in noise levels. In the case
of high noise, joint PET/CT network is more robust to tumor
detection (AUC = 0.77) compared to other single modality
networks (AUC = 0.65 for PET images and AUC= 0.54 for
CT images). The increase in the severity of the image noise
decreases the detection performance.

4 Conclusion

In this work, we proposed two CNN - MOs for SKE/BKS
lesion detection tasks. We trained the first CNN - MO for
single modality detection task with just PET images and
repeated for only CT images. We trained a Y-shaped CNN
- MO for multi-modality cases. We also applied 3 different
levels of Poisson distributed random noise to the dataset to
investigate the performance of the network.
Overall, the presented results show the second proposed MO
leads to better lesion detection in higher noise levels. This
implies that, combination of information in CT and PET im-
ages help the network to find the lesion better when the noise
levels increase. The magnitude of improvement increases
with the increase in noise levels. In both proposed CNN /
MOs, Spearman’s coeffecient of the AUC with respect to
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Figure 5: ROC curves for the different noise levels evaluated on
the joint PET/CT network

the level of noise equals to 1 which means by increasing the
noise level, the MO uncertainty increased monotonically as
expected.
In future work, we plan to compare these results to other
anthropomorphic model observers. We plan to improve the
proposed network and explore various network architectures
to obtain better performance in replicating human observers.
Finally, we will attempt to use the developed CNN-MOs to
optimize both uni-modal and multi-modal imaging systems.
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