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I.  INTRODUCTION 

 

The Blood-Brain Barrier 

 

Some organs of crucial importance for the function of our bodies are protected from exposure 

to potentially harmful compounds in the blood. Thus the brain, the eyes (which are 

protrusions of the brain), the testes and the follicles of the ovaries have special barriers 

between the capillaries and the tissue. In the normal brain, the passage of compounds over 

this barrier, the Blood-Brain Barrier (BBB), is highly restricted. 

 

The BBB is a hydrophobic barrier formed by the vascular endothelial cells of the capillaries 

in the brain with tight junctions between them leaving no openings between the vessel lumen 

and the surrounding brain. The existence of the mammalian BBB was discovered in the late 

19
th

 century by the German bacteriologist Paul Ehrlich and his student, Edwin Goldman. Paul 

Ehrlich found, that when he injected dyes into the systemic blood circulation, the brain tissue 

did not take up any of the stain. A barrier surrounding the brain tissue at the site of the brain 

micro vessels seemed to be a logic explanation to these findings. 

 

There is scientific evidence that the BBB exists not only in vertebrates, but also in insects (1), 

crustaceans and cephalopod molluscs (such as the cuttlefish) (2) and in elasmobranchs 

(cartilaginous fishes such as sharks) (3) and helices (landsnails) (4), maintaining ionic 

integrity of the neuronal bathing fluid.  

 

The BBB seems to be present very early in the foetal development. Also, at an early stage, 

there seems to be a cerebrospinal fluid barrier, which excludes cerebrospinal fluid (CST) 

protein from the brain extracellular space (5).  

 

 

BBB Anatomy and Physiology 

 

The tight junctions of the BBB are composed of tight junction proteins (occludin, claudin and 

zonula occludens, where the zonula occludens is the intracellular peripheral membrane 

protein that anchors claudin and occludin to the actin cytoskeleton (6). An important part is 
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the binding of claudin proteins on opposing membranes, where claudin-5 in particular is 

crucial in the BBB (7). Astrocytes are surrounding the outer surface of the endothelial cells 

with protrusions, called end feet, and are implicated in the maintenance, functional regulation 

and repair of the BBB. The astrocytes form a connection between the endothelium and the 

neurons and constitute a second barrier to hydrophilic molecules (see Figure 1). 

 

 

 

Fig. 1. The mammalian BBB 

 

 

Other periendothelial accessory structures of the BBB include pericytes and a bilayer basal 

membrane which surrounds the endothelial cells and pericytes. The basement membrane 

(basal lamina) supports the ablumenal surface of the endothelium and may act as a barrier to 

passage of macromolecules. The pericytes are a type of macrophages, expressing macrophage 

markers with capacity for phagocytosis but also for antigen presentation. In fact, the pericytes, 

which cover about 25% o the capillary surface (8), seem to be in a position to significantly 

contribute to central nervous system (CNS) immune mechanisms (9). The pericytes also have 

other functional roles: with their capability for contractility they seem to serve as a smooth 

muscle equivalent, and through regulation of endothelial cells they maintain the stability of 

blood vessels (9). Additionally, the pericytes seem to be highly involved in many diseases, 

both infectious and autoimmune, and also in other diseases such as Alzheimer’s by production 
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of amyloid. Also, by regulating their vascular permeability, the pericytes are supposed to play 

an important role in inflammatory diseases (9). 

 

Physiologically, the microvasculature of the central nervous system (CNS) differs from that 

of peripheral organs. It is characterized not only by its tight junctions, which seal cell-to-cell 

contacts between adjacent endothelial cells, but also by the low number of pinocytotic 

vesicles for nutrient transport through the endothelial cytoplasm and its lack of fenestrations, 

and the five-fold higher number of mitochondria in BBB endothelial cells compared to 

muscular endothelia in rat (10). All this speaks in favour of an energy-dependent 

transcapillary transport. These above-described membrane properties of the BBB control the 

bidirectional exchange of molecules between the general circulation and the central nervous 

system. By at least four mechanisms, the endothelial cells directly control the flux of solutes 

into the brain parenchyma. Firstly, the tight junctions and low number of pinocytotic vesicles 

guarantee that proteins cannot pass freely into the brain parenchyma. 

Secondly, solutes which are not highly lipid soluble, or which do not bind to selective 

transporters with high affinity, are excluded from free exchange. By means of this lipid 

solubility, carbon dioxide and oxygen, among many others, are able to enter the brain 

interstitial fluid passively, whereas the passage of, for example sugars and many amino acids, 

depends on other, active mechanisms. Thirdly, the BBB has a capacity to metabolize certain 

solutes, such as drugs and nutrients (11). Fourthly, active transporters maintain the levels of 

certain solutes at specific values within the brain interstitial fluid, made possible by active 

transport against the concentration gradients. These enzyme systems are differently 

distributed between the luminal and the ablumenal membranes of the endothelial cells, thus 

gaining the BBB polarity properties. For example, Na
+
-K

+
-ATPase is located on the 

antilumenal membrane (12).  

 

It has been proposed that the active transport across the brain capillaries might be the most 

important mechanism for the regulation of the internal milieu within the brain parenchyma. 

Also, it has been proposed that this mechanism, requiring energy to function properly, might 

be the one most sensitive to disease and that interference with this active transport could 

play an important part in the neurological dysfunction seen in many metabolic disorders (12). 

 

It is important to have information on possible differences between homo and other mammals. 

The mammalian brain at large seems to have a uniform anatomy of its BBB constituents 
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preserved through the evolution, and very little information about differences between 

mammalian species has been available. However, recently very interesting observations have 

been published. Humans have evolved protoplasmic astrocytes that are both larger (27-fold 

greater volume) and far more elaborate than their rodent counterparts. These astrocytes reside 

near blood vessels, and their processes contribute to the BBB (13). When the end feet of 

human and rodent protoplasmic astrocytes are compared, it is shown that nearly all astrocytes 

in both species contact the vasculature, but in the human brain, the end feet completely 

encompass the vessels while the rodent astrocytes form rosettes of end feet around the 

vasculature. The number of mithochondria is however equally abundant in human and rodent 

end feet (14).  

 

Comparisons between mammalian species concerning enzymatic functions in the BBB are 

few in number. Similarities are described: mouse vs human (15) and rat vs human (16), while 

differences are demonstrated between rodent and dog BBB leading to the conclusion that the 

canine BBB may be preferable to that of the rat as a model for studies of glucose transport 

relevant to human brain (17). 

 

In summary, the BBB serves as a regulatory system that stabilizes and optimizes the fluid 

environment of the brain’s intracellular compartment (18-20). The intact BBB protects the 

brain from damage, whereas the dysfunctioning BBB allows influx of normally excluded 

hydrophilic molecules into the brain tissue. This might lead to cerebral oedema, increased 

intracranial pressure, and in the worst case, irreversible brain damage.  

 

 

 

II.  DISRUPTION OF THE BLOOD-BRAIN BARRIER 

 

The normal selective permeability of the BBB can be altered in several pathological 

conditions such as epileptic seizures (21) or extreme hypertension (22)and also transient 

openings of the BBB might lead to permanent tissue damage (22). Considering the ensuing 

leakage of substances from the blood circulation into the brain tissue, harmful substances 

might disrupt the cellular balance in the brain tissue and in the worst case, even carcinogenic 

substances might pass into the brain tissue. It has also been shown that an increased 

permeability of the BBB is seen in cases of oxidative stress (23), where BBB dysfunction and 
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neurodegeneration were shown to be mediated through an excitotoxicity mechanism by the 

serine protease tissue plasminogen activator, with NO and ONOO
-
 as downstream mediators 

(23). 

 

Opening of the BBB thus can have detrimental effects and since it has been shown for a few 

decades that EMFs have the potency to increase the permeability of this barrier, a major 

debate is going on in society with increasing intensity. In the following, we try to clarify the 

actual status of the available evidence in the field. 

 

 

Early Studies 

 

In early studies on the effects of low-intensity EMFs on the BBB, various compounds were 

injected intravenously, followed by EMF exposure and comparisons of the penetration into 

the brain tissue between sham and exposed animals. 

 

Frey et al. (25) found increases in the BBB permeability of rats to fluorescein after 30 min of 

exposure to both pulsed and continuous waves (CWs) at 1.2GHz with average power densities 

of 0.2mW/cm
2
. Similar observations were made in a study with 180 animals by Oscar and 

Hawkins (26). Exposure of anaesthetized rats for 20 min to 1.3GHz of pulsed EMFs with 

average power densities of 0.3mW/cm
2
 resulted in leakage of 14C-mannitol, dextran, and 

inulin into the cerebellar brain tissue, as well as inulin and dextran leakage from capillaries 

into hypothalamic and medullar tissue. Also, BBB permeability to mannitol was investigated 

in un-anaesthetised rats, which were exposed to pulsed radiation or sham exposed for 20 min. 

The animals were sacrificed at different time intervals after the exposure. BBB permeability 

was seen in the groups sacrificed 8 min and 4 h after exposure, but to a much lesser extent in 

those sacrificed after 8 h. Finally, the permeation of mannitol through the BBB was found to 

be a very definite function of exposure parameters such as power density, pulse width, and the 

number of pulses per second. However, in later studies, Oscar et al. (27) emphasised that 

changes of BBB permeability after microwave exposure partly could be explained by an 

increase of local cerebral blood flow. In accordance with this, they concluded that their initial 

findings (26) might be of less magnitude than originally thought (Table 1).
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 Effects of Radiofrequency/Microwave Radiation upon the BBB – A summary of Previous Studies 

 

Table 1. BBB permeability after EMF exposure. (From Nittby et al. (24)) 

Reference EMF 

Frequency 

(MHz) 

Modulation

, pulses per 

second 

(pps) 

Duration 

of 

exposure 

SAR 

(W/kg) 

Effect on 

BBB 

permeability? 

Total 

number 

of 

animals 

included 

in the 

study 

Tracer or studied effect Remark 

Findings by the Lund Group 

Salford et 

al. 1994 

915 CW and 

pulse-

modulated 

with 

repetition 

rates of 8, 

16, 50 and 

200 /s 

2 hours 0.016-5 

W/kg 

Yes 246 

Fischer 

344 rats 

Albumin extravasation  

Persson et 

al. 1997 

915 217, 50 Hz 

and CW 

2-960 min 0.0004-0.95 

W/kg 

Yes 1002 

Fischer 

Albumin extravasation  
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average 

whole-body 

344 rats 

Salford et 

al. 2003 

915 GSM 2 hours 0.002-0.2 

W/kg 

Yes  Albumin extravasation and 

dark neurons 

Effect was seen 

50 days after 

the exposure 

Eberhardt et 

al. 2008 

915 GSM 2 hours 0.0002-0.2 

W/kg 

Yes 96 Fischer 

344 rats 

Albumin extravasation and 

dark neurons 

Albumin 

extravasation  

14 days after 

exposure, dark 

neurons 28 

days after 

exposure 

Mobile phone exposure 

Fritze et al. 

1997 

900 GSM 4 hours 0.3 to 7.5 

W/kg 

Yes  Albumin Albumin 

extravasation 

only reported 

for SAR-values 

of 7.5 W/kg 

Töre et al. 

2001 

900 GSM 2 hours 0.12; 0.5 

and 2.0 

W/kg 

Yes 70 

Sprague-

Dawley 

Albumin leakage, seen with 

fluorescein-labelled proteins 

Albumin 

extravasation 

at SAR-values 
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of 0.5 and 2.0 

W/kg 

Neubauer et 

al. 1990 

2450 100 pps 30-120 min Average 2 

W/kg 

Yes  Rhodamine-ferritin complex No leakage at 1 

W/kg at short-

term exposure 

of 15 min 

Tsurita et al. 

2000 

1439 TDMA 1 hour 

daily, for 2 

or 4 weeks 

Average 

whole-body 

0.25 W/kg; 

peak in the 

brain  of 2 

W/kg 

No 36 

Sprague-

Dawley 

rats 

Evans blue, albumin  

Kuribayashi 

et al. 2005 

1439 TDMA, 50 

pps 

90 min 

daily, for 1 

to 2 weeks 

Average 

brain power 

densities of 

2 or 6 

W/kg; 

average 

whole-body 

0.29 or 0.87 

W/kg 

No 40 Fischer 

344 rats 

Three BBB-related genes; 

FICT-dextran and albumin 

extravasation 
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Finnie et al. 

2001 

898.4 GSM 1 hour Whole-

body of 4 

W/kg 

No 60 mice Albumin extravasation  

Finnie et al. 

2002 

900 GSM 1 hour 

daily, 5 

days a 

week for 

104 weeks 

Average 

whole-body 

0.25; 1.0; 

2.0 and 4.0 

W/kg 

No 207 mice Albumin extravasation  

Franke et al. 

2005b 

1800 GSM 1 to 5 days Average 0.3 

W/kg 

No  Sucrose permeation In vitro model 

of BBB 

Schirmacher 

et al. 2000 

1800 GSM  4 days Average 0.3 

W/kg 

No  Sucrose permeation  In vitro model 

of BBB 

Franke et al. 

2005a 

1966 UMTS 1 to 3 days Average 1.8 

W/kg 

No  Sucrose and albumin 

permeation 

In vitro model 

of BBB 

Cosquer et al. 

2005 

 

2450 500 pps 45 min Average 

whole-body 

2 W/kg 

No Rats Scopolamine methylbromide 

extravasation 

Indirect 

investigation of 

BBB opening 

by 

performance in 

radial arm 

maze 
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RF exposure of other kinds 

Frey et al. 

1975 

1200 1000 pps 

and CW 

30 min 0.2 

mW/cm
2
 

Yes Rats Fluorescein  

Oscar and 

Hawksins 

1977 

1300 50-1000 pps 20 min 0.3 

mW/cm
2
 

Yes 180 Wistar 

rats 

Leakage of mannitol, dextran 

and inulin 

 

Preston et 

al. 1979 

2450 CW 30 min 0.1 – 30 

mW/ cm
2
 

No Rats Mannitol   

Merritt et al. 

1978  

1200 and 

1300 

1000 pps 

and CW 

30 min 2-75 mW/ 

cm
2
 and 

0.1-50 

mW/cm
2
 

No Sprague 

Dawley 

rats 

Fluorescein, mannitol, 

serotonin 

Tried to 

replicate 

findings by 

Frey et al. 

(1975) and 

Oscar and 

Hawkins 

(1977) 

Ward et al. 

1982 

2450 CW 30 min 10-30 mW/ 

cm
2
 

No Rats Sucrose and inulin  

Ward and 

Ali 1985 

1700 CW and 

1000 pps 

30 min 0.1 W/kg No Rats Sucrose and inulin  

Albert and 2450 CW 2 hours 2.5 W/kg Yes 80 Chinese Horseradish peroxidase Reversible 
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Kerns 1981 hamsters process with 

no HRP 

permeation 

after 1-2 

recovery 

Gruenau et 

al 1982 

2800 CW and 500 

pps 

30 min 1-40 

mW/cm
2
 

No 31 rats Sucrose  

Lin and Lin 

1980 

2450 500 20 min 0.04-80 

W/kg 

No Wistar rats Evans blue and sodium 

fluorescein 

 

Lin and Lin 

1982 

2450 25-500 5-20 min 0.04-240 

W/kg 

No 51 Wistar 

rats 

Evans blue BBB 

permeability 

only at SAR of 

240 W/kg, 

which is a 

thermal effect 

Goldman et 

al. 1984 

2450 500  240 W/kg No  Rubidium-86 Hyperthermia 

induced BBB 

permeability 

Williams et 

al. 1984a 

2450 CW 30-180 min 4-13 W/kg No 32 Fischer 

344 rats 

Fluorescein BBB 

permeability 

only at 
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hyperthermic 

levels > 41C 

Williams et 

al. 1984b 

2450 CW 30-180 min 4-13 W/kg No 20 Fischer 

344 rats 

HRP  

Williams et 

al. 1984c 

2450 CW 30-90 min 13 W/kg No 24 Fischer 

344 rats 

Sucrose   

Williams et 

al. 1984d 

2450 CW 30-180 min 4-13 W/kg No 66 Fischer 

344 rats 

Fluorescein, HRP, sucrose BBB 

permeability 

only at brain 

temperatures > 

40C 

Quock et al. 

1986 

2450 CW 10 min 24 W/kg  Mice Domperidone BBB 

permeability 

due to 

temperature 

increase 

Quock et al. 

1987 

2450 CW 10 min 24 W/kg  Mice Domperidone BBB 

permeability 

due to 

temperature 

increase 



14 
 

Moriyama 

et al. 1991 

2450 CW    21 Sprague 

Dawley 

rats 

HRP BBB 

permeability 

due to 

temperature 

increase 

Nakagawa 

et al. 1994 

2450 CW    Japanese 

monkeys 

 BBB 

permeability 

due to 

temperature 

increase 

 

 

MRI exposure Magnetic 

field 

 

Shivers et 

al. 1987 

  23 min 0.15 T static 

magnetic 

field 

Yes  HRP Standard MRI 

procedure 

Preston et 

al. 1989 

  23 min 4.7 T static 

magnetic 

field 

No Rats Sucrose Standard MRI 

procedure 

Prato et al. 65  23 min x 2 0.15 T static Yes 43 Diethylenetriaminepentaacetic Standard MRI 
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1990 magnetic 

field 

Sprague 

Dawley 

rats 

acid (DTPA) procedure 

Prato et al. 

1994 

  23 min x 2 1.5 T static 

magnetic 

field 

Yes 50 rats  Standard MRI 

procedure 

Garber et al. 

1989 

   0.3-0.5 T 

static 

magnetic 

field 

Yes Rats Mannitol Standard MRI 

procedure 

Adzamli et 

al. 1989 

    No   Standard MRI 

procedure 

ELF exposure 

Öztas et al. 

2004 

50  8 hours 

daily for 21 

days 

0.005T Yes 34 Wistar 

rats 

Evans-blue BBB 

disruption in 

diabetic rats, 

but not in 

normoglycemi

c rats 

 



16 
 

 

In an attempt to repeat the findings of Oscar and Hawkins (26), Preston et al. (28) found no 

increase in the uptake of 14C-mannitol in anaesthetised rats after 2450MHz CW exposure for 

30 min at power densities of 0.1 to 30mW/cm
2
. Preston et al. further concluded that the 

increased BBB permeability, which had been observed by Oscar and Hawkins (26) in 

cerebellum and medulla, possibly had been misinterpreted and was not due to the EMF 

exposure. Rather, changes in blood flow and water influx or egress were supposed to be 

responsible for the BBB permeability in these caudal parts of the brain. Also, further attempts, 

made by Merritt et al. (1978) (29), to replicate the findings of Oscar and Hawkins from 1977, 

resulted in the conclusion that no repetition of the initial findings could be made. Merritt et al. 

(29) tried to replicate also the findings of Frey et al. (25), but reported that no changes were 

seen. 

 

However, Frey commented upon this in an article in 1998, where he pointed out that, in fact, 

statistical analysis by the editor and reviewer of the data from the study by Merritt et al. 

provided a confirmation of the findings of Frey et al. (25) (30).  

 

No alteration of BBB permeation of 14C-sucrose and 3H-inulin was found by Ward et al.  

(31)after exposure of anaesthetised rats to CW at 2450MHz for 30 min at power densities of 0, 

10, 20, or 30 mW/cm
2
 after correction for thermal effects. Similarly, Ward and Ali (32) 

observed no permeation after 1.7GHz exposure at SAR of 0.1 W/kg, using the same exposure 

duration and injected tracers as Ward et al. (31). Absence of EMF induced BBB permeability 

was also reported by Gruenau et al. (33), after injection of 14C-sucrose in conscious rats and 

exposure 30 min pulsed energy (2.8GHz at 0, 1, 5, 10, or 15mW/cm
2
) or continuous wave 

(2.8 GHz, 0, 10, or 40 mW/cm
2
). 

 

Proof of EMF-induced BBB permeability was put forward by Albert and Kerns (34), who 

exposed un-anaesthetised Chinese hamsters to 2,450MHz CWs for 2 h at SARs of 2.5 W/kg. 

In one-third of the exposed animals there was an increased permeability of the BBB to 

horseradish peroxidase (HRP) and the endothelial cells of these irradiated animals had a 2–3-

fold higher number of pinocytotic vesicles with HRP than the sham animals. The mechanism 

of BBB permeability seemed to be reversible, since animals allowed to recover for 1 or 2 h 

after the EMF exposure had almost no HRP permeation. A total number of 80 animals were 

included in this study. 
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Temperature Dependence 

 

In further studies, more attention was directed towards the effects of hyperthermia, resulting 

from exposure at high SAR-levels, on BBB permeability.  

 

A study correlating changes of BBB permeability with the quantity of absorbed microwave 

energy by Lin and Lin (35), using Evans blue and sodium fluorescein as indicators of BBB 

permeation, showed that 20 min of 2,450MHz exposure of anaesthetised Wistar rats caused 

no alteration of BBB permeability even at SAR values of 80 W/kg. Notably, the same lack of 

alteration was observed also at lower SAR-values, down to 0.04 W/kg. In further studies by 

the same group (36), no permeation of Evans blue could be observed after exposure to 

2,450MHzB RFs for 5–20 min when the SAR-values ranged from 0.04–200 W/kg. Not until a 

SAR-value of 240 W/kg, with ensuing rise in brain temperature to 43ºC, was applied, the 

BBB permeability increased. These observations of demonstrable increases of BBB 

permeability associated with intense, microwave-induced hyperthermia were supported by 

another study by the same group (37). 

 

In a series of EMF exposures at 2,450MHz CW, Williams et al. (38-40) concluded that 

increase of BBB permeability might not be explained by microwave exposure, but rather 

temperature increases and technically derived artefacts such as increase of the cerebral blood 

volume and a reduction in renal excretion of the tracer. Significantly elevated levels of 

sodium fluorescein (38) were found only in the brains of conscious rats made considerably 

hyperthermic by exposure to ambient heat for 90 min or 2,450MHz CW microwave energy 

for 30 or 90 min, but this was at high SAR values, 13 W/kg—far beyond the ICNIRP limit of 

2 W/kg (41) —and not comparable to the experiments performed by, among others, our group, 

as described below. 

 

With more research into the area of EMF induced BBB permeability, it became evident that 

with high-intensity EMF exposure resulting in tissue heating, the BBB permeability is 

temperature dependent (42). Thus, the importance of differentiating between thermal and non- 

thermal effects on the integrity of the BBB was realized. This is the reason why studies with 

increases of BBB permeability due to exposure to SAR-values well above recommended 
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exposure levels (43-46) need to be considered from another point of view, as compared to 

those focusing on the non-thermal effects of EMFs. 

 

 

Continued Studies—MRI and BBB Permeability 

 

Following the increasing use of magnetic resonance imaging (MRI), the effects of MRI 

radiation upon BBB permeability were investigated more thoroughly. MRI entails the 

concurrent exposure of subjects to a high-intensity static field, a radiofrequency field, and 

time-varying magnetic field. Shivers et al. (47) observed that exposure to a short (23 min) 

standard (of those days) clinical MRI procedure at 0.15 Tesla (T) temporarily increased the 

permeability of the BBB to horseradish peroxidase (HRP) in anaesthetised rats. This was 

revealed by electron microscopy (EM), to be due to an amplified vesicle-mediated transport 

of HRP across the microvessel endothelium, to the ablumenal basal lamina and extracellular 

compartment of the brain parenchyma. This vesicle-mediated transport also included 

transendothelial channels. However, no passage of the tracer through disrupted 

interendothelial tight junctions was present. 

 

During the next few years, more groups studied the effects of MRI exposure on the BBB 

permeability by injection of radioactive tracers into rats. One supported (48)while others 

contradicted (49, 50) the initial findings made by Shivers et al. (47). Garber et al. exposed rats 

to MRI procedures at 1.5, 0.5, and 0.3 T with RFs of 13, 21, and 64 MHz, respectively (48). 

Brain mannitol concentration was significantly increased at 0.3 T and 0.5 T but not at 1.5 T. 

No decrease in plasma mannitol concentration of MRI exposed animals was found and thus 

the authors concluded that effects of MRI associated energies on mannitol transport do not 

occur measurably in the body, and might be more specific to brain vasculature. Preston et al. 

(50) found no significant permeation of blood-borne 14C-sucrose into brain parenchyma in 

anesthetized rats subjected to 23 min of MRI at 4.7 T and RFs at 12.5 kHz. However, the 

authors pointed out that if the MRI effect was focal and excess tracer counts were found only 

in restricted sites, there could have been MRI induced extravasation of sucrose that was not 

detected, due to the preponderance of normal tissue counts. When Preston et al. (50) 

compared the lack of BBB leakage in their study to the MRI induced leakage which had been 

observed by Shivers et al. (47), they also concluded that certain characteristics of electric and 
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magnetic fields, which were present in the study by Shivers et al. but not in their own work, 

could have been critical to the observed effects. 

 

In 1990, further studies by the Shivers-Prato group were presented (51) and the group could 

now quantitatively support its initial findings, in a series of 43 Sprague-Dawley rats. The 

BBB permeability to diethylenetriaminepentaacetic acid (DTPA) increased in rats after two 

sequential 23 min MRI exposures at 0.15 T. It was suggested that the increased BBB 

permeability could result from a time-varying magnetic field mediated stimulation of 

endocytosis. Also, the increased BBB permeability could be explained by exposure-induced 

increases of intracellular Ca
2+ 

in the vascular endothelial cells. Since the Ca
2+

 is an 

intracellular mediator, increases of BBB permeability could possibly be initiated in this way. 

A few years later, in a series of 50 rats, the Shivers - Prato group also found that the BBB 

permeability in rats is also altered by exposure to MRI at 1.5T for 23 min in 2 subsequent 

exposure sessions (52). 

 

 

Studies by the Lund Group 

 

Two of us found these observations highly interesting:  

- the neurosurgeon (LGS) in the hope to utilize possible applications of EMF to 

make the blood-brain barrier (BBB) more penetrable to chemotherapy, in order 

to treat brain cancers more effectively.  An intact BBB keeps out chemotherapy 

agents, allowing cancer cells to hide behind the BBB.  

 

- the radiophysicist (BRRP) interested in possible adverse effects of the MRI 

technique.  

 

After a visit to Shivers’ group in London Ontario in 1988, we started work in Lund in 1988, 

studying the effects of MRI on rat brain and we found, by the use of Evans Blue, the same 

increased permeability over BBB for albumin (53). 

 

This work was continued by separating the constituents of the MRI field: RF, undulant 

magnetic field, and static magnetic field. Since RF turned out to be the most efficient 

component of the MRI, the following studies focused mainly on the RF effects. Striving for 
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investigating the actual real-life situation, endogenous substances, which naturally circulate in 

the vessels of the animals, were used. In line with this, albumin and also fibrinogen leakage 

over the BBB were followed after identification of albumin with rabbit antibodies (see Figure 

2 and 3) and rabbit anti-human fibrinogen. 

 

 

Figure 2. Albumin extravasation in rat brain (material from Persson et al. 1997)(54).  

Left: control brain with albumin staining in hypothalamus, which serves as an inbuilt-control 

of the staining method, since the hypothalamus lacks BBB, and one occasional staining. 

Right: Brain of EMF exposed rat, with multiple albumin positive foci.  

 

 

Figure 3. Albumin extravasation around vessels in the brain of an EMF exposed rat.  

 

 

The work by Blackman et al. (55, 56) made the ground  laid the groundwork for studies on the 

frequency modulation 16 Hz and its harmonies harmonics  4 and 8 Hz. A carrier wave of 915 

MHz was used. At the suggestion of Östen Mäkitalo (Telia), a pioneer in mobile phone 
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development, who introduced 50 Hz (DUX) and 217 Hz (GSM) modulation in new digital 

wireless communication systems, we also included theses frequencies.  This paralleled the 

first BBB study results that were published in 1992-1994 (57-59). 

 

The result of our continued work, comprising more than 1000 animals, with exposure to both 

CWs and pulsed modulated waves, in the most cases lasting for 2 h, showed that there was a 

significant difference between the amount of albumin extravasation in the exposed animals as 

compared to the controls. In the exposed group 35–50% of the animals had a disrupted BBB 

as seen by the amount of albumin leakage, while the corresponding leakage in the sham 

exposed animals was only 17% (for results see Figure 4) (54).  
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Figure 4. Albumin extravasation score as a result of EMF exposure (results from the study by 

Persson et al. (54)). 
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The fact that sham-exposed control animals also show some amount of albumin extravasation 

(see Figure 4), is most likely due to our very sensitive methods for immune histological 

examination. However, it is hard to explain the fact that although all animals in the 1997 

series were inbred Fischer 344 rats, only every second animal, at the most, showed albumin 

leakage after EMF exposure. The question, what might protect the remaining 50% of the 

exposed animals from BBB disruption, is highly intriguing. It should be noted that in our 

large series, only in one single animal fibrinogen leakage has been observed (54). 

 

Another conclusion from the 1997 study is that the number of pathological leakages in 

exposed animals is more frequent, and also more severe, per animal compared to the controls. 

This is an interesting observation as the prevailing opinion is that pulse modulated 

electromagnetic fields are more potent in causing biological effects.  

 

In a statistical re-evaluation of our material published in 1997, where only exposed rats with a 

matched unexposed control rat are included, we found for the most interesting modulation 

frequency 217 Hz, i.e. that of GSM, that at SAR-values of 0.2 to 4 mW/kg 48 exposed rats 

had a significantly increased albumin leakage (p < 0.001) as compared their 48 matched 

controls. On the other hand, SAR-values of 25-50 mW/kg, gave no significant difference 

between 22 exposed rats vs their matched controls (Wilcoxon´s Rank Test, 2-sided p-value) 

(60).  

 

In all our earlier studies we showed albumin extravasation immediately after exposure as 

described above. In later years we have performed a series of experiments where the animals 

were allowed to survive for 7 days (61), 14 days, 28 days (62) or 50 days (63) after one single 

2-hour exposure to the radiation from a GSM mobile phone. All were exposed in TEM-cells 

to a 915 MHz carrier wave as described below. The peak power output from the GSM mobile 

phone fed into the TEM-cells was 1 mW, 10 mW, 100 mW and 1000 mW per cell 

respectively for the 7-14-28-days survival animals, resulting in average whole-body SAR of 

0.12 mW/kg, 1.2 mW/kg, 12 mW/kg and 120 mW/kg for four different exposure groups 

SAR-values of 2, 20 and 200 mW/kg mW/kg for 2 hours for the 50-days survival animals.  

 

Albumin extravasation over the BBB after GSM exposure seemed to be time-dependent, with 

significantly increased albumin in the brain parenchyma of the rats, which had survived for 7 

and 14 days, but not for those surviving 28 days. After 50 days, albumin extravasation was 
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significantly increased again, with albumin-positive foci around the finer blood vessels in 

white and gray matter of the exposed animals.  

 

In connection to the albumin passage over the BBB, albumin also spread in the surrounding 

brain tissue. A significantly increased uptake of albumin in the cytoplasm of neurons could be 

seen in the GSM exposed animals surviving 7 and 14 days after exposure, but not in those 

surviving 28 or 50 days.  

 

Neuronal uptake 

Extravasated albumin rapidly diffused down to, and beyond, concentrations possible to 

demonstrate accurately immunohistologically. However, the initial albumin leakage into the 

brain tissue (seen within hours in ~40% of exposed animals in our previous studies) most 

likely started a vicious circle of further BBB opening. 

 

It has been postulated that albumin is the most likely neurotoxin in serum (64). Hassel et al. 

(65) have demonstrated that injection of albumin into the brain parenchyma of rats gives rise 

to neuronal damage. When 25 μl of rat albumin is infused into rat neostriatum, 10 and 30, but 

not 3 mg/ml albumin causes neuronal cell death and axonal severe damage. It also causes 

leakage of endogenous albumin in and around the area of neuronal damage. Albumin in the 

dose 10 mg/ml is approximately equivalent to 25% of the serum concentration. 

It is less likely that the albumin leakage demonstrated in our experiments locally reaches such 

concentrations. However, we have seen that in the animals surviving 28 and 50 days after 2 

hours of GSM exposure, there was a significantly increased incidence of neuronal damage as 

compared to the sham controls. In the 7-days and 14-days survival animals, on the other hand, 

no such increase of neuronal damage was seen.  

 

In the 50-days post-exposure survival study, a 2 h exposure to GSM at SAR values 200, 20, 

and 2 mW/kg resulted in a significant (p = 0.002) neuronal damage in rat brains of the 

exposed animals as compared to the controls 50 days after the exposure occasion (Salford et 

al., 2003)(63). We have followed up this observation, as mentioned above, in a study where 

96 animals were sacrificed 14 and 28 days respectively after an exposure for 2 h to GSM 

mobile phone electromagnetic fields at SAR values 0 (controls), 0.12, 1.2, 12 and 120 

mW/kg. Significant neuronal damage is seen after 28 days and albumin leakage after 14. Our 
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findings may support the hypothesis that albumin leakage into the brain is the cause for the 

neuronal damage observed after 28 and 50 days (62). 

 

The damaged neurons in the above mentioned studies took the shape of so-called dark 

neurons. Three main characteristics of the damaged dark neurons have been proposed (66): (i) 

irregular cellular outlines, (ii) increased chromatin density in the nucleus and cytoplasm and 

(iii) intensely and homogenously stained nucleus. The damaged dark neurons found in the 50 

days-survival animals were investigated regarding signs of apoptotic markers, but we found 

no positive staining for Caspase-3, a marker for apoptosis (Bexell et al. unpublished results).  

However, the albumin leakage out in the neuropil in connection to EMF exposure might start 

other deleterious processes, leading to the formation of the dark neurons.  

 

 

A group in Turkey performed similar experiments. However, also the presumed protective 

effects of the antioxidant Ginko biloba (Gb) were examined by Ilhan et al. (67). About 22 

female Wistar rats were exposed to a 900 MHz electromagnetic GSM near-field signal for 1 h 

a day for 7 days. In the GSM only group, the pathological examination revealed scattered and 

grouped dark neurons in all locations, but especially in the cortex, hippocampus and basal 

ganglia, mixed in among normal neurons. A combined non-parametric test for the four groups 

revealed that the distributions of scores differed significantly between the control and the 

GSM only exposure group (p < 0.01). 

 

Long-term study, including studies of memory and behaviour 

In a recent long-term study from our laboratory, rats were exposed to GSM radiation 2 hours 

weekly during 55 weeks (two different exposure groups with 0.6 mW/kg and 60 mW/kg at the 

initiation of the exposure period). After this protracted exposure, behaviour and memory of 

the exposed animals were tested. Whereas the behaviour of the animals was not affected, the 

GSM exposed rats had significantly impaired episodic memory as compared to the sham 

controls (68). After the finalization of these tests, that is 5-7 weeks after the last exposure, the 

animals were sacrificed by perfusion fixation. Albumin extravasation, an indicator of BBB 

leakage, was increased in about 1 animal in each group of low GSM exposed, high GSM 

exposed, sham exposed and cage control rats. About 40 % of the animals had neuronal 

damage. GFAP staining, as an indicator of glial reaction, revealed positive results in 31-69 % 

of the animals for different groups and the aggregation product lipofuscin was increased in 
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44-71 % of the animals for different groups. With the Gallyas staining (aiming at cytoskeletal 

structures), no changes were seen. When comparing the results between the different groups, 

it turned out that there was no statistically significant difference for any of these parameters 

due to GSM exposure (69). When comparing these findings to those from animals which had 

been exposed only once for 2 hours, it seems likely that during the 55 weeks of repeated 

exposure, albumin leakage at an initial stage of the experimental period might have been 

absorbed after some time, and that at a certain, but unknown, time point during this 

protracted, more than 1 year long-exposure period, some adaptation process might have been 

activated. However, this could not compensate for cognitive alterations, demonstrated by the 

episodic memory tests. 

 

 

TEM-cells 

 

In the majority of our studies, EMF exposure of the animals has been performed in transverse 

electromagnetic transmission line chambers (TEM-cells, see Figure 5) (53, 54, 59, 61-63, 68-

71). These TEM-cells are known to generate uniform electromagnetic fields for standard 

measurements. Each TEM-cell has two compartments, one above and one below the center 

septum. Thus, two animals can be exposed at a time. The animals are un-anaesthetized during 

the whole exposure. Since they can move and turn in the TEM-cells as they like, the 

component of stress-induced immobilization (described by Stagg et al. (72)) is effectively 

minimized. Through our studies, we have concluded that the amount of albumin leakage is 

neither affected by the sex of the animals, nor their placement in the upper or lower 

compartments of the TEM-cells. 
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The TEM cell
 

Figure 5. TEM-cells for EMF exposure. 

 

 

 

GSM-1800 modulated and CW microwaves in an anechoic chamber 

 

In Lund we have also utilized an anechoic chamber for studies on microwaves from a real 

GSM-1800 mobile telephone, which were amplified and transferred to a dipole antenna in the 

anechoic chamber. The output power was varied to study the effect of various SAR values. 

In a series of 65 rats exposed for 2 h with 1800-GSM at SAR: 0.027 mW/kg, and 12 rats 

exposed for 2 h with continuous wave, we found significantly increased albumin leakage (see 

figure 6) as compared to 103 control rats (p<0,03 and p<0,02, respectively). (Unpublished 

results). 

 



27 
 

 

 

Figure 6. 

Pathological leakage around vessels demonstrated by immunostaining against albumin.  

Fischer 344 rat exposed for 2 h  with 1800-GSM  at SAR: 0.027 mW/kg 

 

 

Other Studies on BBB Permeability, Focusing on the Effects of RF EMFs of the 

Type Emitted by Mobile Phones 

 

With the increasing use of mobile phones, much attention has been directed towards the 

possible effects on BBB permeability, after exposure to the type of RF EMFs emitted by the 

different sorts of mobile phones. 

 

Repetitions of our initial findings of albumin leakage have been made by Fritze et al. (73), 

with 900 MHz exposure of rats for 4 h at brain power densities ranging from 0.3–7.5 W/kg. 

Albumin extravasation into the brain tissue was seen, with significant difference between 

controls and rats exposed reported for 7.5 W/kg, which is a thermal level. However, Fisher 

exact probability test (two-tailed) performed on the reported results, reveals significant ( p < 

0.01, Fisher exact probability test) difference for the subthermal level group (SAR  0.3 W/kg 

plus 1.3 W/kg, compared to sham exposed and cage control animals) where in total 10 out of 

20 animals showed one or more extravasations direct after exposure (Salford et al. (20)). 
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Another group, working in Bordeaux, and led by Prof Pierre Aubineau, has also demonstrated 

evidence of albumin leakage in rats exposed for 2 h to 900 MHz at non thermal SAR-values, 

using fluorescein-labeled proteins. The results were presented at two meetings by Töre et al. 

(74, 75). The findings are very similar to those of our group, described above.  

At the BEMS meeting in 2002 in Quebec City in Canada, the Aubineau-Töre group presented 

results from exposure GSM-900 EMFs at SAR values of 0.12, 0.5, and 2.0 W/kg. Seventy 

Sprague-Dawley rats were included in the study. In addition to normal sham and normal GSM 

exposed rats, also rats subjected to chronic dura mater neurogenic inflammation, induced by 

bilateral sympathetic superior cervical ganglionectomy, were included. Arterial blood 

pressure was measured during the exposure, and Töre et al. (74, 75) concluded that the 

pressure variations (100–130mm Hg) were well below those limits, which are considered to 

be compatible with an opening of the BBB of rats. In order to induce opening of the BBB in 

rats, arterial blood pressure needs to reach values of 170 mmHg, according to Töre et al. (74, 

75). At SAR of 2 W/kg a marked BBB permeabilization was observed, but also at the lower 

SAR-value of 0.5 W/kg, permeabilization, although somewhat more discrete, was present 

around intracranial blood vessels, both those of the meninges and of the brain parenchyma. 

Comparing the animals, which had been subjected to ganglionectomy, to the other animals, 

Töre et al. made an interesting observation: as expected, albumin extravasation was more 

prominent in the sympathectomised sham-exposed rats as compared to normal exposed rats. 

This was due to the fact that the sympathectomised rats were in a chronic inflammation-prone 

state with hyper-development of pro-inflammatory structures, such as the parasympathetic 

and sensory inputs as well as mast cells, and changes in the structure of the blood vessels. 

Such an inflammation-prone state has a well-known effect on the BBB leakage. However, 

when comparing sham-exposed sympathectomised rats to GSM-exposed sympathectomised 

rats, a remarkable increase in albumin leakage was present in the GSM exposed 

sympathectomised rats compared to the sham rats. In the GSM-exposed sympathectomised 

rats, both brain areas and the dura mater showed levels of albumin leakage resembling those 

observed in positive controls after osmotic shock. Indeed, more attention should be paid to 

this finding, since it implicates that the sensitivity to EMF-induced BBB permeability 

depends not only on power densities and exposure modulations, but also on the initial state of 

health of the exposed subject. 

 

In rats, uptake of a systemically administered rhodamine-ferritin complex through the BBB 

also has been observed, after exposure to pulsed 2.45GHz EMFs at average power densities of 
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2 W/kg by Neubauer et al. (76). The authors observed that the magnitude of BBB 

permeability depended on power density and duration of exposure. Exposure to a lower power 

density (1 W/kg) and shorter duration of the exposure (15 min) did not alter the BBB 

permeability, as compared to higher power densities (SAR 2 W/kg) and longer duration of 

exposure (30–120 min). The microtubules seemed to play a vital role in the observed BBB 

permeability, since treatment with colchicine, which inhibits microtubular function, resulted 

in near-complete blockade of rhodamine-ferritin uptake. The mechanism underlying the 

observed leakage was presumed to be correlated to pinocytotic-like transport. 

 

In other studies, no effect of EMF exposure has been observed on the BBB integrity. With 

exposure to 1,439MHz EMFs, 1 h daily during 2 or 4 weeks (average whole-body energy 

doses of 0.25 W/kg) no extravazation of serum albumin trough the BBB was observed in a 

series of 36 animals by Tsurita et al.(77). However, in this small material only 12 animals in 

total were EMF exposed (6 rats exposed for 2 weeks and 6 rats exposed for 4 weeks). Also, 

lack of interference with the BBB function of rats was found after 1,439MHz exposure for 90 

min/d for 1–2 weeks at average brain power densities of either 2 or 6W/kg by Kuribayashi et 

al.(78). A total number of 40 animals were included in the study. 

 

Finnie et al. (79) came to the conclusion that no increase in albumin leakage over the BBB 

resulted from EMF exposure in a series of 60 mice. With whole body exposure of mice to 

GSM-900 EMFs for 1 h at a SAR of 4 W/kg or sham exposure, no difference in albumin 

extravazation was observed between the different groups. Also, free-moving cage controls 

were included in the study, and interestingly, there was no significant difference between 

these non-restrained mice as compared to the sham and EMF-exposed animals. Thus, the 

authors concluded that there were no stress-related exposure module confinement effects on 

the BBB permeability. 

 

Finnie et al. (80) continued to investigate more long-lasting exposure effects. In a series of 

experiments, a total of 207 mice were exposed 60 min daily, 5 days per week for 104 weeks at 

average whole body SARs of 0.25, 1.0, 2.0, and 4.0W/kg. This led to a minor disruption of 

the BBB, as seen by the use of endogenous albumin as a vascular tracer. However, it should 

be added that the authors performed no statistical analyses to evaluate the albumin leakage 

through the small vessels in the brain. In an answer to correspondence in the same journal 

(81), the authors presented the original data from the long-term study in one table, from which 
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one can conclude that non-leptomeningeal albumin leaking vessels were seen in few sham-

exposed animals, and in one-third of the animals in the 0.25 W/kg group and to a lesser extent 

in the higher SAR groups.  

 

The fact that some research groups observe albumin leakage/transport over the BBB after 

EMF exposure and others do not, has led to a rather intense debate between the researchers 

but also in society, which is puzzled by the divergent findings. A major concentration of the 

involved research groups took place at Schloss Reisensburg in Germany in 2003, where the 

technical approaches in the studies of BBB effects were discussed. Two world-renowned 

researchers in the BBB field, Dr. David Begley of Kings College, London, and Prof. Olaf 

Poulsen of Copenhagen, Denmark, chaired the FGF/COST 281 Reisensburg, November 2–6 

meeting. They made the final statement as a summary of the meeting: ‘‘It seems clear that RF 

fields can have some effects on tissues’’. The statement was made to a large extent on the 

basis of the concordant findings of the Bordeaux group, represented by Prof. Aubineau, and 

the Lund group, represented by Prof. Salford and Prof. Persson. 

 

The histopathological examinations of the brains are not uncomplicated. Some laboratories 

that have tried to replicate our studies have not been able to demonstrate the albumin leakage. 

We have recently had problems with the albumin staining due to change of suppliers of 

avidin, biotin, serum and antibodies. The lateral hypothalamic nuclei in the immediate vicinity 

of the third ventricle are well known for their normally insufficient BBB. This has served as 

an inbuilt control of adequate albumin staining in all our experiments since 1990. In our study 

on combined effects of RF- and ELF-EMF, for the first time, we could not demonstrate 

albumin extravasation in basal hypothalamus. Not until our third attempt with new staining 

material, we got our positive control and could also demonstrate albumin leakage in the 

exposed brains (61).  

 

The biological effects of RF exposure depend on many parameters, such as mean power level 

and the time variations of the power (82) and whether in vivo or in vitro experiments are 

performed. In the in vivo situation, different kinds of animals, and also the same kind of 

animals but of different breeds, might react differently. It might not necessarily be the 

strongest RF fields that give rise to the most obvious biological effects (54, 63).  In many 

cases, the weak and precisely tuned EMFs have the most important biological function; two 

examples of this are cellular communication and protein folding. It seems quite likely that in 
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different experimental set-ups, and in different living organisms, the signal has to be tuned to 

different properties in order to cause any effect. This could perhaps in some part explain why, 

in some cases, there are quite obvious effects of RF exposure, whereas in others, no such 

effects can be seen. 

 

 

Other Studies on BBB permeability and neuronal damage 

 

As has been mentioned above (p. 26) Ilhan et al. (67), in 2004 reported neuronal damage in 

female Wistar rats, which had been exposed to a 900 MHz electromagnetic GSM near-field 

signal for 1 h. a day for 7 days. They found scattered and grouped dark neurons in the cortex, 

hippocampus and basal ganglia, mixed in among normal neurons. A combined non-parametric 

test for the four groups revealed that the distributions of scores differed significantly between 

the control and the GSM only exposure group (p < 0.01). 

 

Later, Masuda et al. (83) tried to replicate the findings by our group of albumin extravasation 

and dark neurons. F344 rats (n=64) were exposed to 915 MHz signals for 2 hours (SAR of 0, 

0.02, 0.2 and 2 W/kg), and albumin extravasation and dark neurons were investigated 14 and 

50 days after the exposure. No albumin extravasation was seen, neither in control or exposed 

rats, and no difference in the occurrence of dark neurons could be found due to EMF 

exposure. An interesting difference as compared to the studies by Salford et al. mentioned 

above, was that animals, after perfusion fixation, were left in a 4ºC storage for 18 hours 

before the brains were removed. The question is whether this might have led to dilution of the 

very sensitive albumin extravasation, which is often more pronounced in the circumventrical 

organs as compared to the brain extravasates (personal communications with our 

neuropathologist Arne Brun). This might explain the fact, that no albumin extravasation could 

be seen in neither the cage control animals, the shams or the GSM exposed animals.  

 

Another study by Mason and his group at Brooks Airforce Resarch Laboratory, San Antonio, 

also tried to confirm our findings of albumin extravastion by using the same type of TEM-

cells for EMF Exposure (84), although the exposure parameters where somewhat different 

with only 30-min exposure, including only male rats of the Fischer 344 CD-VAF strain and 

utilizing only the upper compartment of the TEM cells. Exposure was at whole-body SAR 

values of 0.002 to 20 W/kg. Regarding extracellular albumin accumulation, the results were 
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not formally analyzed, as motivated by too low scores of albumin.  Regarding intracellular 

albumin uptake, no significant difference between the different groups was reported. However, 

as presented in the paper by McQuade et al.(84), at the lowest SAR of 1.8 mW/kg at 16 Hz, of 

33 exposed rats, 11 had 2 or 3 positivities (33% of the animals) and 22 had none or 1 

positivity. In the sham animals, 18% were positive and among the cage controls only 12%.   

These results are reminiscent of prior work by the Lund group reporting that 17% of the sham 

animals had some albumin leakage, while only at the most 50% of the identical and equally 

handled, but RF exposed animals displayed albumin extravasation (60). 

 

In a third study aiming to replicate the Lund findings of dark neurons, a group in Bordeaux 

(85) exposed 14 weeks old Fischer 344 rats (which, however, were restrained in a rocket-type 

exposure setup), to the GSM-900 signal for 2 h at various brain-averaged SARs (0, 0.14 and 

2.0 W/kg). Eight rats were included in each of these groups. 

Albumin leakage and neuronal degeneration was evaluated 14 and 50 days after exposure. 

It was reported that no statistically significant albumin leakage was observed and that 

neuronal degeneration assessed using cresyl-violet or the more specific marker Fluoro-Jade B, 

was not significantly different among the tested groups. Here we want to point out that the 

Bordeaux group makes a major deviation from the way we have evaluated the occurrence of 

dark neurons in the tissue slices. While we counted the overall number of dark neurons, de 

Gannes et al. (85) chose to subdivide the slices into 12 different small regions, which were 

compared individually to each other (fig 3 in the publication). This gave the effect that a clear 

overall difference in number of observed dark neurons between animals 50 days after 

exposure to 2 W/kg for two hours versus sham exposed, disappeared in the statistics. On the 

contrary, if all the numerical values for the bars representing the scored dark neurons 

observed in each brain zone and region 50 days after exposure  to 2 W/kg are compared to all 

those of the sham animals, a highly significant difference (Kruskall-Wallis) between animals 

exposed to 2 W/kg and sham is demonstrated (Mann-Whitney) p = 0.003! This is in 

concordance with the Lund experience! 

 

 

Indirect studies and studies on the blood cerebrospinal fluid barrier 

 

The integrity of the BBB has also been investigated indirectly. Cosquer et al. (86) treated rats 

with the muscarinic antagonist scopolamine methylbromide, which is known to induce 



33 
 

memory impairments, followed by EMF exposure at 2.45GHz for 45 min at average whole 

body SARs of 2W/kg. Opening of the BBB after EMF exposure was hypothesised to affect 

the performance in a radial arm maze. However, no such alterations were observed and the 

authors concluded that no BBB opening seemed to have occurred. In agreement with this, no 

albumin extravasation was noticed. 

 

Ushiyama et al. (87) investigated the effects on the blood cerebrospinal fluid barrier after RF-

EMF exposure. With a microperfusion method, cerebrospinal fluid from rat brain was 

collected in vivo. Fluorescent intensity of FITC-albumin in perfusate was measured. Rats 

exposed to 1.5GHz RFs during 30 min at SAR-values of 0.5, 2.0, 9.5W/kg for adult rats and 

0.6, 2.2, 10.4W/kg for juvenile rats, respectively, were compared to sham-exposed controls. 

Under these conditions, no increase in FITC-albumin was seen in the cerebrospinal fluid of 

exposed rats as compared to sham exposed controls. It was concluded that no effect on the 

function of the blood cerebrospinal fluid barrier was seen.  

 

In a recent study, the permeability of the human BBB after mobile phone exposure was 

assessed measuring blood levels of S100B and transthyretin in human volunteers by 

Söderqvist et al. (88). S100B is a calcium-binding protein, and it has been shown to be 

increased in serum after damage to the BBB. Transthyretin, also known as pre-albumin, is 

synthesised both in the liver and the choroid plexus. 30 min of GSM-900-like exposure at 

SAR-values of 1 W/kg was used. No difference was seen regarding S100, but transthyretin 

was increased 60 min after the termination of exposure as compared to the control situation. 

The concentrations of S100B and transthyretin were also analysed 30 min prior to provocation 

and after 30 min rest, showing a decrease after 30 min rest, which was suggested, might be 

due to less stress after the 30 min rest. Thus, it is interesting that despite this decline, which 

might be due to relaxation, still an increase in thransthyretin could be measured 30 min after 

exposure. It was also put forward, that it could not be excluded that the thransthyretin rise 

might be a compensation to the previous decrease, and that new studies including more 

participants and also a sham group would be needed.  

 

We have in the past investigated whether MW exposure, CW and at different SAR levels 

might enhance S-100 protein levels in the blood of a large proportion of our rats. We could 

conclude that no significant differences were seen (see Figure 7 below) (to be published).   
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Figure 7. S-100 in the blood of rats after EMF exposure (to be published in Acta Scientiarum 

Lundensia). 

 

 

In another study, by Sirav and Seyhan (89), exposure to CW EMFs at 900 and 1,800 MHz for 

20 min, increased the BBB permeability of male but not female rats. Evans blue dye, which 

binds to serum albumin after injection, was used to quantitatively measure BBB permeability. 

A strength of this study, was the ability to objectively quantify the Evans blue uptake in the 

brain. The finding that only male, and not female rats, are affected, is however not fully 

addressed. 

 

 

In Vitro Models 

In recent years, there has been an increasing use of in vitro models in the search for BBB 

effects of EMF exposure. In vitro models of the BBB have been studied, as by Schirmacher et 

al. (90), with co-cultures consisting of rat astrocytes and porcine brain capillary cells. 

Exposure to GSM-1800 for 4 d with average SAR of 0.3 W/kg increased the permeability of 

14C-sucrose significantly compared to unexposed samples in the studied BBB model. These 

findings were not repeated in experiments performed later by the same group, after 

modifications of their in vitro BBB model (91). The modified BBB model had a higher 

general tightness. It was speculated that at a higher original BBB permeability, which was 
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present in the first study by Schirmacher et al. (90), the cultures were more susceptible to the 

RF EMFs. Using porcine brain microvascular endothelial cell cultures as an in vitro model of 

the BBB, no effects on barrier tightness, transport behavior, and integrity of tight junction 

proteins were observed after exposure to UMTS EMFs at 1.966 GHz for 1–3 d at different 

field strengths at 3.4–34 V/m, generating a maximum SAR of 1.8 W/kg (92). 

 

 

In the search after the mechanism underlying non thermal EMF effects, Leszczynski et al. 

(93) observed human endothelial cells, with the interesting finding that GSM-900 exposure 

for 1 h with SAR-values of 2 W/kg resulted in changes in the phosphorylation status of many 

proteins. Among the affected pathways, the hsp27/p38MAPK stress response pathway was 

found, with a transient phosphorylation of hsp27 as a result of the mobile phone exposure. 

This generated the hypothesis that the mobile-phone induced hsp27-activation might stabilize 

stress fibers and in this way cause an increase in the BBB permeability. Furthermore, it was 

also suggested that several brain-damaging factors might all contribute to the mobile phone- 

induced effects observed in the brain and other structures as well. 

 

 

 

Further perspectives of the importance of the BBB including the human situation 

 

BBB in the Context of Alzheimer’s Disease and the findings by the Zlokovic Group 

 

The BBB, as mentioned previously, is of essential role for maintaining an accurate brain 

function. As described by Zlokovic (94), in a review regarding BBB in correlation to 

neurodegenerative disorders, BBB breakdown can be due to tight junction disruption, 

alterations of angiogenesis or vessel regression, hypoperfusion, inflammatory response and 

alterations of the transport of molecules across the BBB (94). Further, as Zlokovic 

hypothesises, this might contribute to neurodegenerative disorders, such as Alzheimer’s 

disease (AD), Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis.  

 

In the review by Zlokovic (94), a neurovascular disease pathway is presented, regarding 

possible genesis of AD, where it is suggested that changes in vascular genes and receptors in 

brain capillaries and small arteries might disrupt BBB functions, leading to an accumulation 
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of amyloid beta (Aβ), a neuroinflammatory response and BBB breakdown and further on 

accumulation of Aβ, loss of the BBB to clear Aβ (due to affected synaptic transmission, 

neuronal injury and recruitment of microglia) and secretion of proinflammatory cytokines. 

Ultimately, this is suggested to lead to disappearance of the capillary unit, increasing Aβ 

deposits and synaptic and neuronal loss (94).  

 

This observation might explain how vascular disease contributes to Alzheimer's disease (AD) 

risk; the heterogeneity of AD; and supports the idea that exclusively focusing on amyloid is 

likely to be disappointing. 

 

Neuronal injury resulting from vascular defects that are not related to amyloid-beta but is 

related to damage results from a breakdown of the blood-brain barrier and a reduction in 

blood flow (94). Although Amyloid beta definitely has an important role in Alzheimer's 

disease it's very important to investigate other leads, perhaps where amyloid-beta isn't as 

centrally involved.  

 

Human apolipoprotein E has three isoforms: APOE2, APOE3 and APOE4. APOE4 is a major 

genetic risk factor for Alzheimer's disease and is associated with Down's syndrome dementia 

and poor neurological outcome after traumatic brain injury and haemorrhage. Neurovascular 

dysfunction is present in normal APOE4 carriers and individuals with APOE4-associated 

disorders. In mice, lack of APOE leads to blood-brain barrier (BBB) breakdown, whereas 

APOE4 increases BBB susceptibility to injury. How APOE genotype affects brain 

microcirculation remains elusive. Using different APOE transgenic mice, including mice with 

ablation and/or inhibition of cyclophilin A (CypA), it has been shown show that expression of 

APOE4 and lack of murine APOE, but not APOE2 and APOE3, leads to BBB breakdown by 

activating a proinflammatory CypA-nuclear factor-kappa B-matrix-metalloproteinase-9 

pathway in pericytes. These findings suggest that CypA is a key target for treating APOE4-

mediated neurovascular injury and the resulting neuronal dysfunction and degeneration. The 

data reviewed above support an essential role of neurovascular and BBB mechanisms in 

contributing to both, onset and progression of AD (95, 96). 
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BBB in the context of Alzheimer’s Disease – Importance of EMF Exposure 

In this context, the findings of Arendash et al., that long-term EMF reduced brain Aβ 

deposition through Aβ anti-aggregation actions in AD mice, are highly interesting (97). It was 

also found, by Mori and Arendash et al., that long-term exposure to high frequency EMF 

treatment prevented cognitive impairment in AD transgenic (Tg) mice and improved memory 

in normal mice and that an increase in neuronal activity could be observed in the EMF 

exposed groups (98). Furthermore, it was found by the group that EMF treatment enhances 

brain mitochondrial functions in AD Tg as well as normal mice and that no increase in brain 

temperature could be found in connection to the EMF exposure (99).  An interesting aspect in 

this context, is the role of mitochondria for many cellular functions, including reactive oxygen 

species generation, apoptosis, and Ca2
+
 homeostasis as was mentioned by Dragicevic et al. 

and reviewed by Nicholls (99, 100). 

 

In the first mentioned study by Arendash et al. (97), mice were EMF exposed with start at 

young age or at adult age. In the young-age group, 24 mice were divided into 4 subgroups: 

n=6 were Tg controls, n=6 were Tg animals treated with EMF, n=6 were non-transgenic (NT) 

controls and n=6 were NT animals treated with EMF. 2.5, 4-5 and 6-7 months after daily 

GSM-900 EMF exposure (two 1-hour sessions daily, at SAR 0.25 W/kg), the animals were 

evaluated by cognitive tests. At the end of the study, Aβ in the brains was evaluated by 

immunohistochemistry. No effect on cognitive functions was observed after 2 months of 

exposure. However, for the Tg+EMF mice with start of EMF exposure at young age, the 

cognitive function was maintained after 6-7 months of exposure, while it deteriorated in the 

Tg group. In a final task for NT mice after 7 months of EMF, the EMF actually improved the 

mnemonic function. In the adult-age group, Tg animals had impaired cognitive functions at 

the age of 4 months. 28 Tg and NT mice were included. After long-term EMF exposure (2, 5 

and 8 months) the memory was tested. While 2 months of EMF exposure had no effect, 5 

months of exposure had positive effects only on NT mice, and 8 months of exposure had 

beneficial effects for the Tg mice, with better results in the Tg+EMF group as compared to 

the Tg controls. Also the NT+EMF mice had an improved function as compared to NT 

controls after 8 months. Staining for Aβ revealed lower values on both hippocampus and the 

entorhinal cortex in the Tg+EMF group as compared to the Tg control group. Hippocampal 
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tissue from Tg mice were then exposed to EMF for 4 days, after which it was shown that the 

Aβ amount had decreased as compared to non-exposed control tissue.  It was also reported 

that a t1° temperature increase was observed in EMF exposed animals during exposure, but 

not in between exposure sessions (97). 

 

In the study by Mori and Arendash (98), n=6 mice were Tg controls, carrying the mutant 

APPK670N , n=10 mice were Tg treated with EMF, n=4 mice were NT controls and n=5 

mice were NT treated with EMF. EMF exposed animals were placed in a Faraday cage, 

receiving two 2-hour periods of EMF treatment at GSM-900 frequencies, pulse modulated at 

SAR 0.25-1.05 W/kg. The neuronal expression of c-Fos was taken as an indicator of neuronal 

activity. With immunohistochemistry, it was found that c-Fos was increased in both the 

NT+EMF group, as well as in the Tg+EMF group in the entorhinal cortex. However, only this 

one brain region was analyzed, since c-Fos expression was too low in other regions, which the 

authors hypothesised might be due to that c-Fos in an early response gene, and that at a 

certain time after stimulation, when the animals were sacrificed, the expression had already 

declined in other regions, such as hippocampus. In a cognitive test (Y-maze), it was found 

that EMF improved the performance in both NT and Tg group as compared to untreated 

controls. It should also be noted, that despite the very interesting findings, the number of 

included animals is quite small (98). 

EMF and 
18

FDG Uptake – Recent Studies 

The question whether EMF exposure from mobile phones has neuronal effects in the human 

situation was recently addressed by an American research group led by Volkow et al., 

conducting a PET study on 
18

F-fluorodeoxyglucose (
18

FDG) uptake (101). Though PET-

studies on humans in correlation to EMF exposure have also been previously made, the 

purpose of this study was to extend the study material and use the more direct measure of 

brain glucose metabolism by the uptake of 
18

FDG instead of the previously used CBF 

(cerebral blood flow) measure, which might be a more indirect sign of neuronal activity and 

also reflect short-term alterations (60s) as compared to the more long-lasting ones observed 

with 
18

FDG (suggested to be in the range of 30 min). 
18

FDG is actively transported across the 

BBB into the cells, where it is phosphorylated, and is, among others, used as a prognostic 

value for following low-grade brain tumours, where an increased uptake in previously low-
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grade tumours is an indicator of anaplastic transformation (for review into the topic of 
18

FDG 

and brain tumours (102). 

(space) 

In the study by Volkow et al. (101), in total, 47 persons were involved, and effects upon brain 

glucose metabolism of EMF exposure were evaluated using PET with injection of 
18

FDG. 

PET scans were performed both with and without EMF exposure (50 min of GSM-900 with 

maximum SAR of 0.901 W/kg), and the participants were blinded to the exposure situation. 

Whereas whole-brain metabolism was not affected, there were regional differences, in the 

right orbitofrontal cortex and the lower part of the right superior temporal gyrus (that is, the 

same side as the mobile phone was placed at) with increased metabolism in the exposure 

situation of about 7% as compared to control. There was a positive correlation between the 

strength of the E-field from the phones and the brain activation. Interestingly, it was 

hypothesized that RF-EMF exposure might increase the excitability of brain neurons.  

 

Following the study by Volkow et al. (101), Kwon et al. (103) also investigated effects of 

GSM-900 exposure upon brain 
18

FDG uptake. Thirteen persons were exposed to GSM-900 

for 30 minutes to the right side of the head, and all subjects were also sham-exposed, and 

blinded to the exposure situation (SAR-values of maximum 0.74 W/kg in the head and 0.23 

W/kg in the brain tissue). Contrary to the findings of Volkow et al. (101), the study by Kwon 

et al. (103) demonstrated a decrease in brain 
18

FDG uptake after GSM-900 exposure, with 

decreased uptake values in the temporoparietal junction. A volume-of-interest analysis 

focused upon the right temporal lobe, showed a decreased 
18

FDG uptake in the anterior 

inferior temporal cortex. No effects on task performance were found, and no correlation 

between temperature or 
18

FDG uptake (a temperature increase of <0.21°C was found on the 

skin on the exposed side of the head) (103). 

 

In the animal situation, Frilot et al. investigated the effect of ELF magnetic field exposure (2.5 

G at 60 Hz) upon 
18

FDG uptake in rats, comparing uptake with and without EMF exposure. 

An increased glucose uptake was found in the hindbrain when the field was orthogonally to 

the sagittal plane, but not when the angle varied randomly between the field and sagittal 

plane. These effects were hypothesized to be coupled to induction of electric field on the gate 

of ion channels (104).  
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Possible connection between BBB leakage and nerve cell injury 

 

It has been suggested that BBB leakage is the major reason for nerve cell injury, 

such as that seen in dark neurons in stroke-prone spontaneously hypertensive rats (105). Much 

speaks in favour of this possibility. The parallel findings in the Lund material of neuronal 

uptake of albumin and dark neurons may support the hypothesis that albumin leakage into the 

brain is the cause for the neuronal damage observed after 28 and 50 d. It should, however, be 

pointed out that the connection is not yet proven (Figure 8). 

 

7d     14 d    28 d 50 d

Albumin 0.04     0.02 ns          0.04

foci

Neuronal 0.02      0.005     ns ns

albumin

Dark ns ns 0.01 0.001

neurons

Exposed vs sham

© Salford et al  

Figure 8. Results from the Lund group (61-63)   

 

Also, other unwanted and toxic molecules in the blood may leak into the brain tissue in 

parallel with the albumin, and concentrate in and damage the neurons and glial cells of the 

brain. In favour of a causal connection between albumin and neuronal damage is a series of 

experiments performed in rats by another group at Lund University; albumin leaks into the 

brain and neuronal degeneration is seen in areas with BBB disruption in several 

circumstances: after intracarotid infusion of hyperosmolar solutions in rats (106) in the stroke 
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prone hypertensive rat (105); and in acute hypertension by aortic compression in rats (22). 

Furthermore, it has been shown in other laboratories that epileptic seizures cause 

extravasation of plasma into brain parenchyma (21), and in the clinical situation the cerebellar 

Purkinje cells are heavily exposed to plasma constituents and degenerate in epileptic patients . 

There are indications that an already disrupted BBB is more sensitive to the RF fields than an 

intact BBB (74, 91). It has been stated by other researchers that albumin is the most likely 

neurotoxin in serum (64). It has been demonstrated that injection of albumin into the brain 

parenchyma of rats gives rise to neuronal damage. When 25 micro-litres of rat albumin is 

infused into rat neostriatum, 10 and 30, but not 3 mg/ ml albumin causes neuronal cell death 

and axonal severe damage (65). It also causes leakage of endogenous albumin in and around 

the area of neuronal damage. However, it is still unclear whether the albumin leakage 

demonstrated in our experiments locally reaches such concentrations. 

 

 

Possible mechanisms 

 

Microarray analysis of the expression of all the rats’ genes in cortex and hippocampus, after 

exposure to GSM RFs or sham exposure for 6 h, has shown interesting differences between 

exposed animals and controls as described by Nittby et al. (107). Genes of interest for 

membrane transport show highly significant differences. This may be of importance in 

conjunction with our earlier findings of albumin leakage into neurons around capillaries in 

exposed animals. It can be noted here that among the significantly altered genes from these 

evaluations, two variants of the gene RGS4 are up-regulated in hippocampal tissue from 

exposed rats as compared to the sham-exposed rats (unpublished results). RGS is a regulator 

of G protein signalling, and it has been proposed that RGS4 might regulate BBB permeability 

in mammals, in a way corresponding to the role of its Loco homolog G protein coupled 

receptor (GPCR) in developing and maintaining the BBB permeability of Drosophila (7). 

 

It has also been suggested in other connections that manifestations of BBB disruption might 

also be mediated by the formation of free radicals, such as O2
-
, H2O2, and hydroxyl radical, 

which are supposed to oxidize cell membrane lipids by virtue of the high concentration of 

polyunsaturated fatty acids in these membrane constituents (108). As an example of this, it 

was reported by Chan et al.(109), that treatment of the brain of rats with a free-radical 
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generating system resulted in lipid-peroxidation, and an increased permeation of Evans blue 

due to barrier breakdown.  

 

Recently, a detailed molecular mechanism, by means of which mobile phone radiation might 

exert its effects, has been proposed (110). By using Rat1 and HeLa cells, it was shown that 

EMF exposure resulted in rapid activation of ERK/ MAPKs (mitogen-activated protein 

kinase). The activation of these ERKs was mediated by reactive oxygen species (ROS), 

resulting in a signalling cascade ultimately affecting transcription, by the central key role of 

ERKs in signalling pathways. 

 

In the continued search for the mechanisms behind EMF mediated effects, their interaction 

with calcium-45 transport in bio-membranes has been studied (111) and Ca2
+
-efflux over 

plasma membranes has been observed in plasma vesicles from spinach exposed to ELF 

magnetic fields (112). With this model, quantum mechanical theoretical models for the 

interaction between magnetic fields and biological systems are tested. The model proposed by 

Blanchard and Blackman (113), in which it is assumed that biologically active ions can be 

bound to a channel protein and in this way alter the opening state of that channel, could in this 

way be quantitatively confirmed. Thus, the membrane is one site of interaction between the 

magnetic fields and the cell, and more specifically, the Ca2
+
-channels, are one of the targets. 

More recently, new models for the interaction between magnetic fields and hydrogen nuclei 

also have been proposed.  

 

EMF-induced Ca2
+
-efflux over plasma membranes, understandably, can have many different 

effects on the target cells. Some agents that increase the BBB permeability act through a 

contractile mechanism that widens the intercellular junctions of the capillary endothelium. An 

increase of free Ca2
+
 should mediate these changes, thereby resulting in measurable 

alterations of intracellular Ca2
+
-levels in brain capillary cells after exposure to BBB-

disrupting agents (108). 

 

Another hypothesis is that EMF-induced intracellular Ca2
+
-alterations might affect Ets genes, 

which are transcription factors expressed in different tissues (114). In this context, we could 

add that in our gene expression material from GSM-exposed rats vs., sham-exposed rats, one 

Ets variant gene is actually significantly up-regulated in hippocampus and one Ets1 gene is 

significantly up-regulated in cortex of the exposed animals. 



43 
 

EMF induced BBB permeability – with the aim of medical use 

 

In the attempt to further try to understand the underlying mechanisms of the RF effects, we 

recently undertook a study upon snail nociception, with 1-hour GSM-1800 exposure of the 

land snail H. pomatia. This revealed, that the exposure induced analgesia in the snail model, 

with a significantly increased latency of reaction when placed on a hot plate, as compared to 

when only sham exposed. The vast knowledge about the physiology of the snail, its 

neurotransmission systems and it simplicity as compared the mammals may provide a tool for 

successful continued search for the mechanisms behind the effects of the GSM EMF upon 

biology (115). 

 

In a recent study by Kuo et al (116), it was described how EMFs might be utilized to facilitate 

transport across the BBB. In an in vitro model, human micro-vascular endothelial cells were 

co-cultured with human astrocytes. Effects of EMF upon P-glycoprotein (P-gp) and multi-

drug resistance -associated proteins (MRP) were tested in connection to treatment with anti-

retroviral drugs, where the MRPs and P-gp are known to play an important role in multidrug 

resistance, which is encountered in carcinomas and therapies for acquired immune-deficiency 

(Kuo et al. 2012). With increasing EMF frequencies up to 900 MHz (both 715MHz and 900 

MHz), the endocytotic uptake of calcein was increased (5mW, square wave with amplitude 

modulation at 20 MHz for 4 hours). Treatment with EMF could also inhibit expression of 

MRP and P-gp after treatment with anti-retroviral drugs, indicating that it might be useful in 

order to deliver antiretroviral proteins into the brain, by decreasing the efflux of the drugs due 

to the MRPs and P-gl. 

 

Kuo et al.  (117) also showed that EMF exposure (915 MHz EMFs at 5 mW with 20 MHz 

amplitude modulation for 4 hours) in combination with cationic solid lipid nanoparticles 

(CSLNs) could increase the transport of the antiretroviral drug Saquinavir 22-fold across 

human brain-microvascular endothelial cells (as compared to a 17-fold increase when only 

CSLNs were used). 
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Conclusions   

 

In this review, we have reported the results of our group’s research during the last 24 years, 

and the results of similar, but seldom identical, experiments of several other groups around 

the world. When summing up what we have described here, we are convinced that RF 

electromagnetic fields have effects upon biology, and we believe that it is more probable than 

unlikely, that non-thermal electromagnetic fields from mobile phones and base stations do 

have effects also upon the human brain. However, in this context, it is also important to point 

out, that the studies from our laboratory, as well as most studies presented above and available 

in literature, have been performed using animals and not humans. Thus no definitive 

conclusions can be drawn regarding effects of mobile phone use upon the human BBB.  

 

However, studies in humans utilizing radiopharmaceuticals have been performed by Volkow 

et al. (101) upon brain glucose metabolism, and as was described by Saha et al. (118) already 

in 1994, studies with PET or SPECT and radiopharmaceuticals are used in brain imaging. 

 

Further, a tool to directly study the human BBB has recently been described (119). It is based 

upon a non-radioactive methodology for in vivo non-invasive, real-time imaging of BBB 

permeability for conventional drugs, using nitroxyl radicals as spin-labels and MRI. In this 

connection, it should be mentioned though, that MRI has the drawback of possibly itself 

influence upon the results. 

 

Based upon what has been presented here, we feel that the WHO IARC classification of RFR 

at the level 2B is adequate at present. 

  

The question whether existing FCC/IEE and/or ICNIRP public safety limits and reference 

levels are adequate to protect the public is not easily answered.  The reported studies on EMF 

induced BBB disruption have shown partially contradictory results from different laboratories. 

However, the fact that an abundance of studies do show effects is an important warning.  This 

is true even if it can be summarized that the effects most often are weak and are seen in about 

40% of the exposed animals.  
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However, we have stressed the following opinion in several publications during the past 

years: - “The intense use of mobile phones, not least by youngsters, is a serious memento. A 

neuronal damage may not have immediately demonstrable consequences, even if repeated. It 

may, however, in the long run, result in reduced brain reserve capacity that might be unveiled 

by other later neuronal disease or even the wear and tear of ageing. We can not exclude that 

after some decades of (often), daily use, a whole generation of users, may suffer negative 

effects such as autoimmune and neuro-degenerative diseases maybe already in their middle 

age”.  

 

One remarkable observation, which we have made in our studies throughout the years, is that 

exposure with whole-body average power densities below 10 mW/kg gives rise to a more 

pronounced albumin leakage than higher power densities, all at non-thermal levels. These 

very low SAR-values, such as 1 mW/kg, exist at a distance of more than one meter away from 

the mobile phone antenna and at a distance of about 150–200 m from a base station. 

Further, when a mobile phone operating at 915 MHz (and its antenna) is held 1.4 cm from the 

human head, the very low SAR levels of 10 mW/kg exist in deep-lying parts of the human 

brain such as the basal ganglia, and the power density of 1 mW/kg and less is absorbed in 

thalamus bilaterally. 

 

With this information as a background, it is difficult to recommend safety limits as the 

function of existing mobile systems might not allow for limits that produce SAR levels below 

1 or 0,1 mW/kg in the human brain, which are reported to cause a pathological leakage of the 

BBB and to neuronal damage. 

 

Demonstrated effects on the BBB, as well as a series of other effects upon biology (120) have 

given rise to scientific concern and to public anxiety. It is up to the society and our politicians 

and also the providers of the radiofrequency-emitting technologies to support continued 

research in order to understand the nature of the effects, thereby neutralizing or at least 

reducing them.   Also, it should be kept in mind that proven effects on biology also means that 

positive potentials might be revealed. This might be useful in medical applications, for 

example a controlled opening of the BBB would enable previously excluded pharmaceuticals 

to reach their targets within the brain tissue. 
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