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Abstract 
Easy access to audio-visual content on social media, combined with the availability of modern tools such as 
Tensorflow or Keras, open-source trained models, and economical computing infrastructure, and the rapid evolution 
of deep-learning (DL) methods, especially Generative Adversarial Networks (GAN), have made it possible to generate 
deepfakes to disseminate disinformation, revenge porn, financial frauds, hoaxes, and to disrupt government 
functioning. The existing surveys have mainly focused on deepfake video detection only. No attempt has been made 
to review approaches for detection and generation of both audio and video deepfakes. This paper provides a 
comprehensive review and detailed analysis of existing tools and machine learning (ML) based approaches for 
deepfake generation and the methodologies used to detect such manipulations for the detection and generation of both 
audio and video deepfakes. For each category of deepfake, we discuss information related to manipulation approaches, 
current public datasets, and key standards for the performance evaluation of deepfake detection techniques along with 
their results. Additionally, we also discuss open challenges and enumerate future directions to guide future researchers 
on issues that need to be considered to improve the domains of both the deepfake generation and detection. This work 
is expected to assist the readers in understanding the creation and detection mechanisms of deepfake, along with their 
current limitations and future direction.  
 
Keywords Artificial intelligence, Deepfakes, Deep learning, Face swap, Lip synching, Puppet master, Speech 
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1 Introduction 
The availability of economical digital smart devices like cellphones, tablets, laptops, and digital cameras has resulted 
in the exponential growth of multimedia content (e.g. images and videos) in cyberspace. Additionally, the evolution 
of social media over the last decade has allowed people to share captured multimedia content rapidly, leading to a 
significant increase in multimedia content generation and ease of access to it. At the same time, we have witnessed 
tremendous advancement in the field of ML with the introduction of sophisticated algorithms that can easily 
manipulate multimedia content to spread disinformation online through social media platforms. Given the ease with 
which false information may be created and spread, it has become increasingly difficult to know the truth and trust 
the information, which may result in harmful consequences. Moreover, today we live in a “post-truth” era, where a 
piece of information or disinformation is utilized by malevolent actors to manipulate public opinion. Disinformation 
is an active measure that has the potential to cause severe damage: election manipulation, creation of warmongering 
situations, defaming any person, etc. In recent times, deepfake generation has significantly advanced and it could be 
used to propagate disinformation around the globe, and may pose a severe threat, in the form of fake news, in the 
future. Deepfakes are synthesized, AI-generated, videos and audio. The use of videos as evidence in every sector of 
litigation and criminal justice proceedings is currently the norm. A video admitted as evidence must be authentic and 
its integrity must be verified. This is expected to become a challenging task, especially as deepfake generation becomes 
more sophisticated. Once the deepfakes have been created, the further use of powerful, sophisticated, and easy-to-use 
manipulation tools (e.g. Zao[1], REFACE[2], FaceApp[3], Audacity [4], Soundforge [5]) could make authentication 
and integrity verification of generated videos an even more difficult task. 
Deepfakes videos can be categorized into the following types: i) face-swap ii) lip-synching iii) puppet-master iv) face 
synthesis and attribute manipulation, and v) audio deepfakes. In face-swap deepfakes, the face of the source person is 
replaced with the target person to generate a fake video of the target person, trying to portray actions to the target 
person which in reality the source person has done. Face-swap-oriented deepfakes are usually generated to target the 
popularity or reputation of famous personalities by showing them in scenarios in which they never appeared [6], and 
to damage reputations in the face of the public, for example,  in non-consensual pornography [7]. In lip-synching 



based deepfakes, the movements of the target person’s lips are transformed to make them consistent with some specific 
audio recording. Lip-syncing is generated with the aim of showing an individual speaking in a way in which the 
attacker devises the victim to speak. With puppet-master, deepfakes are created by mimicking the expressions of the 
target person, such as eye-movement, facial expressions, and head movement. Puppet-master deepfakes aim to hijack 
the source person’s expression, or even the full-body, [8] in a video, and to animate according to the impersonator’s 
desire. Face synthesis and attribute manipulation involves the generation of photo-realistic face images and facial 
attribute editing. This manipulation is generated to spread disinformation on social media using fake profiles. Lastly, 
audio deepfakes, also known as voice cloning, focus on the generation of the target speaker’s voice using deep learning 
techniques to portray the speaker saying something they have not said [9, 10].  
Unlike deepfake videos, less attention has been paid to the detection of audio deepfakes. In the last few years voice 
cloning has also become very sophisticated.  Voice cloning is not only a threat to automated speaker verification 
systems, but also to voice-controlled systems deployed in Internet of Things (IoT) settings [9, 10]. Voice cloning has 
tremendous potential to destroy public trust and to empower criminals to manipulate business dealings or private 
phone calls. For example, recently three cases were reported in which bank robbers used voice cloning of a company 
executive’s speech to dupe their subordinates into transferring hundreds of thousands of dollars into a secret account 
[11]. The integration of voice cloning into deepfakes is expected to become a unique challenge for deepfake detection.  
Therefore, it is important that, unlike current approaches that focus only on detecting video signal manipulations, 
audio forgeries should also be examined.  
There are no existing recently published surveys on deepfake generation and detection that focus on the generation 
and detection of both the audio and video modalities of deepfakes. Most of the existing surveys focus only on 
reviewing deepfakes images, and video detection. In [12], the main focus was on generic image manipulation and 
multimedia forensic techniques. However, this work has not discussed deepfake generation techniques. In [13], an 
overview of face manipulation and detection techniques was presented. Another survey [14] was presented on visual 
deepfakes detection approaches, but does not discuss audio cloning and its detection. The latest work presented by 
Mirsky et al. [15] gives an in-depth analysis of visual deepfake creation techniques, however, deepfake detection 
approaches are only briefly discussed. Moreover, this work [15] lacks a discussion of audio deepfakes. According to 
the best of our knowledge, this paper is the first attempt to provide a detailed analysis and review of both the audio 
and visual deepfake detection techniques, as well as generative approaches. The following are the main contributions 
of our work: 

i. To give the research community an insight into various types of video and audio based deepfake 
generation and detection methods. 

ii. To provide the reader with the latest improvements, trends, limitations, and challenges in the field of 
audio-visual deepfakes. 

iii. To give an understanding to the reader about the possible implications of audio-visual deepfakes.  
iv. To act as a guide to the reader to understand the future trends of audio and visual deepfakes.  

 

The rest of the paper is organized as follows. Section 2 presents a discussion of deepfakes as a source of disinformation. 
In Section 3, the history of deepfakes is briefly discussed. Section 4 presents the audio-visual deepfake generation 
chain, and deepfake detection techniques are discussed in Section 5. Section 6 presents the available datasets used for 
both audio and video deepfakes detection. In Section 7, we discuss the possible future trends of both deepfakes 
generation and detection, and finally we conclude our work in Section 8. 

2 Disinformation and Misinformation using Deepfakes 
 Misinformation is defined as false or inaccurate information that is communicated, regardless of an intention to 
deceive, whereas disinformation is the set of strategies employed by influential society representatives to fabricate 
original information to achieve the planned political or financial objectives. It is expected to become the main process 
of intentionally spreading manipulated news to affect public opinion or obscure reality. Because of the extensive use 
of social media platforms  it is now very easy to spread false news [16]. Although all categories of fake multimedia 
(i.e. fake news, fake images, and fake audio) could be sources of disinformation and misinformation, audiovisual-
based deepfakes are expected to be much more devastating. Historically, deepfakes were created to make famous 
personalities controversial among their fans. For example, in 2017 a celebrity faced such a situation when a fake 
pornographic video was circulated in cyberspace. This is evidence that deepfakes can be used to damage the 
reputations, i.e. character’s assassination of renowned people to defame them [14], blackmailing individuals for 
monetary benefits, or to create political or religious unrest by targeting politicians or religious scholars with fake 
videos/speeches [17], etc. This damage is not limited to targeting individuals; rather deepfakes can be used to 



manipulate elections, create warmongering situations by showing fake videos of missiles launched to destroy the 
enemy state, or used to deceive military analysts by portraying fake information, like showing a fake bridge across 
the river, to mislead troop deployment, and so on. 
The deepfakes are expected to advance the following current sources of disinformation and misinformation to the next 
level.  
Trolls: Independent Trolls are hobbyists who spread inflammatory information to cause disorder and reactions in 
society by playing with the emotions of people [18]. For example, posting audio-visual manipulated racist or sexist 
content and infuriating individuals may promote hatred among the individuals. Similarly, during the 2020 election 
campaign of US President Donald Trump, conflicting narratives about Trump and Biden were circulated on social 
media, contributing to an environment of fear [19]. Opposed to independent trolls who spread false information for 
their own satisfaction, hired trolls will perform the same job for monetary benefits. Different actors, like political 
parties, businessmen, and companies routinely hire people to forge news related to their competitors and spread it in 
the market [20]. For example, according to a report published by Western intelligence [21], Russia is running “troll 
farms,” where trolls are trained to affect conversations related to national or international issues. According to these 
reports, deepfake videos generated by hired trolls are the newest weapon in the ongoing fabricated news war that can 
bring a more devastating effect on society. 
Bots: Bots are automated software or algorithms used to spread fabricated or misleading content among the people. 
A study published in [22, 23] concludes that during the US election campaign-2016, bots were employed to generate 
one-fifth of the tweets during the last month of the campaign. The emergence of deepfakes has empowered the negative 
impact of bots i.e. recently, a messaging app named telegram [24] used bots to produce nude pictures of women, which 
is under investigation by Italian authorities. 
Conspiracy Theorists: Conspiracy Theorists can range from nonprofessional filmmakers to Reddit agents who spread 
vague and doubtful claims on the internet either through “documentaries” or by posting stories and memes [25]. They 
believe that certain prominent communities are running the public while concealing their activities, like conspiracy 
theories about a Jewish plan to control the world [25, 26]. Moreover, recently, several conspiracy theorists have 
connected the current COVID pandemic with the USA and China. In such a situation, use of fabricated audio-visual 
deepfake content by these theorists can increase controversy in global politics. 
Hyper-partisan Media: Hyper-partisan media includes fake news websites and blogs which intentionally spread false 
information. Because of the extensive usage of social media, the Hyper-partisan media is one of the biggest potential 
incubator for spreading fabricated news among the people [27]. The convincing AI-generated fake content can assist 
these bloggers to easily spread disinformation to attract visitors or increase views. As social platforms are largely 
independent and ad-driven mediums, spreading fabricated information may purely be a profit-making strategy.  
Politicians: One of the main sources of disinformation is the political parties themselves, which may spread 
manipulated information for point scoring. Due to the large number of followers on social platforms, politicians are 
central nodes in online networks. So, politicians can use their fame and public support to spread false news among 
their followers. To defame opponent parties, politicians can use deepfakes to post controversial content about their 
competitors on conventional media [25].  
Foreign Governments: As the Internet has converted the world into a “Global Village,” it is easy for conflicting 
countries to spread false news to advance their agendas abroad. Their motive is to target the reputation of a country in 
the rest of the world. Many countries are running government‐sponsored social media accounts, websites, and 
applications, contributing to political propaganda globally. Particularly, the governments of China, Israel, Turkey, 
Russia, UK, Ukraine, and North Korea etc. are believed to be involved in using ‘digital footsoldiers’ to smear 
opponents, spreading disinformation and posting fake texts for ‘pocket money’.  These countries run numerous official 
social sites over various online platforms like  Twitter, Instagram, and Facebook, etc. [28]. The ability to doctor 
multimedia content has become so easy that private actors maybe able to initiate foreign attacks on their own to 
increase the stress among countries.  
 

3 DeepFake Evolution 
The earliest example of manipulated multimedia content occurred in 1860 when a portrait of southern politician John 
Calhoun was skillfully manipulated by replacing his head with that of US President Abraham Lincoln [29]. Usually, 
such manipulation is accomplished by adding (splicing), removing (inpainting), and replicating (copy-move) the 
objects within or between two images [12]. Then, suitable post-processing steps like scaling, rotating, and color 
adjustment are applied to improve visual appearance, scale, and perspective coherence.  
Aside from these traditional manipulation methods, advancements in Computer Graphics and DL techniques now 
offer a variety of different automated approaches for digital manipulation with better semantic consistency. The recent 



trend involves the synthesis of videos from scratch using autoencoders, or GAN, for different applications [30] and, 
more specifically, photorealistic human face generation based on any attribute [31-34]. Another pervasive 
manipulation, called “shallow fakes” or “cheap fakes,” are audio-visual manipulations created using cheaper and more 
accessible software. Shallow fakes involve basic editing of a video utilizing slowing, speeding, cutting, and selectively 
splicing together unaltered existing footage, that can alter the whole context of the information delivered.  In May 
2019, a video of US Speaker Nancy Pelosi was selectively edited to make it appear that she was slurring her words 
and was drunk or confused [35]. The video was shared on Facebook and received more than 2.2 million views within 
48 hours. Video manipulation for the entertainment industry, specifically in film production, has been done for 
decades. Fig. 1 shows the evolution of deepfakes over the years. An early notable academic project was Video Rewrite 
Program [36], intended for applications in movie dubbing, published in 1997. It was the first software used to 
automatically reanimate facial movements in an existing video to a different audio track, and it achieved surprisingly 
convincing results. 
The first true deepfake appeared online in September 2017 when a Reddit user named “deepfake” posted a series of 
computer-generated videos of famous actresses with their faces swapped onto pornographic content [14]. Another 
notorious deepfake case was the release of the deepNude application that allowed users to generate fake nude images 
[37]. This was the beginning of when deepfakes gained wider recognition within a large community. Today deepfake 
technology/applications, i.e. FakeApp [38], FaceSwap [39], and ZAO [1] are easily accessible, and users without a 
computer engineering background can create a fake video within seconds. Moreover, open-source projects on GitHub, 
such as DeepFaceLab [40] and related tutorials, are easily available on YouTube. A list of other available deepfake 
creation applications, software, and open-source projects is given in Table 1. Contemporary academic projects that 
lead to the development of deepfake technology are Face2Face [33] and Synthesizing Obama [32], published in 2016 
and 2017 respectively. Face2Face [33] captures the real-time facial expressions of the source person as they talk into 
a commodity webcam. It modifies the target person’s face in the original video to depict them, mimicking source 
facial expressions. Synthesizing Obama [32] is a video rewrite 2.0 program, used to modify the mouth movement in 
the video footage of a person to depict the person saying the words contained in an arbitrary audio clip. These works 
[32, 33] are focused on the manipulation of the head and facial region only. Recent development expands the 
application of deepfakes to the entire body, [8, 41] and the generation of deepfakes from a single image [42-44].  
 

Figure 1: The timeline of Deepfakes evolution 

Most deepfakes currently present on social platforms like YouTube, Facebook or Twitter may be regarded as harmless, 
entertaining, or artistic. However there are also some examples where deepfakes have been used for revenge porn, 
hoaxes, for political or non-political influence, and financial fraud [35, 45]. In 2018, a deepfake video went viral online 
in which former U.S. President Barak Obama appeared to insult the current president, Donald Trump [46]. In June 
2019, a fake video of Facebook CEO Mark Zuckerberg was posted to Instagram by the Israeli advertising company 
“Canny” [45].  



 
Table 1: An overview of Audio-visual deepfakes generation software, applications and open-source projects 
Tool Type Reference/Developer Technique 

Cheap fakes 
Adobe Premiere Commercial Desktop 

Software 
Adobe Audio Video Editing, 

AI-powered video reframing 

Corel VideoStudio Commercial Desktop 
Software 

Corel Proprietary AI 

Lip-synching 
dynalips Commercial Web App www.dynalips.com/ Proprietary 
crazytalk Commercial Web App www.reallusion.com/crazytalk/ Proprietary 
Wav2Lip  Open source 

implementation 
github.com/Rudrabha/Wav2Lip GAN with pre-trained discriminator network 

and visual quality loss function 
Facial Attribute Manipulation 

FaceApp MobileApp FaceApp Inc Deep generative CNNs 
Adobe Commercial Desktop 

Software 
Adobe DNNs + filters 

Rosebud Commercial Web App www.rosebud.ai/ Proprietary AI 
Face Swap 

ZAO Mobile app Momo Inc Proprietary  
REFACE Mobile app Neocortext, Inc Proprietary 
Reflect Mobile app Neocortext, Inc Proprietary 
Impressions Mobile app Synthesized Media, Inc. Proprietary 
FakeApp Desktop App www.malavida.com/en/soft/fakeapp/ GAN 
FaceSwap Open source 

implementation 
faceswapweb.com/ Employed two pairs of encoder-decoder. 

Shared encoder parameters. 
DFaker Open source 

implementation 
github.com/dfaker/df For face reconstruction DSSIM loss function 

[34] is utilized. 
Keras library-based implementation. 

DeepFaceLab Open source 
implementation 

github.com/iperov/DeepFaceLab - provide several face extraction methods, e.g. 
dlib, MTCNN, S3FD etc. 
- Extend different Faceswap model i.e. H64, 
H128, LIAEF128, SAE [33]. 

FaceSwapGAN Open source 
implementation 

github.com/shaoanlu/faceswap-GAN Uses two loss functions namely adversarial loss 
and perceptual loss to the auto-encoder. 

DeepFake-tf Open source 
implementation 

github.com/StromWine/DeepFake-tf Same as DFaker however, used tensor-flow. 
For implementation. 

Faceswapweb Commercial Web App faceswapweb.com/ GAN 
Face Reenactment 

Face2Face 
 

Open source 
implementation 

web.stanford.edu/~zollhoef/papers/CVPR2
016_Face2Face/page.html 

Uses 3DMM and ML technique 

Imitator Mobile app  Proprietary (AI based) 
Dynamixyz Commercial Desktop 

Software 
www.dynamixyz.com/ Machine-learning 

FaceIT3 Open source 
implementation 

github.com/alew3/faceit_live3 GAN 

Face Generation 
Generated Photos Commercial Web App generated.photos/ StyleGAN 

Voice Cloning 
Overdub Commercial Web App www.descript.com/overdub Proprietary (AI based) 
Respeecher Commercial Web App www.respeecher.com/ Combined traditional digital signal processing 

algorithms with proprietary deep generative 
modeling techniques 

SV2TTS Open source 
implementation 

github.com/CorentinJ/Real-Time-Voice-
Cloning 

LSTM with Generalized end-to-end loss 

ResembleAI Commercial Web App www.resemble.ai/ Proprietary (AI based) 
Voicery Commercial Web App www.voicery.com/ Proprietary AI and deep learning 
VoiceApp Mobile app Zoezi AB Proprietary (AI based) 

 
Apart from visual manipulation, audio deepfakes are a new form of cyber-attack, with the potential to cause severe 
damage to individuals due to highly sophisticated speech synthesis techniques i.e. WaveNet [47], Tacotron [48], and 
deep voice1 [49]. Fake audio-assisted financial scams have increased significantly in 2019 due to progression in 



speech synthesis technology. In August 2019, a European company’s chief executive officer, tricked by an audio 
deepfake, made a fraudulent transfer of $243,000 [11]. A voice-mimicking AI software was used to clone the voice 
patterns of the victim by training ML algorithms using audio recordings obtained from the internet. If such techniques 
can be used to imitate the voice of a top government official or a military leader and applied at scale, it could have 
serious national security implications [50].  
 

4 Deepfake Generation 
This section provides an in-depth analysis of existing state-of-the-art methods for audio and visual deepfake 
generation. A review for each category of deepfake creation is provided to give a deeper understanding of the various 
approaches. We provide a critical investigation of existing literature which includes the technologies, their capabilities, 
limitations, challenges, and future trends for deepfake creation.  
AI-generated synthetic media has become pervasive in our digital society. Mainly, deep learning architectures, such 
as GANs [51] or Variational Autoencoder (VAEs) [52], are used to create the multimedia content that includes hyper-
realistic images, videos, and even audio [51]. These models have a variety of applications in the real-world, such as 
generation of text-to-speech [53], text-to-image [54], and training data for medical imaging [55].  
Creation of deepfakes mainly falls into the following categories. (i) face swap, (ii) lip-syncing, (iii) puppet-mastery, 
iv) face synthesis and attribute manipulation, and v) audio deepfakes. In face-swap [56], or face replacement, the face 
of the person in the source video is automatically replaced by the face in the target video, as shown in Fig. 2(a).  In 
lip-syncing, the source video is modified such that it generates a video with a consistent mouth region using an 
arbitrary audio recording [32]. Puppet-master, also known as face reenactment [57], is a technique in which the facial 
expression and movements of the person in the target video or image are controlled by the person in the source video. 
In puppet-master deepfakes, a performer sitting in front of a camera guides the motion and deformation of a face 
appearing in a video or image, as shown in Fig. 2(b). This face swap approach is based on replacing the source identity 
with the target identity (identity manipulation), whereas the puppet-mastery and lip-syncing approaches deal with the 
manipulation of facial expressions. Face synthesis and attribute manipulation focuses on the creation of fake facial 
images, and attribute fabrication. Table 2 presents an overview of different state-of-the-art visual deepfake creation 
methods. Audio deepfakes deal with the modification and creation of the target’s speech. Modern advancements may 
lead to the manipulation of both audio and visual content [38, 58] or the movement of the entire body within a video 
clip [59].  
 

 
Figure 2: (a) Face Swapping (b) Facial Reenactment 

4.1 Face-swap 
Visual manipulation is nothing new; images and videos have been forged since the beginning. Traditional face-swap 
approaches [60-62] generally take three steps to perform a face-swap operation. First, these tools detect the face in 
source images and then select a candidate face image from the facial library that is similar to input facial appearance 
and poses. Second, the method replaces the eyes, nose, and mouth of the face and further adjusts the lighting and color 
of the candidate face image to match the appearance of input images, and seamlessly blends the two faces. Finally, 
the third step ranks the blended candidate replacement by computing a match distance over the overlap region. These 
approaches may offer good results under certain conditions but have two major limitations. First, they completely 
replace the input face with the target face, and expressions of the input face image are lost. Second, the synthetic result 
is very rigid, and the replaced face looks unnatural e.g. it requires a matching pose to generate good results.  
Recently, DL-based approaches have become popular for synthetic media creation due to their realistic results. At the 
same time, deepfakes showed how these approaches can be applied with automated digital multimedia manipulation. 



In 2017, the first deepfake video that appeared online was created using a face-swap approach, where the face of a 
celebrity was shown in pornographic content [14]. This approach used a neural network to morph a victim’s face onto 
someone else’s features while preserving the original facial expression. As time went on, face-swap software i.e. 
FakeApp [38] and FaceSwap [39] has made it both easier and quicker to produce deepfakes with more convincing 
results by replacing the face in a video. These approaches typically use two encoder-decoder pairs. Usually, an encoder 
is used to extract the latent features of a face from the image and then the decoder is used to reconstruct the face. To 
swap faces between the source and target image, two pairs of encoder and decoder are required, where each encoder 
is first trained on the source and then the target image. Once training is complete, the decoders are swapped, so that 
an original encoder of the source image and decoder of the target image is used to regenerate the target image with 
the features of the source image. The resulting image has the source’s face on the target’s face, while keeping the 
target’s facial expressions. Fig. 3 is an example of a deepfake creation where the feature set of face A is connected 
with the decoder B to reconstruct face B from the original face A. The recently launched ZAO [1], REFACE [2], and 
FakeApp [38] applications are more popular due to their effectiveness in producing realistic face swap-based 
deepfakes. FakeApp allows the selective modification of facial parts. ZAO and REFACE have gone viral lately as less 
tech-savvy users can swap their faces with movie stars and embed themselves into well-known movies and TV clips. 
There are many publicly available implementations of face-swap technology using deep neural networks, such as 
FaceSwap [39], DFaker [63], DeepFaceLab [40], DeepFake-tf [64], and FaceSwapGAN [65], leading to the creation 
of a growing number of synthesized media clips. 

 

 
Figure 3: Creation of a Deepfake using an auto-encoder and decoder. The same encoder-decoder pair is 
used to learn the latent features of the faces during training, while during generation decoders are 
swapped, such that latent face A is subjected to decoder B to generate face A with the features of face B 

 
Until recently, most of the research focused on advances in face-swapping technology, either using a reconstructed 
3D morphable model (3DMM) [56, 66], or GANs based model [65, 67]. Korshunova et al. [66] proposed a convolution 
neural network (CNN) based approach that transferred the semantic content, e.g., face posture, facial expression, and 
illumination conditions of the input image to create that style in another image. They introduced a loss function that 
was a weighted combination of style loss, content loss, light loss, and total variation regularization. This method [66] 
generates more realistic deepfakes compared to [60], however it requires a large amount of training data. Moreover, 
the trained model can be used to transform only one image at a time. Nirkin et. al [56] presented a method that used a 
full convolution network (FCN) for face segmentation and replacement while a 3DMM was established to estimate 



facial geometry and corresponding texture. Then the face reconstruction was performed on a target image by adjusting 
the model parameters. These approaches [56, 66] have the limitation of subject-specific or pair-specific training. 
Recently subject agnostic approaches have been proposed to address this limitation. 
In [65], an improved deepfake using GAN was proposed which adds adversarial loss and perceptual loss to VGGface 
implemented in the auto-encoder architecture [39]. The addition of VGGFace perceptual loss made the direction of 
the eyeball appear more realistic and consistent with the input and also helped to smooth the artifacts added in the 
segmentation mask, resulting in a high-quality output video. FSGAN [67] allowed face swapping and reenactment in 
real-time by following the reenact and blend strategy. This method simultaneously manipulates pose, expression, and 
identity while producing high quality and temporally coherent results. These GAN based approaches [65, 67] 
outperform several existing autoencoder-decoder methods [38, 39] as they work without being explicitly trained on 
subject-specific images. Moreover, the iterative nature makes them well-suited for face manipulation tasks such as 
generating realistic images of fake faces.  
Some of the work used a disentanglement concept for face swap by using VAEs. RSGAN [68] employed two separate 
VAEs to encode the latent representation of facial and hair regions respectively. Both encoders were conditioned to 
predict the attributes that describe the target identity. Another approach, FSNet [69], presented a framework to achieve 
face-swapping using a latent space, to separately encode the face region of the source identity and landmarks of the 
target identity, which was later combined to generate the swapped face. However, these approaches [68, 69] hardly 
preserves target attributes like target occlusion and illumination conditions.  
Facial occlusions are always challenging to handle in face-swapping methods. In many cases, the facial region in the 
source or target is partially covered with hair, glasses, a hand, or some other object. This results in visual artifacts and 
inconsistencies in the resultant image. FaceShifter [70] generates a swapped face with high-fidelity and preserves the 
target attributes such as pose, expression, and occlusion. The last layer of a facial recognition classifier was used to 
encode the source identity and the target attributes, with feature maps being obtained via the U-Net decoder. These 
encoded features were passed to a novel generator with cascaded Adaptive Attentional Denormalization layers inside 
residual blocks which adaptively adjusted the identity region and target attributes. Finally, another network was used 
to fix occlusion inconsistencies and refine the results. 

4.2 Lip syncing 
The Lip-syncing approach involves synthesizing a video of a target identity such that the mouth region in the 
manipulated video is consistent with arbitrary audio input (Fig. 4). A key aspect of synthesizing a visual speech is the 
movement and appearance of the lower portion of the mouth and its surrounding region. To convey a message more 
effectively and naturally, it is important to generate proper lip movements along with expressions. From a scientific 
point of view, lip-syncing has many applications in the entertainment industry, such as making audio-driven 
photorealistic digital characters in films or games, voice-bots, and dubbing films in foreign languages. Moreover, it 
can also help hearing-impaired persons understand a scenario by lip-reading from a video created using the genuine 
audio.  

 
Figure 4: A visual representation of lip-syncing of an existing video to an arbitrary audio clip 

 
Existing works on lip-syncing [71, 72] require the reselection of frames from a video or transcription, along with target 
emotions, to synthesize the lip's motion. These approaches are limited to a dedicated emotional state or don’t 
generalize well to unseen faces. However, the DL models are capable of learning and predicting the movements from 
audio features. Suwajanakorn et al. [32] proposed an approach to generate a photo-realistic lip-synced video using a 
target’s video and an arbitrary audio clip as input. The recurrent neural network (RNN) based model was employed 
to learn mapping between audio features and mouth shape for every frame, and later used frame reselection to fill in 
the texture around the mouth based on the landmarks. This synthesis was performed on the lower facial regions i.e. 
mouth, chin, nose, and cheeks. This approach applied a series of post-processing steps, such as smoothing jaw location 
and re-timing the video to align vocal pauses, or talking head motion, to produce videos that appear more natural and 
realistic. In this work, Barak Obama was considered as a case study due to the sufficient availability of online video 



footage. Thus, this model is required to retrain for each individual. The Speech2Vid [73] model took an audio clip and 
a static image of a target subject as input, and generated a video that is lip-synced with the audio clip. This model used 
the Mel Frequency Cepstral Coefficients (MFCC) features extracted from the audio input and fed them into a CNN 
based encoder-decoder. As a post-processing step, a separate CNN was used for frame deblurring and sharpening to 
preserve the quality of visual content. This model generalizes well to unseen faces and thus does not need retraining 
for new identities. However, this work is unable to synthesize emotional facial expressions. 
Vougioukas et al. [74] used a temporal GAN, consisting of an RNN, to generate a photorealistic video directly from 
a still image and speech signal. The resulting video included synchronized lip movements, eye-blinking, and natural 
facial expression without relying on manually handcrafted audio-visual features. Multiple discriminators were 
employed to control frame quality, audio-visual synchronization, and overall video quality. This model can generate 
lip-syncing for any individual in real-time. In [75], an adversarial learning method was employed to learn the 
disentangled audio-visual representation. The speech encoder was trained to project both the audio and visual 
representations into the same latent space. The advantage of using a disentangled representation was that both the 
audio and video could serve as a source of speech information during the generation process. As a result, it was 
possible to generate realistic talking face sequences on an arbitrary identity with synchronized lip movement. Garrido 
et al. [76] presented a Vdub system that captures the high-quality 3D facial model of both the source and the target 
actor. The computed facial model was used to photo-realistically reconstruct a 3D mouth model of the dubber to be 
applied on the target actor. An audio channel analysis was performed to better align the synthesized visual content 
with the audio. This approach better renders a coarse-textured teeth proxy however it fails to synthesize a high-quality 
interior mouth region.  
In [77] a face-to-face translation method, LipGAN, was proposed to synthesize a talking face video of any individual 
utilizing a given single image and audio segment as input. LipGAN consists of a generator network to synthesize 
portrait video frames with a modified mouth and jaw area from the given audio and target frames, and uses a 
discriminator network to decide whether the synthesized face is synchronized with the given audio. This approach is 
unable to ensure temporal consistency in the synthesized content, as blurriness and jitter can be observed in the 
resultant video. Recently, Prajwal et al. [78] proposed a wav2lip speaker-independent model that can accurately 
synchronize the lips movement in a video recording with a given audio clip. This approach employs a pre-trained lip-
sync discriminator that is further trained on noisy generated videos in the absence of a generator. This model uses 
several consecutive frames instead of a single frame in the discriminator and employs visual quality loss along with 
contrastive loss, thus increasing the visual quality by considering temporal correlation. 
The recent approaches can synthesize photo-realistic fake videos from speech (speech-to-video) or text (text-to-video) 
with convincing video results. The methods proposed in [32, 79] can edit existing video of a person to the desired 
speech to be spoken from text input by modifying the mouth movement and speech accordingly. These approaches 
are more focused on synchronizing lip-movements by synthesizing the region around the mouth only. In [80] a VAE 
based framework was proposed to synthesize full pose video with facial expressions, gestures, and body posture 
movements from given audio. 

4.3 Puppet-master 
Puppet-master, also known as face reenactment, is another common variation of deepfakes that manipulates the facial 
expressions of a person e.g., transferring the facial gestures, eye, and head movements to an output video which reflect 
those of the source actor. Puppet-mastery aims to deform the person's mouth movement to make fabricated content. 
Facial reenactment has various applications, i.e. altering the facial expression and mouth movement of a participant 
to a foreign language in an online multilingual video conference, dubbing or editing an actor's head and their facial 
expressions in film industry post-production systems, or creating photorealistic animation for movies and games, etc.  
Initially, 3D facial modeling-based approaches for facial reenactment were proposed because of their ability to 
accurately capture the geometry and movement, and for improved photorealism in reenacted faces. Thies et al. [81, 
82] presented the first real-time facial expressions transfer method from an actor to a target person. A commodity 
RGB-D sensor was used to track and reconstruct the 3D model of a source and target actor. For each frame, the tracked 
deformations of the source face were applied to the target face model, and later the altered face was blended onto the 
original target face while preserving the facial appearance of the target face model. Face2Face [33] is an advanced 
form of facial reenactment technique as presented in [81]. This method works in real-time and is capable of altering 
the facial movements of generic RGB video streams e.g., YouTube videos, using a standard webcam. The 3D model 
reconstruction approach was combined with image rendering techniques to generate the output. This creates a 
convincing and instantaneous re-rendering of the target actor with a relatively simple home setup. This work was 
further extended to control the facial expressions of a person in a target video based on intuitive hand gestures [83] 
using an inertial measurement unit [84]. 



GANs have been successfully applied for facial reenactment due to their ability to generate photo-realistic images. 
Pix2pixHD [85] produces high-resolution images with better fidelity by combining multi-scale conditional GANs 
(cGAN) architecture using a perceptual loss. Kim et al. [86] proposed an approach that allows the full reanimation of 
portrait videos by an actor, such as changing head pose, eye gaze, and blinking, rather than just modifying the facial 
expression of the target identity and thus produced photorealistic dubbing results. At first, a face reconstruction 
approach was used to obtain a parametric representation of the face and illumination information from each video 
frame to produce a synthetic rendering of the target identity. This representation was then fed to a render-to-video 
translation network based on the cGAN to predict the synthetic rendering into photo-realistic video frames. This 
approach requires training the videos for target identity. Wu et al. [87] proposed ReenactGAN which encodes the 
input facial features into a boundary latent space. A target-specific transformer was used to adapt the source boundary 
space according to the specified target, and later the latent space was decoded onto the target face. GANimation [88] 
employed a dual cGAN generator conditioned on emotion action units (AU) to transfer facial expressions. The AU 
based generator used an attention map to interpolate between the reenacted and original images. Instead of relying on 
AU estimations, GANnotation [89] used facial landmarks along with the self-attention mechanism for facial 
reenactment.  This approach introduced a triple consistency loss to minimize visual artifacts but requires the images 
to be synthesized with a frontal facial view for further processing. These models [89-90] require a large amount of 
training data for target identity to perform well at oblique angles or they will lack the ability to generate photo realistic 
reenactment for unknown identities. 
Recently, few shot or one-shot face reenactment approaches have been proposed to achieve reenactment using a few 
or even a single source image. In [34], a self-supervised learning model, X2face, using multiple modalities such as 
driving frame, facial landmarks, or audio to transfer the pose and expression of the input source to target expression, 
was proposed. X2face used two encoder-decoder networks: an embedding network and a driving network. The 
embedding network learns face representation from the source frame and the driving network learns pose and 
expression information from the driving fame to the vector map. The driving network was crafted to interpolate face 
representation from the embedded network to produce target expressions. Zakharov et al. [90] presented a meta 
transfer learning approach where the network was first trained on multiple identities and then fine-tuned on the target 
identity. First, target identity encoding was obtained by averaging the target’s expressions and associated landmarks 
from different frames. Then a pix2pixHD [85] GAN was used to generate the target identity using source landmarks 
as input, and identity encoding via AdaIN layers. This approach works well at oblique angles and directly transfers 
the expression without requiring intermediate boundary latent space or interpolation map, as in [34]. Zhang et al. [91] 
proposed an auto-encoder-based structure to learn the latent representation of the target’s facial appearance and 
source’s face shape. These features were used as input to SPADE residual blocks for the face reenactment task, which 
preserved the spatial information and concatenated the feature map in a multi-scale manner from the face 
reconstruction decoder. This approach can better handle large pose changes and exaggerated facial actions. In FaR-
GAN [92], learnable features from convolution layers were used as input to the SPADE module instead of using multi-
scale landmark masks, as in [91]. Usually, few-shot learning fails to completely preserve the source identity in the 
generated results for cases where there is a large pose difference between the reference and target image. MarioNETte 
[43] was proposed to mitigate identity leakage by employing attention block and target feature alignment. This helped 
the model to accommodate the variations between face structures better. Finally, the identity was retained by using a 
novel landmark transformer, influenced by the 3DMM facial model [93]. [90, 92] 
FSGAN [67] can perform both the facial replacement and reenactment with occlusion handling. For reenactment, a 
pix2pixHD [85] generator takes the target’s image and source’s 3D facial landmark as input and outputs a reenacted 
image and 3-channel (hair, face, and background) encoded segmentation mask. The recurrent generator was trained 
recursively where output was iterated multiple times for incremental interpolation from source to target landmarks. 
The results were further improved by applying Delaunay Triangulation and barycentric coordinate interpolation to 
generate output similar to the target’s pose. This method achieves real-time facial reenactment at 30fps, and can be 
applied to any face without requiring identity specific training.  
Thies et al. [84] extended the facial expression reenactment concept to drive the movement of the torso, eye, and head 
of the target by using parametric models of these three features. In the next few years, photo-realistic full-body 
reenactment [8] videos will also be viable, where the target’s expression, along with mannerism, will be manipulated 
to create realistic deepfakes. The videos that will be generated using the above-mentioned techniques will be further 
merged with fake audio to create the fabricated content completely [94]. These progressions enable the real-time 
manipulation of facial expressions and motion in videos, while making it challenging to distinguish between real and 
synthesized video.  



4.4 Face Synthesis and Attribute Editing 
Facial editing in digital images has been heavily explored for decades. It has been widely adopted in the art, animation, 
and entertainment industry. However, lately it has been exploited to create deepfakes. Face manipulation can be 
broadly grouped into two categories: face generation and face attribute editing. Face generation involves the synthesis 
of photorealistic images of a human face that doesn’t exist in real life. In contrast, face attribute editing involves 
altering the facial appearance of an existing sample by modifying the attribute-specific region while keeping the 
irrelevant regions unchanged. Face attribute editing includes removing/wearing eyeglasses, changing viewpoint, skin 
retouching (e.g., smoothing skin, removing scars, and minimizing wrinkles), and even some higher-level 
modifications, such as age and gender, etc. Increasingly, people have been using commercially available AI-based 
face editing and mobile applications such as FaceApp [3] to automatically alter the appearance of an input image.  
The tremendous evolution in deep generative models has made them widely adopted tools for image synthesis and 
editing. Generative deep learning models, i.e. GAN [51] and VAE [95], have been successfully used to generate photo-
realistic fake human face images. In facial synthesis, the objective is to generate non-existent but realistic looking 
faces. Face synthesis has enabled a wide range of beneficial applications, like automatic character creation for video 
games and 3D face modeling industries. AI-based face synthesis could also be used for malicious purposes, like the 
synthesis of photorealistic fake image for social network accounts with a false digital identity to spread 
misinformation. Several approaches have been proposed to generate realistic-looking facial images that humans are 
unable to recognize as to whether they are real or synthesized. Fig. 5 shows synthetic facial images and the 
improvement in their quality between 2014 and 2019, that are nearly indistinguishable from real photographs.  
  

 Figure 5: Increasingly improving improvements in the quality of synthetic faces, as generated by variations on 
GANs. In order, the images are from papers by Goodfellow et al. (2014) [51], Radford et al. (2015) [96], Liu et 
al. (2016) [97], Karras et al. (2017) [98], and Style-based (2018 [99], 2019 [100])  
 
Since the emergence of GAN [51] in 2014, significant efforts have been made to improve the quality of synthesized 
images. The images generated using the first GAN model [51] were low-resolution and not very convincing. DCGAN 
[96] was the first approach that introduced a deconvolution layer in the generator to replace the fully connected layer, 
which achieved better performance in synthetic image generation. Liu et al. [97] proposed CoGAN, based on VAE, 
for learning joint distributions of two-domain images. This model trained a couple of GANs rather than a single one, 
and each was responsible for synthesizing images in one domain. The size of generated images still remained relatively 
small, e.g. 64×64 or 128×128 pixels.  
The generation of high-resolution images was limited earlier due to memory constraints. Karras et al. [98] presented 
ProGAN, a training methodology for GANs, that employed an adaptive mini-batch size which progressively increased 
the resolution, depending on the current output resolution, by adding layers to the networks during the training process. 
StyleGAN [99] is an improved version of ProGAN [98]. Instead of mapping latent code z to a resolution, a Mapping 
Network was employed that learned to map input latent vector (Z) to an intermediate latent vector (W) which 
controlled different visual features. The improvement is that the intermediate latent vector is free from any certain 
distribution restriction, and this reduces the correlation between features (disentanglement). The layers of the generator 
network are controlled via an AdaIN operation which helps decide the features in the output layer. Compared to [51, 
96, 97], StyleGAN [99] achieved state-of-the-art high resolution in the generated images i.e., 1024 × 1024, with fine 
details. StyleGAN2 [100] further improved the perceived image quality by removing unwanted artifacts, such as a 
change in gaze direction and teeth alignment, with the facial pose. Huang et al. [101] presented a Two-Pathway 
Generative Adversarial Network (TP-GAN) that could simultaneously perceive global structures and local details, 



like humans, and synthesize a high-resolution frontal view facial image from a single ill-posed face image. Image 
synthesis using this approach preserves the identity under large pose variations and illumination. Zhang et al. [102] 
introduced a self-attention module in convolutional GANs (SAGAN) to handle global dependencies, and thus ensured 
that the discriminator can accurately determine the related features in distant regions of the image. This work further 
improved the semantic quality of the generated image. In [103], authors proposed BigGAN architecture, which uses 
residual networks to improve image fidelity and the variety of generated samples by increasing the batch size and 
varying latent distribution. In BigGAN, the latent distribution is embedded in multiple layers of the generator to 
influence features at different resolutions and levels of the hierarchy rather than just adding to the initial layer. Thus, 
the generated images were photo-realistic and very close to real-world images from the ImageNet dataset. Zhang et 
al. [104] proposed a stacked GAN (StackGAN) model to generate high-resolution images (e.g., 256×256) with details 
based on a given textual description.  
Recently, several GAN based approaches have been proposed to edit facial attributes, such as the color of the skin, 
hairstyle, age, and gender by adding/removing glasses and facial expression, etc., of the given face. In this 
manipulation, the GAN takes the original face image as input and generates the edited face image with the given 
attribute, as shown in Fig. 6. Perarnau et al. [105] introduced the Invertible Conditional GAN (IcGAN), which uses 
an encoder in combination with cGANs for face attribute editing. The encoder maps the input face image into latent 
representation and attributes manipulation vector and cGAN reconstructs the face image with new attributes given the 
altered attributes vector as the condition. This suffers from information loss and alters the original face identity in the 
synthesized image. In [106], a Fader Network was presented, where an encoder-decoder architecture was trained in 
an end-to-end manner which generated an image by disentangling the salient information of the image and the attribute 
values directly in latent space. This approach, however, adds unexpected distortion and blurriness, and thus fails to 
preserve the original fine details in the generated image. 
 

 
Figure 6: Examples of different face manipulations: original sample (Input) and manipulated samples 

 
Prior studies [105, 106] have been focused on handling image-to-image translations between two domains. These 
methods required the different generator to be trained independently to handle translations between each pair of image 
domains and thus limits their practical usage. StarGAN [31], an enhanced approach, is capable of translating images 
among multiple domains using a single generator. A conditional facial attribute transfer network was trained via 
attribute classification loss and cycle consistency loss. StarGAN achieved promising visual results in terms of attribute 
manipulation and expression synthesis. However, this approach adds some undesired visible artifacts in the facial skin 
such as the uneven color tone in the output image. The recently proposed StarGAN-v2 [107] achieved state-of-the-art 
visual quality of the generated images as compared to [31] by adding a random Gaussian noise vector into the 
generator. In AttGAN [108], an encoder-decoder architecture was proposed that considers the relationship between 
attributes and latent representation. Instead of imposing an attribute independent constraint on latent representation 
like in [105, 106], an attribute classification constraint was applied to the generated image to guarantee the correct 
change of the desired attributes. AttGAN provided improved facial attribute editing results, with other facial details 
well preserved. However, the bottleneck layer i.e., down-sampling in the encoder-decoder architecture, adds unwanted 
changes and blurriness, and generates low quality edited results. Liu et al. [109] proposed the STGAN model that 
incorporated an attribute difference indicator and a selective transfer unit with an encoder-decoder to adaptively select 
and modify the encoded features. STGAN only focuses on the attribute-specific region and does not guarantee good 
preservation of the details in attribute-irrelevant regions. 



Table 2: An overview of visual Deepfake generation techniques 
Reference Technique Features Dataset Output 

Quality 
Limitations 

FaceSwap 
Faceswap [39] Encoder-decoder Facial landmarks Private 256×256 § Blurry results due to lossy compression 

§ Lack of pose, facial expression, gaze 
direction, hairstyle, and lighting  

§ Requires massive no. of target images  
FaceSwapGAN [65]  GAN VGGFace  VGGFace 256×256 § Lack of texture details and generate 

overly smooth results  
DeepFaceLab [110] Encoder-decoder Facial landmarks Private 256×256 § Fails to blend very different facial hues 

§ Requires target training data 
Fast Face-swap [66] CNN VGGFace  § CelebA (200,000 

images) 
§ Yale Face 

Database B 
(different pose 
and lighting 
conditions) 

256×256 § Works for a single person only 
§ Gives better result for frontal face view 
§ Lack of skin texture details, e.g., 

smooth results and Facial Expression 
transfer 

§ Lack of occluding objects i.e. glasses 

Nirkin et al. [56] FCN-8s-VGG 
architecture 

§ Basel Face Model to 
represent faces  

§ 3DDFA model for 
expression 

IARPA Janus CS2 
 (1275 face videos) 

256×256 § Poor results in case of different image 
resolutions 

§ Fails to blend very different facial hues 

Chen et al. [111] VGG-16 net 68 facial landmarks Helen (2330 
images) 

256×256 § Provide more realistic results but 
sensitive to variation in posture and 
gaze 

FSNet [69]  GAN Facial landmarks CelebA  128×128 § Sensitive to variation in angle 
RSGAN [68]  GAN Facial landmarks, 

segmentation mask 
CelebA  128×128 § Sensitive to variation in angle, 

occlusion, lightning  
§ Limited output resolution 

FaceShifter [70] GAN Attributes (face, 
occlusions, lighting or 
styles) 

§ VGG Face  
§ CelebA-HQ  
§ FFHQ 

256×256 § Stripped artifacts 

Lip-syncing 

Suwajanakorn et al. 
[32] 

RNN (single-layer 
unidirectional 
LSTM) 

§ Mouth landmarks 
(36-D features) 

§ MFCC audio 
features (28-D) 

Youtube videos (17 
hours) 

2048×1024 § Requires large amount of training data 
for target person. 

§ require retraining for each identity.  
§ Sensitive to the 3D movement of head 
§ No direct control over facial 

expressions 
Speech2Vid[73] Encoder–decoder 

CNN 
§ VGG-M network  
§ MFCC audio 

features 

§ VGG Face  
§ LRS2 (41.3-hour 

video) 
§ VoxCeleb2 (test) 

109×109 § lacks the synthesis of emotional facial 
expressions 

Vougioukas et al. 
[74] 

Temporal GAN MFCC audio features § GRID  
§ TCD TIMIT  

96×128 § lacks the synthesis of emotional facial 
expressions 

§ flickering and jitter 
§ sensitive to large facial motions 

Zhou et al. [75] Temporal GAN Deep audio-video 
features 

§ LRW  
§ MS-Celeb-1M  

256×256 § lacks the synthesis of emotional facial 
expressions 

Vdub [76] 3DMM § 66 facial feature 
points 

§ MFCC features  

§ Private 1024×1024 § Requires video of the target  

LipGAN [77] 
 

GAN § VGG-M network 
§ MFCC features 

§ LRS 2  1280×720 § visual artifacts and temporal 
inconsistency 

§ unable to preserve source lip region 
characteristics 

Wav2Lip[78] GAN § Mel-spectrogram 
representation 

§ LRS2 1280×720 § lacks the synthesis of emotional facial 
expressions 

Face reenactment 
Face2Face [33] 3DMM § parametric model  

§ Facial landmark 
features 

customized 1024×1024 § Sensitive to facial occlusions 

Kim et al. [86] cGAN parametric model of 
the face (261 
parameters/frame) 

customized 1024×1024 § 1-3 min. video of target 
§ Sensitive to facial occlusions 



ReenactGAN [87]  GAN Facial landmark 
features 

§ CelebV dataset 
§ WFLW Dataset 
§ Helen, DISFA 

256×256 § 30 min. video of target 
§ Lack of gaze adaption  

GANimation [88] GAN (2 Encoder- 2 
Decoder) 

AUs § EmotioNet dataset 
§ RaFD dataset 

128×128 § Lack of pose and gaze adaption 

GANnotation [89] GAN Facial landmark 
features  

§ 300-
VWChallenge 
dataset 

§ BP4D dataset 
§ Helen, LFPW, 

AFW, IBUG, and 
a subset of 
multiple datasets 

128x128 § Lack of gaze adaption 

X2face [34] 2Encoder- 
2Decoder 

§ Facial landmark 
features  

§ 256-D audio 
features 

§ VGG Face dataset 
§ VoxCeleb dataset 
§ AFLW dataset 

256×256 § Wrinkle artifacts 
§ Lack of gaze adaption 

Zakharov et al. [90] GAN (1Encoder- 
2Decoder) 

Facial landmark 
features 

VoxCeleb dataset 256×256 § Sensitive to source identity leakage 
§ Lack of gaze adaption 

Zhang et al. [91] GAN (1Encoder- 
2Decoder) 

Appearance and 
shape feature Map 

§ VGG Face dataset 
§ WFLW 
§ EOTT dataset 
§ CelebA-HQ 

dataset 
§ LRW dataset. 

256×256 § Low visual quality output (256×256) 

FaR-GAN [92] GAN Facial landmark and 
Boundary features 

§ VGG Face dataset 
§ VoxCeleb1 

dataset 

256×256 § Sensitive to source identity leakage  
§ Lack of gaze adaption 

MarioNETte [43] GAN (2Encoder- 
1Decoder) 

Facial landmark 
features 

§ VoxCeleb1 256×256 § Fails to preserve source facial 
characteristics completely 

FSGAN[67] GAN+RNN § Facial landmarks 
§ LFW parts label set 

§ IJB-C dataset 
(5500 face videos) 

§ VGGFace2  
§ CelebA  
§ Figaro dataset  

256×256 § The identity and texture quality 
degrade in case of large angular 
differences  

§ Fail to fully capture facial expressions 
§ blurriness in image texture 
§ limited to the resolution of training data 

Face Synthesis 
Karras et al. [100] StyleGAN § Deep Features § ImageNet 1024×1024 § Blob-like artifacts 
Huang et al. [101] TP-GAN § Deep Features § LFW 256x256 § Lack fine details 

§ Lack semantic consistency 
Zhang et al. [102] SAGAN § Deep Features § ImageNet2012 128×128 § Unwanted visible artifacts 
Brock et al. [103] BigGAN § Deep Features § ImageNet 512×512 § Class-conditional image synthesis 

§ Class leakage 
Zhang et al. [104] StackGAN § Deep Features § CUB 

§ Oxford 
§  MS-COCO 

256×256 § Lack semantic consistency 

Face attribute Editing 
Perarnau et al. [105]  IcGAN § Deep Features § CelebA 

§ MNIST 
64×64 § Fails to preserve original face identity 

Fader Network 
[106] 

Encoder-decoder § Deep Features § CelebA 256×256 § Unwanted distortion and blurriness 
§ Fails to preserve fine details 

Choi et al. [107] StarGAN § Deep Features § CelebA 
§ RaFD 

512×512 § Undesired visible artifacts in the facial 
skin e.g., uneven color tone 

He et al. [108] AttGAN § Deep Features § CelebA 
§ LFW 

384 × 384 § Generates low quality results and adds 
unwanted changes, blurriness  

Liu et al. [109] STGAN § Deep Features § CelebA 384×384 § Poor performance for multiple attribute 
manipulation 

Zhang et al. [112] SAGAN § Deep Features § CelebA 256×256 § Lack of details in attribute-irrelevant 
region 

He et al. [113] PA-GAN § Deep Features § CelebA 256×256 § undesired artifacts in case of baldness 
and open mouth etc.  

 
SAGAN [112] introduced a GAN based framework comprising an attribute manipulation network to perform 
alteration and a global spatial attention mechanism to localize and explicitly constrain editing within a specified region. 
This approach preserves the irrelevant details well but at the cost of attribute correctness in the case of multiple 
attribute manipulation. PA-GAN [113] employed a progressive attention mechanism in GAN to progressively blend 
the attribute features into the encoder features constrained inside a proper attribute area by employing an attention 



mask from high to low feature level. As the feature level gets lower (higher resolution), the attention mask gets more 
precise and the attribute editing becomes fine. This approach successfully performs the multiple attributes 
manipulation and well preserves irrelevance within a single model. However, some undesired artifacts appear in cases 
where significant modifications are required such as the baldness and open mouth. 

4.5 Audio Deepfakes  
AI-synthesized audio manipulation is a type of deepfake that can clone a person’s voice and depict that voice saying 
something outrageous, that the person never said. Recent advancements in AI-synthesized algorithms for speech 
synthesis and voice cloning have shown a potential to produce realistic fake voices that are nearly indistinguishable 
from genuine speech. These algorithms can generate synthetic speech that sounds like the target speaker based on text 
or utterances of the target speaker, with highly convincing results [50, 114]. The synthetic voice is widely adapted for 
the development of different applications, such as automated dubbing for TV and film, chatbots, AI assistants, text 
readers, and personalized synthetic voices for vocally handicapped people. Aside from this, synthetic/fake voices have 
become an increased threat to voice biometric systems and are being used for malicious purposes, such as political 
gains, fake news, and fraudulent scams, etc. More complex audio synthesis could be combining power of AI and 
manual editing. For example,  neural network-powered voice synthesis models, such as Google’s Tacotron [48], 
Wavenet [47] or AdobeVoco [115], can generate realistic and convincing fake voices that resemble the victim’s voice, 
as the first step. Later on, audio editing software, e.g. Audacity [4], can be used to combine the different pieces of 
original and synthesized audios to make more powerful audios. 
AI-based impersonation is not limited to visual content; recent advancements in AI-synthesized fake voices are 
assisting the creation of highly realistic deepfakes videos. Recent developments in speech synthesis have shown their 
potential to produce realistic and natural audio deepfakes, exhibiting real threats to society [32]. Combining synthetic 
audio content with visual manipulation can significantly make deepfake videos more convincing and increase their 
harmful impact [32]. Until now, however, these synthesized speeches lack some aspects of voice quality, like 
expressiveness, roughness, breathiness, stress, and emotion, etc., specific to a target identity. The AI research 
community has made some efforts to produce human-like voice quality with high speaker similarity. This section lists 
the latest progress in speech synthesis and describes the alarming outcomes in speech synthesis and the potential threat 
to steal a voice identity.  
Speech synthesis refers to a technology that can generate speech from a given input i.e., text-to-speech (TTS) [116] 
or voice conversion (VC) [117]. TTS is a decades-old technology that can synthesize the natural-sounding voice of a 
speaker from a given input text, and thus enables a voice to be used for better human-computer interaction. VC is 
another technique that modifies the audio waveform of a source speaker to make it sound like the target speaker’s 
voice while keeping the linguistic content unchanged [118]. The latest speech synthesis initiatives raise more concerns 
about the reliability of the speech/audio [119].  
Overall, important developments in speech synthesis have been done using the methods of speech concatenation or 
parameterization. The concatenative TTS systems are based on separating high-quality recorded speech into small 
fragments followed by concatenation into a new speech. In recent years, this method has become outdated and 
unpopular as it is not scalable and consistent. In contrast, parametric models emphasize extracting acoustic features 
from the given text inputs and converting them into an audio signal using the vocoders. Interesting outcomes of 
parametric TTS due to improved speech parameterization performance, vocal tract modeling, and the implementation 
of deep neural networks evidently show the future of artificial speech production [119]. Fig. 7 shows the principle 
design of modern TTS methods. 

 

Figure 7: Workflow diagram of the latest parametric TTS systems 

Over the last few years, naturalness and quality of TTS systems have improved significantly due to recent 
advancements in deep learning techniques. The significant developments in voice/speech synthesis are WaveNet [47], 
Tacotron [48], and DeepVoice3 [120], which can generate realistic sounding synthetic speech from text input to 
provide an enhanced interaction experience between humans and machines. Table 3 presents an overview of state-of-
the-art speech synthesis methods. WaveNet [47] was developed by DeepMind in 2016 and evolved from pixelCNN 
[117]. WaveNet models utilize raw audio waveforms by using acoustic features, i.e. spectrograms, through a 
generative framework that is trained on actual recorded speech. WaveNet is a probabilistic autoregressive model that 



works by determining the probability distribution of the current acoustic signal by using probabilities of previously 
generated samples. Dilated causal convolutions are the main modules that are utilized to guarantee that WaveNet can 
only employ the sampling points from 0 to t−1 for predicting a new sampling point. Although the WaveNet framework 
is capable of generating audio of fine quality it has the following limitations: i) it is a time-consuming process, as the 
generation of the new signal is dependent on all previously generated samples, and ii) the dependency of WaveNet on 
linguistic features has a negative impact on the synthesis process. So, to deal with the aforementioned challenges, 
parallel WaveNet has been introduced to enhance the sampling efficacy. The new model is proficient in producing 
high-fidelity audio signals [121]. Another DL based using a variant of WaveNet, namely Deep Voice 1 [49], is 
presented by replacing each module containing an audio signal, voice generator, or a text analysis front-end through 
a related NN model. Due to the independent training of each module, however, it is not a real end-to-end speech 
synthesis system.  
In 2017, Google introduced tacotron [48] an end-to-end speech synthesis model. Tacotron can synthesize speech from 
given <text, audio> pairs and thus generalizes well to other datasets. Similar to WaveNet, the Tacotron framework is 
a generative framework comprised of a seq2seq model that contains an encoder, an attention-based decoder, and a 
post-processing network. The framework accepts characters as input and generates a raw spectrogram, which is later 
transformed into waveforms. The model employs the Griffin–Lim technique [122] to rebuild the acoustic signal by 
computing phase data through the spectrogram iteratively. Even though the Tacotron model has attained better 
performance it has one potential limitation i.e. it must employ multiple recurrent components. The inclusion of these 
units makes it economically inefficient, so that it requires high-performance systems for model training. Deep Voice 
2 [123] combines the capabilities of both the Tacotron and WaveNet models for voice synthesis. Initially, Tacotron is 
employed for converting the input text to a linear scale spectrogram, then it is later converted to voice through the 
WaveNet model. 
In [124], Tacotron2 was introduced for vocal synthesis and it exhibits an impressive high mean opinion score very 
similar to human speech. Tacotron2 consists of a recurrent sequence-to-sequence keypoint estimation framework that 
maps character embedding to mel-scale spectrograms. The rest of the framework follows a modified WaveNet model 
which works as a vocoder and generates time-domain signals through spectrograms. To deal with the time 
complexities of recurrent unit based speech synthesis models, a new, fully-convolutional character-to-spectrogram 
model named DeepVoice3 [120] was presented. The Deep Voice 3 model is faster than its peers due to performing 
fully parallel computations.  Deep Voice 3 is comprised of three main modules: i) an encoder that accepts text as input 
and transforms it into an internal learned form, ii) a decoder that converts the learned representations in an 
autoregressive manner, and iii) a post-processing, fully convolutional network that predicts the final vocoder 
parameters. 
Another model for voice synthesis is VoiceLoop [125], which uses a memory framework to generate speech from 
voices unseen during training. VoiceLoop builds a phonological store by executing a shifting buffer as a matrix. Text 
strings are characterized as a list of phonemes which are later decoded in short vectors. The new context vector is 
produced by assessing the encoding of the resulting phonemes and summing them together. A few distinguishing 
properties of VoiceLoop from its peers are an inclusion of a memory buffer as a replacement for the conventional 
RNNs, shared memory among all procedures, and the employment of shallow, fully connected networks for all 
processing. These properties make VoiceLoop adaptable for the scenario where the speaker’s voice is recorded in a 
noisy environment. The above mentioned powerful end-to-end speech synthesizer models [120, 124] have enabled 
the production of large scale commercial products, such as Google Cloud TTS, Amazon AWS Polly, and Baidu TTS. 
All these projects aim to attain a high similarity between synthesized and human voices. These classical content-
oriented TTS systems are now evolving into a system with personalized voices e.g., a specific subject’s speech identity 
and even a real person's voice cloning. Eventually, the goal will be to improve the unnatural machine expression in 
human-machine interaction by replacing it with ultra-natural speech. At the same time, voice cloning presents a 
security risk and may result in identity theft. 
The latest TTS systems can convert given text to a human speech with a particular voice identity. This synthesized 
speech may belong to a particular individual seen during the training process or even a non-existing individual by 
mixing voices of other identities. To generate a target-specific voice, a speech synthesis system requires retraining of 
the model on several hours of the recorded target’s speech. This limits the ability of technology to scale for many 
different voices and languages. A voice cloning system needs to adapt an unseen speaker’s voice to a generative model 
learned from scratch on a large dataset. Using generative models, researchers have built voice imitating TTS models 
that can clone the voice of a particular speaker in real-time using only a few seconds of an available reference speech 
sample [126]. The key distinction between voice cloning and speech synthesis systems is that the former focuses on 
preserving the characteristics of the specific identity speech attributes while the latter lacks this feature to maintain 
the quality of the generated speech [127]. Various AI-enabled voice cloning online platforms are available such as 



Overdub1, VoiceApp2 , and iSpeech3 which can produce synthesized fake voices that closely resemble target speech 
and gives the public access to this technology.  
Jia et al. [126] proposed a Tacotron 2 based TTS system capable of producing multi-speaker speech, including those 
unseen during training. The framework consists of three independently trained neural networks: (i) a recurrent speaker 
encoder that computes a fixed dimensional feature vector from the input signal, (ii) a Tacotron 2  based sequence-to-
sequence synthesizer that predicts a mel-spectrogram from text depending on the embedding vector of the speaker, 
and (iii) a WaveNet [47] based neural vocoder that translates the spectrogram into time-domain waveforms. The 
findings show that although the synthetic speech resembles a target speaker’s voice it does not fully isolate the voice 
of the speaker from the prosody of the audio reference. Arik et al. [50] proposed a Deep Voice 3 based voice cloning 
system that can generate the cloned voice of any target by using a small number of recorded audio samples. This 
technique [50] is comprised of two modules: speaker adaptation and speaker encoding. For speaker adaptation, a 
multi-speaker generative framework is fine-tuned. For speaker encoding, an independent model is trained to directly 
infer a new speaker embedding, which is applied to the multi-speaker generative model. To clone the speaker’s voice 
the model computes the characteristics of the speaker to produce the cloned audio signal provided through the given 
text with an average cloning time of only 3.7 seconds.  
 

Table 3: An overview of the state-of-the-art speech synthesis techniques 
Methods Technique Features Dataset Limitations 

WaveNet [47] Deep neural 
network 

§ linguistic features 
§ fundamental 

frequency (log F0) 

§ VCTK (44 hrs.) § Computationally expensive 

Tacotron [48] Encoder-Decoder 
with RNN 

§ Deep features Private (24.6 hrs.) § Costly to train the model 

Deep Voice 1[49] Deep neural 
networks 

§ linguistic features Private (20 hrs.) § Independent training of each module 
leads to a cumulative error in 
synthesized speech 

Deep Voice 2 [123] RNN § Deep features VCTK (44 hrs.) § Costly to train the model  

DeepVoice3 [120] Encoder-decoder § Deep features § Private (20 hrs.) 
§ VCTK (44 hrs.)  
§ LibriSpeech ASR 

(820 hrs.) 

§ Does not generalized well for unseen 
samples. 

Parallel WaveNet 
[121] 

Feed-forward neural 
network with dilated 
causal convolutions 

§ linguistic features Private § Requires a large amount of target’s 
speech training data. 

VoiceLoop [125] Fully-connected 
neural network 

§ 63-dimensional 
audio features 

§ VCTK (44 hrs.) 
§  Private 

§ Low ecological validity 

Tacotron2[124] § Encoder-decoder § linguistic features Japanese speech 
corpus from the ATR 
Ximera dataset (46.9 

hrs.) 

§ Lack of real time speech synthesis 

Arik et al. [50] Encoder- decoder § Mel spectrograms § LibriSpeech (820 
hrs.) 

§ VCTK (44 hrs.) 

§ Low performance for multi-speaker 
speech generation in the case of low-
quality audio 

Jia et al. [126] Encoder-decoder § Mel spectrograms § LibriSpeech (436 
hrs.) 

§ VCTK (44 hrs.) 

§ Fails to attain human-level naturalness 
§ Lacks in transferring the target accent, 

prosody to synthesized speech  
Luong et al. [127] Encoder-decoder § Mel spectrograms § LibriSpeech (245 

hrs.) 
§ VCTK (44 hrs.) 

§ Low performance in the case of noisy 
audio samples 

Chen et al. [128] Encoder + deep 
neural network 

§ Mel spectrograms § LibriSpeech (820 
hrs.) 

§ private 

§ Low performance in the case of a low-
quality audio sample 

Cong et al. [129] Encoder-decoder § Mel spectrograms § MULTI-SPK 
§ CHiME-4 

§ Lacks in synthesizing utterances of a 
target speaker  

 
Loung et al. [127] proposed a voice cloning framework that can synthesize target-specific voice, either from input text 
or a reference raw audio waveform from a source speaker. The framework consists of a separate encoder and decoder 

 
1 https://www.descript.com/overdub 
2 https://apps.apple.com/us/app/voiceapp/id1122985291 
3 https://www.ispeech.org/apps 



for text and speech and a neural vocoder. The model is jointly trained with linguistic latent features and the speech 
generation model learns a speaker-disentangled representation. The obtained results achieve quality and speaker 
similarity to the target speaker; however, it takes almost 5 minutes to generate the cloned speech. Chen et al. [128] 
proposed a meta-learning approach using waveNet model for voice adaption with limited data. Initially, speaker 
adaptation is computed by fine-tuning the speaker embedding. Then a text-independent parametric approach is applied 
whereby an auxiliary encoder network is trained to predict the embedding vector of new speakers. This approach 
performs well on clean and high-quality training data. 
Currently voice cloning systems produce quality speech through speaker adaptation or speaker encoding from a clean 
speech sample. The presence of noise deviates the speaker encoding and directly affects the performance of 
synthesized speech. In [129], the authors proposed a seq2seq multi-speaker framework with domain adversarial 
training to produce a target speaker voice from only a few available noisy samples. The results showed improved 
naturalness of synthetic speech. However, similarity still remains challenging due to lack of transferring target accents, 
and prosody to synthesized speech with a limited amount of low-quality speech data. 

4.6 Open Challenges in Deepfakes Generation 
Although extensive efforts have been shown to improve the visual quality of generated deepfakes there are still several 
challenges that need to be addressed. A few of them are discussed below.  
Generalization: The generative models are data-driven, and therefore they reflect the learned features during training 
in the output. To generate high-quality deepfakes a large amount of data is required for training. Moreover, the training 
process itself requires hours to produce convincing deepfake audiovisual content. Usually, it is easier to obtain a 
dataset of the driving content but the availability of sufficient data for a specific victim is a challenging task. Also 
retraining the model for each specific target identity is computationally complex. Because of this a generalized model 
is required to enable the execution of a trained model for multiple target identities unseen during training, or with few 
training samples available.  
Identity Leakage: The preservation of target identity is a problem when there is a significant mismatch between the 
target identity and the driving identity, specifically in face reenactment tasks where target expressions are driven by 
some source identity. The facial data of the driving identity is partially transferred to the generated face. This occurs 
when training is performed on single or multiple identities, but data pairing is accomplished for the same identity. 
Paired Training: A trained supervised model can generate high-quality output but at the expense of data pairing. 
Data pairing is concerned with generating the desired output by identifying similar input examples from the training 
data. This process is laborious and inapplicable to those scenarios where different facial behaviors and multiple 
identities are involved in the training stage.  
Pose Variations and Distance from camera: Existing deepfake techniques generate good results of the target for 
frontal facial view. However, the quality of manipulated content degrades significantly for scenarios where a person 
is looking off camera. This results in undesired visual artifacts around the facial region. Furthermore, another big 
challenge for convincing deepfake generation is the facial distance of the target from the camera, as an increase in 
distance from capturing devices results in low-quality face synthesis.  
Illumination Conditions: Current deepfake generation approaches produce fake information in a controlled 
environment with consistent lighting conditions. However, an abrupt change in illumination conditions such as in 
indoor/outdoor scenes results in color inconsistencies and strange artifacts in the resultant videos.  
Occlusions: One of the main challenges in deepfake generation is the occurrence of occlusion, which results when 
the face region of the source and victim are obscured with a hand, hair, glasses, or any other items. Moreover, occlusion 
can be the result of the hidden face or eye portion which eventually causes inconsistent facial features in the 
manipulated content.  
Temporal Coherence: Another drawback of generated deepfakes is the presence of evident artifacts like flickering 
and jitter among frames. These effects occur because the deepfake generation frameworks work on each frame without 
taking into account the temporal consistency. To overcome this limitation, some works either provide this context to 
generator or discriminator, consider temporal coherence losses, employ RNNs, or take a combination of all these 
approaches. 
Lack of realism in synthetic audio: Though the quality is certainly getting much better, there is still a need for 
improvement. The main challenges of audio-based deepfakes are the lack of natural emotions, pauses, breathiness, 
and the pace at which the target speaks. 
Based on the above-mentioned limitations we can argue that there exists a need to develop effective deepfake 
generation methods that are robust to variations in illumination conditions, temporal coherence, occlusions, pose 
variations, camera distance, identity leakage, and paired training. 
 



5 Deepfakes detection techniques 
The evolution of ML and the emergence of advanced artificial intelligence algorithms have increased the ease with 
which fake multimedia content is producing images, audio, or videos, and has improved the realism of manipulated 
information dramatically [8, 86, 130-132]. It is very difficult now for people to differentiate between actual and 
synthesized multimedia (image, audio, video, etc.). Deepfakes have the potential to initiate political tension, conflicts, 
violence, and war worldwide. This results in a violation of privacy and poses a serious threat to societal security and 
democracy. Therefore, to overcome the devastating effects of deepfakes, multimedia forensic techniques for deepfake 
detection has grasped the attention of researchers. Existing approaches have either targeted spatial and temporal 
artifacts left during generation, or data-driven classification (Fig. 8). The spatial artifacts include inconsistencies [133-
139], abnormalities in background [140-142], and GAN fingerprints [143-145]. The temporal artifacts involve 
detecting variation in a person’s behavior  [146, 147], physiological signals [135, 148-150], coherence [151, 152], and 
video frame synchronization [153-156]. Instead of focusing on a specific artifact, some approaches are data-driven, 
which detect manipulations by classification [157-177] or anomaly identification [178-182]. Fig. 9 shows a general 
deepfakes detection process pipeline. For feature extraction, all deepfake detection approaches have employed either 
handcrafted features-based or deep learning-based methods. We have discussed both types of methods in the 
subsequent sections.  

 
Figure 8: Categorization of deepfake detection techniques (The red color shows deep learning-based 
technique and black is for handcrafted techniques) 

5.1 Handcrafted feature-based techniques 
A lot of literature is available on image and video forgery detection [183-186]. As AI-manipulated data is a new 
phenomenon, there are a small number of forensic techniques that work well for deepfake detection. An overview of 
deepfake detection techniques based on handcrafted features is presented in Table 4.  Recently, some researchers [157, 
187] have adopted the idea of employing the traditional methods of image forgery identification to deepfake detection. 
Zhang et al. [157] proposed a technique to detect swapped faces. SURF descriptor was employed on the images for 
feature extraction that were then used to train the SVM for classification. This technique was then tested on the set of 
Gaussian blurred images. This approach has improved the deepfakes detection performance but has two potential 
limitations. Firstly, this approach is unable to preserve the facial expression of the given image. Secondly, this 
technique only works on still images and is unable to detect manipulated videos. Yang et al. [143] introduced an 
approach to detect the deepfakes by estimating the 3D head position from 2D facial landmarks. The computed 
difference among the head poses was used as a feature vector to train the SVM classifier and was later used to 
differentiate between original and forged content. This technique exhibits good performance for deepfake detection 
but has a limitation in estimating landmark orientation in the blurred images, which degrades the performance of this 
method under such scenarios. Korshunov et al. [158] employed the Image Quality Metric features along with principal 
component analysis and linear discriminant analysis (LDA) for feature extraction and then trained the SVM to classify 
the video content as bonafide or fake. It is concluded from [158] that existing face recognition techniques like Facenet 
[188] and Visual Geometry Group (VGG) [189] are unable to detect deepfakes. Moreover, pure lip-syncing based 



approaches are unable to detect the GAN generated videos. The SVM classifier exhibits better deepfake detection 
performance; however, they do not perform well for high-quality visual contents. 
 

Figure 9: The general processing pipeline of deepfake detection 
 
Agarwal et al. [146] presented a user-specific technique for deepfakes detection. First, GAN was used to generate all 
three types of deepfakes for US ex-president Barack Obama. Then the OpenFace2 [190] toolkit was used to estimate 
facial and head movements. The estimated difference between the 2D and 3D facial and head landmarks was used to 
train the binary SVM to classify between the original face and synthesized face of Barack Obama. This technique 
provides good detection accuracy for face swap and puppet master over lip-syncing, however, it is vulnerable in those 
scenarios where a person is looking off-camera.  Guera et al. [153] presented a method for detecting synthesized faces 
from videos. Multimedia stream descriptors [191] were used to extract the features that were then used to train the 
SVM, and random forest classifiers to differentiate between the real and manipulated faces from the videos. This 
technique gives an effective solution to deepfakes detection but is not applicable to video re-encoding attacks.  
Korshunov et al. [133] proposed a technique to detect lip-sync-based deepfakes. The 40-D MFCC features containing 
the 13-D MFCC, 13-D delta, and 13-D double-delta, along with the energy, were used in combination with mouth 
landmarks to train the four classifiers, i.e. SVM, LSTM, multilayer perceptron (MLP), and Gaussian mixture model 
(GMM). Three publicly available datasets, named VidTIMIT[192], AMI corpus [193], and GRID corpus [194] were 
used to evaluate the performance of this technique. From the results, it was concluded in [133] that LSTM achieves 
better performance over other techniques. However, lip-syncing deepfake detection performance of the LSTM method 
drops for the VidTIMIT [192] and AMI [193] datasets due to fewer training samples for each person in both of these 
datasets over the GRID dataset. Ciftci et al. [148] introduced an approach to detect forensic changes within videos by 
computing the biological signals (e.g. heart rate)  from the face portion of the videos. Temporal and spatial 
characteristics of facial features were computed to train the SVM and CNN model to differentiate between bonafide 
and fake videos. This techniquehas improved deepfake detection accuracy, however, it has a large feature vector space 
and its detection accuracy drops significantly when dimensionality reduction techniques are applied. Matern et al. 
[134] presented an approach for classifying forged content by employing simple facial handcrafted features like the 
color of eyes, missing artifact information in the eyes and teeth, and missing reflections. These features were used to 
train two models, i.e. logistic regression and MLP, to distinguish the manipulated content from the original data. This 
technique has a low computational cost; however, it is applicable only to the visual content with open eyes or visible 
teeth. Jung et al. [135] proposed a technique to detect deepfakes by identifying an anomaly based on the time, 
repetition, and intervened eye-blinking duration within videos. This method combined the Fast-HyperFace [195] and 
EAR technique (eye detect) [196] to detect eye blinking.  An integrity authentication method was employed by 
tracking the fluctuation of eye blinks based on gender, age, behavior, and time factor to spot the real and fake videos. 
The approach in [135] exhibits better deepfake detection performance, however it is not appropriate if subject in the 
video is suffering from mental illness as we often experience abnormal eye blinking pattern for such people. Guarnera 
et al. [159] presented an approach to detect the image manipulation. Initially, Expectation-Maximization (EM) 
technique was applied to obtain the image features based on which naive classifier was trained to discriminate against 



original and fake images. This approach shows better deepfake identification accuracy, however, it is only applicable 
to static images. 
  
Table 4: An overview of Deepfake detection techniques based on handcrafted features and their limitations 

Author Technique Features Best Evaluation 
performance 

Dataset Limitations 

Face-swap 
Zhang et al. 
[157] 

SURF + SVM 64-D features 
using SURF  

§ Precision= 97% 
§ Recall= 88% 
§ Accuracy= 92% 
§  

Generate deepfake 
dataset using LFW 
face database. 

§ Unable to preserve facial 
expressions 

§ Works with static images 
only. 

Yang et al. [143] SVM Classifier 68-D facial 
landmarks 
using DLib 

§ ROC=89% § UADFV § Degraded performance for 
blurry images. § ROC=84% § DARPA MediFor 

GAN Image/ 
Video Challenge. 

Guera et al. 
[153] 

SVM, RF 
Classifier 

Multimedia 
stream 
descriptor [29] 

§ AUC= 93% (SVM) 
§ AUC= 96% (RF) 

Custom dataset. § Fails on video re-encoding 
attacks 

Ciftci et al. [148] CNN medical signals 
features 

§ Accuracy= 96% Face Forensics 
dataset 

§ Large feature vector space. 

Jung et al. [135] Fast-
HyperFace[195],  
EAR[196] 

Landmark 
features 

§ Accuracy= 87.5% Eye Blinking 
Prediction dataset 

§ Inappropriate for people 
with mental illness 

Lip-sync 
Korshunov et al. 
[133] 

SVM, LSTM, 
MLP, GMM 

MFFC + mouth 
landmark 
features 
 

§ EER=24.74 (LSTM), 
53.45 (MLP), 
56.18(SVM), 
56.09(GMM)  

§ VidTIMIT § LSTM performs better than 
others but its performance 
degrades as the training 
samples decrease.   

§ EER=33.86 (LSTM), 
41.21(MLP), 
48.39(SVM), 47.84 
(GMM) 

§ AMI 

§ EER=14.12 (LSTM), 
28.58(MLP), 30.06 
(SVM), 46.81(GMM) 

§ GRID 

Face-swap (FS) & Face Reenactment (FR) 
Matern et al. 
[134] 

MLP, Logreg 16-D texture 
energy based 
features of eyes 
and teeth [197] 

§ AUC= .0.851(MLP-
AUC for FS) 

§ AUC=0.784 (LogReg-
AUC for FS) 

§ AUC=.823 (MLP-AUC 
for FR) 

§ AUC=.866 (LogReg-
AUC for FR) 

FaceForensics++ 
 

§ Only applicable to face 
images with open eyes and 
clear teeth. 

All types 
Agarwal et al. 
[146] 

SVM Classifier 16 AU’s using 
OpenFace2 
toolkit 

§ AUC= 93% (FS) 
§ AUC= 95% (lip-sync) 
§ AUC= 98% (FR) 

Own dataset. § Degraded performance in 
cases where a person is 
looking off-camera. 

GAN generated Fake images 
Guarnera et al. 
[159] 

EM + 
(KNN, SVM, 
LDA) 

Deep features § Accuracy=99.22 (KNN) 
§ Accuracy= 99.81(SVM) 
§ Accuracy= 99.61 (LDA) 

CelebA § Not robust to compressed 
images. 

McCloskey et al. 
[140] 

SVM Color channels § AUC=70% MFC2018 § Performance degrades over 
blurry samples. 

Audio Manipulation 
Nagarshetha et 
al. [198] 

SVM HFCC, CQCC  EER of 11.5% ASVspoof 2017 § Does not generalize well to 
different classes of 
spoofing attacks 

Gunendradasan 
et al. [199] 

GMM TLC-AM 
TLC-FM 

EER=8.68(TLC-AM), 
11.30 (TLC-FM) 

ASV spoof-2017 § Computationally complex 

Witkowski et al.  
[200] 

GMM CQCC, 
Cepstrum, 
IMFCC,MFCC, 
LPCCres 

EER=5.13 (CQCC), 
3.38(Cepstrum), 4.16 
(IMFCC), 16.76(MFCC), 
6.37(LPCCres) 

ASVspoof 2017 § Computationally complex 

Saranya et al. 
[201] 

GMM MFCC, CQCC, 
and MFS 

EER=19.36 
 

ASVspoof 2017 § Requires performance 
improvement  

 



McCloskey et al. [140] presented an approach to identify fake images by employing the fact that the color information 
is evidently dissimilar between real camera and fake synthesis samples. The color key-points from input samples were 
used to train the SVM for classification. This approach [140] exhibits better fake sample detection accuracy, however, 
it may not perform well for blurred images. Guarnera et al. [159] proposed a method to identify fake images. Initially, 
the EM algorithm was used to calculate the image features. The computed key-points were used to train three types 
of classifiers, KNN, SVM, and LDA. The approach in [159] performs well for synthesized image identification, but 
may not perform well for compressed images. 
Nagarsheth et al. [198] presented an approach to identify audio replay spoofing. Initially, high-frequency cepstral 
coefficients (HFCC) and CQCC features were used to create embeddings through a DNN. Next, an SVM was trained 
over computed embeddings for replay attack identification. This approach [198] exhibits better audio manipulation 
detection accuracy, however may not generalize well to different classes of spoofing attacks. A few works [199, 200] 
have stated the significance of high-frequency band analysis to better detect features present in replay audio. In [199], 
transmission line cochlea-amplitude modulation (TLC-AM) and TLC-frequency modulation were employed to train 
a GMM for replay spoofing identification. Similarly in [200], inverted-MFCC (IMFCC), linear predictive cepstral 
coefficients (LPCC), and LPCCres high-frequency band attributes were utilized along with spectral features, i.e. 
CQCC, MFCC, and Cepstrum to train the GMM for replay detection. Though the approaches in [199, 200] exhibit 
better performance over the ASVspoof baseline model it is with the overhead of increased feature computation cost. 
In [201], MFCC, CQCC, and Mel-Filterbank-Slope (MFS) features were utilized with the GMM to detect replay 
attacks. 
 
5.2 Deep learning-based techniques 
Handcrafted feature-based techniques have been frequently used for identifying manipulated content. These 
approaches often work well for detecting the forensic changes made within static digital images but may not perform 
well for deepfakes due to the following reasons: i) temporal characteristics of videos vary from frame to frame, and 
ii) compression techniques are usually applied after altering the information in videos so very important visual 
information is dropped, which degrades the performance of these techniques [163]. Therefore, to overcome the 
problems of the handcrafted feature-based techniques, Deep Learning (DL) approaches are being heavily explored 
these days. A summary of deepfake detection techniques based on deep learning approaches can be found in Table 5.   
Li et al. [160] proposed a method of detecting the forensic modifications made within the videos. First, the facial 
landmarks were extracted using the dlib software package [202]. Next, CNN based models named ResNet152, 
ResNet101, ResNet50, and VGG16 were trained to detect forged content from videos. This approach is more robust 
in detecting the forensic changes; however, it exhibits low performance on multi-time compressed videos. Guera et 
al. [154] proposed a technique for deepfakes detection. CNN was used to extract the features at the frame level. Then 
the RNN was trained on the set of extracted features to detect deepfakes from the input videos. This work achieves 
good detection performance but only on videos of short duration i.e. videos of 2 seconds or less.  
Li et al. [149] proposed a technique to detect deepfakes by using the fact that the manipulated videos lack accurate 
eye blinking in synthesized faces. CNN/RNN approach was used to detect the lack of eye blinking in the videos to 
expose the forged content. This technique shows better deepfake detection performance, however, it only uses the lack 
of eye blinking as a clue to detect the deepfakes. This approach has the following potential limitations: i) it is unable 
to detect the forgeries in videos with frequent eye blinking, ii) it is unable to detect manipulated faces with closed eyes 
in training, and iii) it is inapplicable in scenarios where forgers can create realistic eye blinking in synthesized faces. 
Nataraj et al. [161] proposed a method to detect forged images by calculating the pixel co-occurrence matrices at three 
color channels of the image. Then a CNN model was trained to learn important features from the co-occurrence 
matrices to differentiate manipulated and non-manipulated content. Sabir et al. [155] observed that while generating 
the manipulated content, forgers often do not impose temporal coherence in the synthesis process. So, in [155], a 
recurrent convolutional model was used to investigate the temporal artifacts to identify synthesized faces in the images. 
These techniques [155, 161] achieve better detection performance, however they can only process static images.  
Rossler et al. [162] employed both the handcrafted (co-occurrence matrix) and learned features for detecting 
manipulated content. It was concluded in [162] that the detection performance of both networks, either employing 
hand-crafted or deep features, degrade when evaluating them on compressed videos. To analyze the mesoscopic 
properties of manipulated content, Afchar et al. [163] proposed an approach where they employed two variants of the 
CNN model with a small number of layers named Meso-4 and MesoInception-4. This method has managed to reduce 
the computational cost by down sampling the frames, but at the expense of a decrease in accuracy in deepfake 
detection. Nguyen et al. [164] proposed a multi-task, learning-based CNN network to simultaneously detect and 
localize manipulated content from the videos. An autoencoder was used for the classification of forged content, while 
a y-shaped decoder was applied to share the extracted information for the segmentation and reconstruction steps. This 



model is robust to deepfakes detection; however, the evaluation accuracy degrades over unseen scenarios. To 
overcome the issue of performance degradation as in [164], Stehouwer et al. [165] proposed a Forensic transfer (FT) 
based CNN approach for deepfake detection. This work [165], however, suffers from high computational cost due to 
a large feature space. Amerini et al. [156] proposed an approach based on optical flow fields to detect synthesized 
faces in digital videos. The optical flow fields [203] of each video frame were computed using PWC-Net [204]. The 
estimated optical flow fields of frames were used to train the VGG16 and ResNet50 to classify bonafide and fake 
content. This method [156] exhibits better deepfake detection performance, however, only initial results have been 
reported.  
Montserrat et al. [166] introduced a method of locating forensic manipulations made within videos. Initially, MTCNN 
[205] was employed to detect the faces from all video frames on which CNN was applied, to compute the features. In 
the next step, the Automatic Face Weighting (AFW) mechanism, along with a Gated Recurrent Unit, was used to 
discard the false-detected faces. Finally, an RNN was employed to combine the features from all steps and locate the 
manipulated content in the videos. The approach in [166] works well for deepfake detection, however, it is unable to 
obtain the prediction from the features in multiple frames. Lima et al. [167] introduced a technique to detect video 
manipulation by learning the temporal information of frames. Initially, VGG-11 was employed to compute the features 
from video frames, on which LSTM was applied for temporal sequence analysis. Several CNN frameworks, named 
R3D, ResNet, I3D, were trained on the temporal sequence descriptors outputted by the LSTM, to identify original and 
manipulated videos. This approach [167] improves deepfake detection accuracy but at the expense of high 
computational cost. Agarwal et al. [147] presented an approach to locate face-swap-based manipulations by combining 
both facial and behavioral biometrics. The behavioral biometric was recognized with the encoder-decoder network 
(Facial Attributes-Net, FAb-Net) [206]. Whereas VGG-16 was employed for facial features computation. Finally, by 
merging both metrics the inconsistencies in the matching identities were revealed to locate face-swap deepfakes. This 
approach [147] works well for unseen cases, however, it may not generalize well to lip-synch-based deepfakes. 
Fernandes et al. [150] introduced a technique to locate visual manipulation by measuring the heart-rate of the subjects. 
Initially, three techniques: skin color variation [207], average optical intensity [208], and Eulerian video magnification 
[209], were used to measure heart rate. The computed heart-rate was used to train a Neural Ordinary Differential 
Equations (Neural-ODE) model [210] to differentiate the original and altered content. This technique  [150] works 
well for deepfakes detection but has increased computational complexity.  
Wang et al. [178] introduced a technique to locate synthesized faces. Initially, deep-features were computed by 
employing VGG-Face [211] and used to train an SVM for fake-faces classification. The approach in [178] works well 
under the presence of compression operations but its performance degrades significantly for additive noise attacks. 
Yu et al. [144] presented an attribution network architecture to map an input sample to its related fingerprint image. 
The correlation index among each sample fingerprint and model fingerprint acts as a softmax logit for classification. 
This approach [144] exhibits better detection accuracy, however, it may not perform well with post-processing 
operations i.e. noise, compression, and blurring, etc.  Marra et al. [168] proposed a study to identify the GAN-
generated fake images. Particularly, [168] introduced a multi-task incremental learning detection approach to locate 
and classify new types of GAN generated samples without affecting the detection accuracy of the previous ones. Two 
solutions related to the position of the classifier were introduced by employing the iCaRL algorithm for incremental 
learning [212], named as Multi-Task MultiClassifier, and Multi-Task Single Classifier. This approach [168] is robust 
to unseen GAN generated samples but unable to perform well if information on the fake content generation method is 
not available.  
Chen et al. [213] introduced a technique to identify audio manipulation. The approach [213] works by employing a 
large margin cosine loss function (LMCL) along with online frequency masking augmentation to train the NN to learn 
more discriminative key-point embedding. This technique [213] shows better audio manipulation detection accuracy 
but may not perform well in the presence of noisy conditions. Huang et al. [214] presented an approach for audio 
spoofing detection. Initially, short-term zero-crossing rate and energy were utilized to identify the silent segments 
from each speech signal. In the next step, the linear filter bank (LFBank) key-points were computed from the 
nominated segments in the relatively high-frequency domain. Lastly, an attention-enhanced DenseNet-BiLSTM 
framework was built to locate audio manipulations. This method [214] can avoid the over-fitting, however, it is at the 
expense of high computational cost. Wu et al. [177] introduced a novel key-points genuinization based light 
convolutional neural networks (LCNN) framework for the identification of synthetic speech manipulation. The 
attributes of the original speech were utilized to train a model using a CNN. It was then converted to an original key-
point distribution closer to that of genuine speech. The transformed key-points were used with an LCNN to identify 
genuine and altered speech. This approach [177] is robust to synthetic speech manipulation detection. It is, however, 
unable to deal with replay attack detection. Lai et al. [215] presented an approach for locating voice manipulation. 
Initially, the Attentive Filtering Network was employed for key-point engineering, based on which ResNet-based 



Classifier was trained to detect the replay attacks. The approach in [215] is robust to speech alteration detection, 
however, performance can be further improved. Yang et al. [216] employed inverted constant-Q coefficients, inverted 
constant-Q cepstral coefficients, constant-Q block coefficients, and inverted constant-Q linear block coefficients to 
train a DNN to differentiate between actual and spoofed speech. This approach [216] is robust to noisy conditions, 
however, it is unable to perform well for real-world scenarios. 
 

Table 5: An overview of Deepfakes detection techniques based on deep learning and their limitations 
Author Technique Features Best Evaluation 

performance 
Dataset Limitations 

Face-swap 
Li e al. [160] VGG16, 

ResNet50, 
ResNet101, 
ResNet152 

DLib facial 
landmarks 

AUC=84.5 (VGG16), 
97.4 (ResNet50), 95.4 

(ResNet101), 93.8 
(ResNet152) 

DeepFake-TIMIT § Not robust for multiple 
video compression. 

 

Guera et al. [154] CNN/ RNN Deep features Accuracy=97.1% Customized dataset § Applicable to short videos 
only (2 sec). 

Li et al. [149] CNN/RNN DLib facial 
landmarks 

TPR= 99% Customized daatset  § Fails over frequent and 
closed eyes blinking. 

Montserrat et al. 
[166] 

CNN + RNN Deep features Accuracy=92.61% DFDC § Performance needs 
improvement. 

Lima et al. [167] VGG11 + 
LSTM 

Deep features Accuracy= 98.26%,  
AUC= 99.73% 

Celeb-DF § Computationally complex. 

Agarwal et al. [147] VGG6 + 
encoder-
decoder 
network 

Deep features + 
behavioral 
biometrics 

AUC= 99% WLDR § May not generalize well to 
lip-synch based deepfakes. AUC=  99% FF 

AUC= 93% DFD 
AUC= 99% Celeb-DF 

Fernandes et al. 
[150] 

Neural-ODE 
model 

Heart-rate Loss=0.0215 Custom § Computationally 
expensive Loss=0.0327 DeepfakeTIMIT 

Face Reenactment 
Amerini et al. [156] VGG16,  

ResNet 
Optical flow 
fields 

Accuracy= 81.61%  
(VGG16), 75.46% 

(ResNet) 

FaceForensic++ § Very few results are 
reported 

Face-swap (FS) & Face Reenactment (FR) 
Sabir et al. [155] CNN/RNN CNN features Accuracy= 96.3% 

(FS), 94.35 % (FR) 
FaceForenciss++ § Results are reported for 

static images only. 
Afchar et al. [163] MesoInceptio

n-4 
Deep features 
(DF)  

TPR= 81.3 % (FS) 
TPR= 81.3% (FR) 

FaceForenciss++ § Performance degrades on 
low quality videos. 

Nguyen et al. [164] CNN Deep features Accuracy=83.71% 
(FS), 92.50% 

(FR) 

FaceForensics++ § Degraded detection 
performance for unseen 
cases. 

Stehouwer et al. 
[165] 

CNN Deep features Accuracy=99.43% 
(FS), 99.4% (FR) 

Diverse Fake Face 
Dataset (DFFD) 

§ Computationally 
expensive due to large 
feature vector space. 

Rossle et al. [162] SVM + CNN Co-Occurance 
matrix + DF 

Accuracy= 90.29% 
(FS), 86.86% (FR) 

FaceForensics++ § Low performance on 
compressed videos. 

GAN-generated fake images 
Nataraj et al [161]  CNN Deep features + 

co-occurrence 
matrices 

Accuracy = 99.49% § cycleGAN § Works with static images 
only. 

§ Low performance for jpeg 
compressed images. 

Accuracy = 93.42% § StarGAN 

Yu et al. [144] CNN Deep features  Accuracy = 99.43% CelebA § Poor performance on post-
processing operations.   

Marra et al. [168] CNN + 
Incremental 

Learning 

Deep features  Accuracy = 99.3% Customized § Needs source 
manipulation technique 
information 

Audio manipulation 
Chen et al. [213] LMCL 60-D LFBank EER= 1.26% ASVspoof 

2019 challenge [217] 
§ Not robust to noisy 

conditions.   
Huang et al. [214] DenseNet-

BiLSTM 
LFBank EER= 6.43% § BTAS2016 [218] § Computationally complex 

approach.     EER=0.53% § ASVspoof 2019 
challenge [217] 

Wu et al. [177] LCNN genuine speech 
features 

EER= 4.07% ASVspoof 
2019 challenge 

§ Can’t deal with replay 
attack detection.     

Lai et al. [215] ResNet time-frequency 
maps 

EER= 8.99% ASVspoof 
2017 challenge [219] 

§ Performance needs 
improvement.     



5.3 Challenges in deepfakes detection methods 
Although remarkable advancements have been made in the performance of deepfake detectors there are numerous 
concerns about current detection techniques that need attention. Some of the challenges of deepfake detection 
approaches are discussed in this section. 

5.3.1 Quality of Deepfake Datasets  
The accessibility of large databases of deepfakes is an important factor in the generation of deepfake detection 
techniques. However, analyzing the quality of videos from these datasets reveals several ambiguities in comparison 
to actual manipulated content found on the internet. Different visual artifacts that can be visualized in these databases 
are: i) temporal flickering in some cases during the speech, ii) blurriness around the facial regions, iii) over smoothness 
in facial texture/lack of facial texture details, iv) lack of head pose movement or rotation, v) lack of face occluding 
objects such as glasses, lightning effect, etc., vi) sensitive to variations in input posture or gaze, skin color 
inconsistency, and identity leakage, and vii) limited availability of a combined high-quality audio-visual deepfake 
dataset. The aforementioned dataset ambiguities are due to imperfect steps in the manipulation techniques. 
Furthermore, manipulated content of low quality can be barely convincing or create a real impression. Therefore, even 
if detection approaches exhibit better performance over such videos it is not guaranteed that these methods will 
perform well when employed in the wild. 

5.3.2 Performance Evaluation 
Presently, deepfake detection methods are formulated as a binary classification problem, where each sample can be 
either real or fake. Such classification is easier to build in a controlled environment, where we generate and verify 
deepfake detection techniques by utilizing audio-visual content that is either original or fabricated. However, for real-
world scenarios, videos can be altered in ways other than deepfakes, so content not detected as manipulated does not 
guarantee the video is an original one. Furthermore, deepfake content can be the subject of multiple types of alteration 
i.e. audio/visual, and therefore a single label may not be completely accurate. Moreover, in visual content with multiple 
people’s faces, usually one or more of them are manipulated with deepfakes over a segment of frames. Therefore, the 
binary classification scheme should be enhanced to multiclass/multi-label and local classification/detection at the 
frame level, to cope with the challenges of real-world scenarios. 

5.3.3 Lack of Explainability in Detection Methods 
Existing deepfake detection approaches are typically designed to perform batch analysis over a large dataset. However, 
when these techniques are employed in the field by journalists or law enforcement, there may only be a small set of 
videos available for analysis. A numerical score parallel to the probability of an audio or video being real or fake is 
not as valuable to the practitioners if it cannot be confirmed with an appropriate proof of the score. In those situations, 
it is very common to demand an explanation for the numerical score in order for the analysis to be believed before 
publication or utilization in a court of law. Most deepfakes detection methods lack such an explanation however, 
particularly those which are based on DL approaches due to their black-box nature. 

5.3.4 Temporal Aggregation  
Existing deepfake detection methods are based on binary classification at the frame level,  
i.e. checking the probability of each video frame as real or manipulated. However, these approaches do not consider 
temporal consistency between frames, and suffer from two potential problems: (i) deepfake content shows temporal 
artifacts, and (ii) real or fake frames could appear in sequential intervals. Furthermore, these techniques require an 
extra step to compute the integrity score at the video level, as these methods need to combine the score from each 
frame to generate a final value.  

5.3.5 Social Media Laundering 
Social platforms like Twitter, Facebook, or Instagram are the main online networks used to spread the audio-visual 
content among the population. To save the bandwidth of the network or to secure the user’s privacy, such content is 
stripped of meta-data, down-sampled, and substantially compressed before uploading. These manipulations, normally 
known as social media laundering, remove clues with respect to underlying forgeries, and eventually increase false 
positive detection rates. Most deepfake detection approaches employing signal level key-points are more affected by 
social media laundering. A measure to increase the accuracy of deepfake identification approaches over social media 
laundering is to keenly include simulations of these effects in training data, and also increase the evaluation databases 
to contain data on social media laundered visual content. 
 
6 Datasets 
To analyze the detection accuracy of proposed methods it is of utmost importance to have a good and representative 
dataset for performance evaluation. Moreover, the techniques should be validated over cross datasets to show their 
generalization power. Therefore, researchers have put in significant effort over the years by preparing the standard 



datasets for manipulated visual and audio content. In this section, we have presented a detailed review of the standard 
datasets that are currently used to evaluate the performance of audio and video deepfake detection techniques. Tables 
6 and 7 show a comparison of available video and audio deepfake datasets respectively. 
6.1 Video Deepfake datasets  
6.1.1 UADFV  
The first dataset released for deepfake detection was UADFV [143]. It consists of a total of 98 videos, where 49 are 
real videos collected from YouTube and manipulated by using the FakeApp application [38] to generate 49 fake 
videos. The average length of videos is 11.14 sec with an average resolution of 294×500 pixels.  However, the visual 
quality of videos is very low, and the resultant alteration is obvious and thus easy to detect.  
6.1.2 DeepfakeTIMIT  
DeepfakeTIMIT [158] is another standard dataset for deepfake detection which was introduced in 2018. This dataset 
consists of a total of 620 videos of 32 subjects.  For each subject, there are 20 deepfake videos of two quality levels, 
where 10 videos belong to DeepFake-TIMIT-LQ and the remaining 10 belong to DeepFake-TIMIT-HQ. In DeepFake-
TIMIT-LQ, the resolution of the output image is 64×64, whereas, in DeepFake-TIMIT-HQ, the resolution of output 
size is 128×128. The fake content is generated by employing face swap-GAN [65], however, the generated videos are 
only 4 seconds long and the dataset contains no audio channel manipulation. Moreover, the resultant videos are often 
blurry and people in actual videos are mostly presented in full frontal face view with a monochrome color background. 
6.1.3 FaceForensics++  
One of the most famous datasets for deepfake detection is FaceForensics++ [162]. This dataset was presented in 2019 
as an extended form of the FaceForensics dataset [220], which contains videos with facial expressions manipulation 
only, and which was released in 2018. The FaceForensics++ dataset has four subsets named FaceSwap [221], 
DeepFake [39], Face2Face [33], and NeuralTextures [222]. It contains 1000 original videos collected from the 
YouTube-8M dataset [223]  and 3,000 manipulated videos generated using the computer graphics and deepfake 
approaches specified in [220]. This dataset is also available in two quality levels i.e. uncompressed and H264 
compressed format, which can be used to evaluate the performance of deepfake detection approaches on both 
compressed and uncompressed videos. The FaceForensics++ dataset fails to generalize lip-sync deepfakes however, 
and some videos exhibit color inconsistencies around the manipulated faces. 
6.1.4 Celeb-DF  
Another popular dataset used for evaluating deepfake detection techniques is Celeb-DF [141]. This dataset presents 
videos of higher quality and tries to overcome the problem of visible source artifacts found in previous databases. The 
CelebDF dataset contains 408 original videos and 795 fake videos. The original content was collected from Youtube, 
which is divided into two parts named Real1 and Real2 respectively. In Real1, there are a total of 158 videos of 13 
subjects with different gender and skin color. Real2 comprises 250 videos, each having a different subject, and the 
synthesized videos are generated from these original videos through the refinement of existing deepfake algorithms 
[224, 225].   
 

Table 6: Comparison of Deepfakes detection datasets 
 UADFV [143] DeepFake-

TIMIT[158] 
FaceForensics++ [162] Celeb-DF [141] DFDC [58] 

Released Nov, 2018 Dec, 2018 Jan, 2019 Nov, 2019 Oct, 2019 
Total videos 98 620 4000 1203 5250 
Real content 48 Nill 1000 408 1131 
Fake content 48 620 3000 795 4119 
Tool/ technology 
used for fake 
content generation 

FakeApp application 
[38] 

faceswap- GAN [65] deepfake, CG-
manipulations 

deepfake Unknown 

Length 11.4 sec 4 sec - 13 sec - 
Resolution 294×500 64×64 (LQ) 

128×128 (HQ) 
480p, 720p, 1080p various 180p – 2160p 

Format - JPG H.264, CRF=0, 23, 40 MPEG4 H.264 
Visual quality low low low high high 
Temporal 
flickering 

yes yes yes improved improved 

modality visual Audio/visual visual visual Audio/visual 
 
6.1.5 Deepfake Detection Challenge (DFDC)  
Recently, the Facebook community launched a challenge, aptly named the Deepfake Detection Challenge (DFDC) 
[58], and released a new dataset that contains 1131 original videos and 4119 manipulated videos. The altered content 



is generated using two unknown techniques. The DFDC database is publicly available on the Kaggle competition [58]. 
It contains 100,000 fake videos along with 19,000 original samples. 
All of the above-mentioned datasets contain a synthesized face portion only and the datasets lack upper/full body 
deepfakes. A more robust dataset is needed which should be able to synthesize the entire body of the source person.  
 
6.2 Audio Deepfake Datasets 
6.2.1 LJ speech and M-AILabs dataset 
LJSpeech [226] and M-AILabs [227] dataset are famous for the real-speech database employed in numerous TTS 
applications, i.e. DeepVoice 3 [120]. The LJSpeech database is comprised of 13,100 clips totaling 24 hours length. 
All utterances are recorded by a female speaker. The M-AILABS dataset consists of total 999 hours and 32 minutes 
of audio. This dataset was created with multiple speakers in 9 different languages.  
6.2.2 Mozilla TTS 
Mozilla Firefox a well-known publicly available browser, released the biggest open-source database of people 
speaking [228]. Initially, the database included 1400 hours of recorded voices, in 18 different languages, in 2019. 
Later it was extended to 7,226 hours of recoded voices in 54 diverse languages. This dataset contains 5.5 million audio 
clips and was employed by Mozilla’s Deep Speech toolkit.   
6.2.3 ASV spoof 2019 
Another well-known dataset for fake audio detection is ASVspoof-2019 [229], which is comprised of two parts for 
performing logical access (LA) and physical access (PA) state analysis. Both LA and PA are created from the VCTK 
base corpus, which comprises audio clips taken from 107 speakers (46 males, 61 females). LA consists of both voice 
cloning and voice conversion samples, whereas PA consists of replay samples along with bona fide ones. Both datasets 
are further divided into three databases, named training, development, and evaluation, which contain clips from 20- 
(8 males, 12 females), 10- (4 males, 6 females), and 48- (21 males, 27 females) speakers respectively. Further 
categorization is diverse in terms of presenters, and the recording situations are the same for all source samples. The 
training and development sets contain spoofing occurrences created with the same method/conditions (labeled as 
known attacks), while the evaluation set contains samples with unknown attacks. 
6.2.4 Fake-or-Real (FOR) dataset 
The FOR database [230] is another dataset that is widely employed for synthetic voice detection. This database 
consists of over 195,000 samples both from humans and AI-synthetic speech. This database groups samples from the 
new TTS method (i.e. Deep Voice 3[120] and Google-Wavenet [47]) together with diverse human speech samples ( 
i.e Arctic Dataset, LJSpeech Dataset, VoxForge Dataset). The FOR database has four versions, namely for-original 
(FO), for-norm (FN), for-2sec (F2S), and for-rerec (FR). FO contains unbalanced voices without alterations, while FN 
comprises balanced unaltered samples in terms of gender, class, and volume, etc.  F2S contains data from FN, 
however, the samples are trimmed to 2 seconds, and the FR version is a rerecorded version of the F2S database, to 
simulate a condition in which an invader passes a sample via a voice channel (i.e. a cellphone call or a voice message). 
6.2.5 Baidu Dataset 
The Baidu Silicon Valley AI Lab cloned audio dataset is another database employed for cloned speech detection [50]. 
This database is comprised of 10 ground truth speech recordings, 120 cloned samples, and 4 morphed samples. 

 
Table 7: Comparison of audio fakes detection datasets 

 LJ speech 
dataset [226] 

M-AILabs 
dataset [227] 

Mozilla TTS 
[228] 

FOR dataset 
[230] 

Baidu Dataset 
[50] 

ASV spoof 
2019[229] 

Released 2017 2019 2019 2019 2018 2019 
Total samples 13100  - 5.5 million 195,000 120 122157 
Length (hrs) 24  999 hrs 32min 7226 - 0.6 - 
Speaker Accent Native Native 24% US 

English, 8% 
British English  

Native US English, 
British English 

Native 

Languages 1 9 54 1 1 1 
Speaker gender 100% Female  Male, female 47% Male 15% 

Female 
50% male, 50% 

female 
50% male, 50% 

female 
43% male, 57 

female 
Format wav  wav mp3 mp3 mp3 mp3 
Tool/ technology 
used for 
generation 

recorded recorded recorded Deep Voice 3, 
TTs, Google-
Wavenet etc. 

[230] 

Neural voice 
cloning [50] 

Tacotron2 [9] 
and WaveNet 

[10] 



7 Future Directions 
Synthetic media is gaining a lot of attention because of its potential positive and negative impact on our society. The 
competition between deepfake generation and detection will not end in the foreseeable future, although impressive 
work has been presented for the generation and detection of deepfakes. There is still, however, room for improvement. 
In this section, we discuss the current state of deepfakes, their limitations, and future trends.  

7.1 Creation 
Visual media has more influence compared to text-based disinformation. Recently, the research community has 
focused more on the generation of identity agnostic models and high-quality deepfakes. A few distinguished 
improvements are i) a reduction in the amount of training data due to the introduction of un-paired self-supervised 
methods [231], ii) quick learning, which allows identity stealing using a single image  [90, 92], iii) enhancements in 
visual details [85, 100], iv) improved temporal coherence in generated videos by employing optical flow estimation 
and GAN based temporal discriminators [74], v) the alleviation of visible artifacts around face boundary by adding 
secondary networks for seamless blending [232], and vi) improvements in synthesized face quality by adding multiple 
losses with different responsibilities, such as occlusion, creation, conversion, and blending [79]. Several approaches 
have been proposed to boost the visual quality and realism of deepfake generation, however, there are a few 
limitations.  Most of the current synthetic media generation focuses on a frontal face pose. In facial reenactment, for 
good results the face is swapped with a lookalike identity. However, it is not possible to always have the best match, 
which ultimately results in identity leakage.   
AI-based manipulations are not restricted to the creation of visual content only, leading to a generation of highly 
genuine audio deepfakes. The quality of audio deepfakes has significantly improved, and requires less training data in 
to generate more realistic synthetic audio of the target speaker. The employment of synthesized speech for 
impersonating targets can produce highly convincing deepfakes with a marked negative adverse impact on society. 
The current audio-visual content is generated separately using multiple disconnected steps, which ultimately results 
in the generation of asynchronous content. Present deepfake generation focuses on the face region only, however the 
next generation of deepfakes is expected to target full body manipulations, such as a change in body pose, along with 
convincing expressions. Target-specific joint audio-visual synthesis with more naturalness and realism in speech is a 
new cutting-edge application of the technology in the context of persona appropriation [75, 233]. Another possible 
trend is the creation of real-time deepfakes. Some researchers have already reported attaining real-time deepfakes at 
30fps [67]. Such alterations will result in the generation of more believable deepfakes.  

7.2 Detection 
Recent deepfake identification approaches typically deal with face swapping videos, and the majority of uploaded 
fake videos belong in this category. Major improvements in detection algorithms include i) identification of artifacts 
left during the generation process, such as inconsistencies in head pose [143], lack of eye blinking [196], color 
variations in facial texture [140] and teeth alignment, ii) detection of unseen GAN generated samples, iii) spatial-
temporal features, and iv) psychological signals like heart rate [150], and an individual’s behavior patterns [146]. 
Although extensive work has been presented for automated detection, there is still need for improvement.  
•  The existing methods are not robust to post-processing operations like compression, noisy effects, light 

variations, etc. Moreover, limited work has been presented that can detect both audio and visual deepfakes. 
• Recently, most of the techniques have focused on face-swap detection by exploiting its limitations, like visible 

artifacts. However, with immense developments in technology, the near future will produce more sophisticated 
face-swaps, such as impersonating someone, with the target having a similar face shape, personality, and 
hairstyle. Aside from this, other types of deepfake, like face-reenactment and lip-synching are getting stronger 
day by day.  

• Anti-forensic techniques can be employed to mark an original video as a deepfake through the addition of 
simulated signal level key-points utilized by existing identification methods, a state we named fake deepfake.  

• Furthermore, to prevent deepfakes, some authors presented approaches to identify forensic changes made within 
visual content by employing the concept of blockchain and smart contracts [234, 235]. In [235] the authors 
utilized Ethereum smart contracts to locate and track the origin and history of manipulated information and its 
source, even in the presence of multiple manipulation attacks. This smart contract applied the hashes of the 
interplanetary file system to save videos together with their metadata. This method may perform well for 
deepfake identification; however, it is applicable only if the metadata of videos do exist. Physics of AI to detect 
deepfakes using small datasets: The current deepfake detectors face challenges, particularly due to incomplete, 
sparse, and noisy data in training phases. There is a need to explore innovative AI architectures, algorithms, and 
approaches that “bake in” physics, mathematics, and prior knowledge relevant to deepfakes. Embedding physics 



and prior knowledge using knowledge-infused learning into AI will help to overcome the challenges of sparse 
data and will facilitate the development of generative models that are causal and explanative. 

• Existing deepfake detectors have mainly relied on the fixed features of existing cyber-attacks by using ML 
techniques, including unsupervised clustering and supervised classification methods, and therefore they are less 
likely to detect unknown deepfakes. Hence, in the future, reinforcement learning (RL) techniques could play a 
pivotal role in the detection of deepfakes. 

• Reinforcement Learning, combined with the Game theory, for detection and to counter antiforensics attacks: RL 
and particularly deep reinforcement learning (DRL) is extremely efficient in solving intricate cyber-defense 
problems. Thus, DRL could offer great potential for not only deepfake detection but also to counter antiforensic 
attacks on the detectors. Since RL can model an autonomous agent to take sequential actions optimally with 
limited or without prior knowledge of the environment, thus it could be used to meet a need for developing 
algorithms to capture traces of anti-forensic processing, and to design attack-aware deepfake detectors. The 
defense of the deepfake detector against adversarial input could be modeled as a two-player zero-sum game with 
which player utilities sum to zero at each time step. The defender here is represented by an actor-critic DRL 
algorithm [236]. 

• Since many complex deepfakes comprise temporal sequences of dynamic behaviors, approaches such as [237] 
could be used to model a detection problem to a state value prediction task of Markov chains. The linear temporal 
difference (TD) RL algorithm [238] could be used as the state value prediction model, where its outcomes could 
be compared with a predetermined threshold to distinguish bona fide and deepfake artifacts. Alternatively, the 
kernel-based RL approach using least-squares TD [239] could also be used. By using kernel methods, the 
generalization capability of the TD RL is enhanced, especially in high dimensional and nonlinear feature spaces. 
Therefore, the kernel least squares TD algorithm could be used to predict anomaly probabilities accurately, 
which would contribute to improving a deepfake detector’s performance. 

• Hybrid signature, anomaly, and reinforcement learning-based approaches: Both anomaly-based and signature-
based detection methods have their own pros and cons. For example, anomaly detection-based approaches show 
a high false alarm rate because they may classify a bona fide multimedia artifact whose patterns are rare in the 
dataset as an anomaly. On the other hand, signature-based approaches cannot discover unknown attacks [240]. 
Therefore, the hybrid approach of using both anomaly and signature-based detection needs to be tried out to 
identify known and unknown attacks. Furthermore, a collaboration with the RL method could be added to the 
hybrid signature and anomaly approach. More specifically, RL can give a reward (or penalty) to the system when 
it selects frames of deepfakes that contain (or do not contain) anomalies, or any signs of manipulation.  

• Feature and classifier fusion: Most of the existing approaches have focused on one specific type of feature, such 
as landmark features. However, as the complexity of deepfakes is increasing, it is important to fuse landmark, 
photoplethysmography (PPG) and audio-based features. Likewise, it is important to evaluate the fusion of 
classifiers. Particularly, the fusion of anomaly and signature-based ensemble learning will assist to improve the 
accuracy of deepfakes detectors.  

• Unified detector to detect multiple forgeries: Existing research on deepfakes has mainly focused on detecting 
manipulation in the visual content of the video. However, audio manipulation, an integral component of 
deepfakes, is mostly ignored by the research community. There exists a need to develop unified deepfake 
detectors that are capable of effectively detecting both audio (i.e. replay, cloning, and cloned-replay) and visual 
forgeries (face-swap, lip-sync, and puppet-master) simultaneously. 

• Existing deepfakes datasets lack the potential attributes (i.e. multiple visual and audio forgeries, etc.) required 
to evaluate the performance of more robust deepfake detection methods. The research community has ignored 
the fact that deepfake videos contain not only visual forgeries but audio manipulation as well. Existing deepfake 
datasets do not consider audio forgery and only focus on visual forgeries. In near future, the role of cloning and 
voice replay spoofing may increase in deepfake video generation. Additionally, shallow audio forgeries can 
easily be fused along-with deep audio forgeries in deepfake videos. We have already developed a voice spoofing 
detection corpus [241] for single- and multi-order replay attacks. Currently, we are working on developing a 
robust voice cloning and audio-visual deepfake dataset that can be effectively used to evaluate the performance 
of futuristic audio-visual deepfake detection methods. 

• A unified method to address the variation of cloned attacks, such as cloned replay. The majority of voice spoofing 
detectors target detecting either replay or cloning attacks [159-161, 196]. These two-class oriented, genuine vs. 
spoof countermeasures, are not ready to counter multiple spoofing attacks on automatic speaker verification 
(ASV) systems. A study on presentation attack detection indicated that the countermeasures trained on a specific 
type of spoofing attack hardly generalizes well for other types of spoofing attacks [242]. Moreover, there does 



not exist a unified countermeasure that can detect replay and cloning attacks in multi-hop scenarios, where 
multiple microphones and smart speakers are chained together. We addressed the problem of spoofing attack 
detection on multi-hop scenarios in our prior work [10], but only for voice replay attacks. Therefore, there exists 
an urgent need to develop a unified countermeasure that can effectively detect a variety of spoofing attacks (i.e. 
replay, cloning, and cloned replay) in a multi-hop scenario.  

• Integrated ASV with anti-spoofing: The exponential growth of smart speakers and other voice-enabled devices 
considers ASV a fundamental component. However, optimal utilization of ASV in critical domains, such as 
financial services, health care, etc., is not possible unless we counter the threats of multiple voice spoofing 
attacks on the ASV. Thus, this vulnerability also presents a need to develop a robust and unified spoofing 
countermeasure.  

• Chained cloned and cloned replay attack detection in smart speakers. There exists a crucial need to implement 
federated, learning-based, lightweight approaches to detect the manipulation at the source, so an attack doesn’t 
traverse a network of smart speakers (or other IoT devices) [9,10]. 

8 Conclusion 
This survey paper presents a comprehensive review of existing deepfake generation and detection methods. Not all 
digital manipulations are harmful. However, due to immense technological advancements it is now very easy to 
produce realistic fabricated content. Therefore, malicious users can use it to spread disinformation to attack individuals 
and cause social, psychological, religious, mental, and political stress. In the future, we imagine seeing the results of 
fabricated content in many other modalities and industries. There is a cold war between deepfake generation and 
detection methods. As there are improvements in one it causes challenges for the other. We provided a detailed 
analysis of existing audio and video deepfake generation and detection techniques, along with their strengths and 
weaknesses. We have also discussed existing challenges and the future directions of both deepfake creation and 
identification methods.  
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