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Abstract
Recent progress in natural language generation has raised dual-use concerns. While
applications like summarization and translation are positive, the underlying tech-
nology also might enable adversaries to generate neural fake news: targeted propa-
ganda that closely mimics the style of real news.
Modern computer security relies on careful threat modeling: identifying potential
threats and vulnerabilities from an adversary’s point of view, and exploring potential
mitigations to these threats. Likewise, developing robust defenses against neural
fake news requires us first to carefully investigate and characterize the risks of these
models. We thus present a model for controllable text generation called Grover.
Given a headline like ‘Link Found Between Vaccines and Autism,’ Grover can
generate the rest of the article; humans find these generations to be more trustworthy
than human-written disinformation.
Developing robust verification techniques against generators like Grover is critical.
We find that best current discriminators can classify neural fake news from real,
human-written, news with 73% accuracy, assuming access to a moderate level of
training data. Counterintuitively, the best defense against Grover turns out to be
Grover itself, with 92% accuracy, demonstrating the importance of public release
of strong generators. We investigate these results further, showing that exposure
bias – and sampling strategies that alleviate its e↵ects – both leave artifacts that
similar discriminators can pick up on. We conclude by discussing ethical issues
regarding the technology, and plan to release Grover publicly, helping pave the
way for better detection of neural fake news.

1 Introduction

Online fake news – news designed to intentionally deceive – has recently emerged as a major
societal problem. Malicious actors spread fallacious viral stories in order to gain advertising revenue,
influence opinions, and even tip elections (Faris et al., 2017; Wardle and Derakhshan, 2017). As such,
countering the spread of disinformation online presents an urgent technical and political issue.

To the best of our knowledge, most disinformation online today is manually written (Vargo et al., 2018).
However, as progress continues in natural language generation, malicious actors will increasingly be
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able to controllably generate realistic-looking propaganda at scale. Thus, while we are excited about
recent progress in text generation (Józefowicz et al., 2016; Radford et al., 2018; 2019), we are also
concerned with the inevitability of AI-generated ‘neural’ fake news.1

With this paper, we seek to understand and respond to neural fake news before it manifests at scale.
We draw on the field of computer security, which relies on threat modeling: analyzing the space of
potential threats and vulnerabilities in a system to develop robust defenses. To scientifically study the
risks of neural disinformation, we present a new generative model called Grover.2 Our model allows
for controllable yet e�cient generation of an entire news article – not just the body, but also the
title, news source, publication date, and author list. This lets us study an adversary with controllable
generations (e.g. Figure 1, an example anti-vaccine article written in the style of the New York
Times).

Humans rate the disinformation generated by Grover as trustworthy, even more so than human-
written disinformation. Thus, developing robust verification techniques against generators such as
Grover is an important research area. We consider a setting in which a discriminator has access
to 5000 Grover generations, but unlimited access to real news. In this setting, the best existing
fake news discriminators are, themselves, deep pretrained language models (73% accuracy) (Peters
et al., 2018; Radford et al., 2018; 2019; Devlin et al., 2018). However, we find that Grover, when
used in a discriminative setting, performs even better at 92% accuracy. This finding represents an
exciting opportunity for defense against neural fake news: the best models for generating neural
disinformation are also the best models at detecting it.

Next, we investigate how deep pretrained language models distinguish between real and machine-
generated text. We find that key artifacts are introduced during generation as a result of exposure bias:
the generator is not perfect, so randomly sampling from its distribution results in generations that fall
increasingly out-of-distribution as length increases. However, sampling strategies that alleviate these
e↵ects also introduce artifacts that strong discriminators can pick up on.

We conclude with a sketch of the ethical territory that must be mapped out in order to understand our
responsibilities as researchers when studying fake news, and the potential negative implications of
releasing models (Hecht et al., 2018; Zellers, 2019; Solaiman et al., 2019). Accordingly, we suggest
a provisional policy of how such models should be released and why we believe it to be safe – and
perhaps even imperative – to do so. We believe our proposed framework and accompanying models
provide a concrete initial proposal for an evolving conversation about ML-based disinformation
threats and how they can be countered.

2 Fake News in a Neural and Adversarial Setting

We present a framework – motivated by today’s dynamics of manually created fake news – for
understanding what adversaries will attempt with deep models, and how verifiers should respond.

Scope of fake news. There are many types of false news, ranging from satire to propaganda
(Wardle, 2017). In this paper, we focus on text-only documents formatted as news articles: stories
and their corresponding metadata that contain purposefully false information. Existing fake news is
predominantly human-written, for two broad goals: monetization (ad revenue through clicks) and
propaganda (communicating targeted information) (Bradshaw and Howard, 2017; Melford and Fagan,
2019). Achieving either goal requires the adversary to be selective about the news that they make,
whether by producing only viral content, or content that advances a given agenda.

Fact checking and verification: related work. There is considerable interest in fighting online
disinformation. Major platforms such as Facebook prioritize trustworthy sources and shut down
accounts linked to disinformation (Mosseri, 2018; Dwoskin and Romm, 2018). Some users of
these platforms avoid fake news with tools such as NewsGuard and Hoaxy (Shao et al., 2016) and
websites like Snopes and PolitiFact. These services rely on manual fact-checking e↵orts: verifying
the accuracy of claims, articles, and entire websites. E↵orts to automate fake news detection generally
point out stylistic biases that exist in the text (Rashkin et al., 2017; Wang, 2017; Pérez-Rosas et al.,

1 We thank past work, such as OpenAI’s Staged Release Policy for GPT2 for drawing attention to neural
disinformation, alongside other dual-use implications.

2Short for Generating aRticles by Only Viewing mEtadata Records.
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2018). These e↵orts can help moderators on social media platforms shut down suspicious accounts.
However, fact checking is not a panacea – cognitive biases such as the backfire e↵ect and confirmation
bias make humans liable to believe fake news that fits their worldview (Swire et al., 2017).

Framework. We cast fake news generation and detection as an adversarial game, with two players:

• Adversary. Their goal is to generate fake stories that match specified attributes: generally, being
viral or persuasive. The stories must read realistically to both human users as well as the verifier.
• Verifier. Their goal is to classify news stories as real or fake. The verifier has access to unlimited

real news stories, but few fake news stories from a specific adversary. This setup matches the
existing landscape: when a platform blocks an account or website, their disinformative stories
provide training for the verifier; but it is di�cult to collect fake news from newly-created accounts.

The dual objectives of these two players suggest an escalating “arms race” between attackers and
defenders. As verification systems get better, so too will adversaries. We must therefore be prepared
to deal with ever-stronger adversarial attacks, which is the focus of the next section.

3 Grover: Modeling Conditional Generation of Neural Fake News

Given existing online disinformation, we have reason to believe adversaries will try to generate
targeted content (e.g. clickbait and propaganda). Recently introduced large-scale generative models
produce realistic-looking text (Radford et al., 2019), but they do not lend themselves to producing
controllable generations (Hu et al., 2017).3 Therefore, to probe the feasibility of realistic-looking
neural fake news, we introduce Grover, which produces both realistic and controlled generations.

The current state-of-the-art in unconditional text generation views it as a language modeling problem
(Bengio et al., 2003), in which the probability of a document x is the product of the conditional
probability of generating each token xi given previous tokens:

ppxq “
Nπ

i“1

ppxi|x1 . . . xi´1q. (1)

The document is typically treated as a single unstructured text field, beginning with a <start> token
and ending with an <end> token. The latter, <end>, is particularly important because it indicates
the end of the field, and when to should stop generating. However, a news article has necessary
structure beyond the running text, or body field. Metadata fields include the domain where the article
is published (indirectly marking the style), the date of publication, the names of the authors, and
the headline of the article itself. Not only does generating a news article require producing all of
these components, these fields also allow significant control over the generations (e.g. specifying a
headline helps control the generated body). An article can be modeled by the joint distribution:

ppdomain, date, authors, headline, bodyq. (2)

However, it is not immediately obvious how to sample from Equation 2. One option is to define a
canonical order among the article’s fields F : ( f1† f2†. . .† f|F |), and model the article left-to-right in
that order using Equation 1: x

f1
1 , x

f1
2 , . . . , x

f|F |
| f|F ||. However, this ordering would forbid sampling certain

fields without prohibitively expensive marginalization. Alternatively, one could generate fields in any
order, but this requires the model to learn to handle |F |! potential orderings during inference time.

Our solution is Grover, a new approach for e�cient learning and generation of multi-field docu-
ments. We adopt the language modeling framework of Equation 1 in a way that allows for flexible
decomposition of Equation 2. During inference time, we start with a set of fields F as context, with
each field f containing field-specific start and end tokens. We sort the fields using a standard order4

and combine the resulting tokens together. To generate a target field ⌧, we append the field-specific
start token <start´⌧> to the context tokens; then, we sample from the model until we hit <end´⌧>.

3A common workaround is to have a human seed the text to provide context. However, this a) is a heavy
handed technique for biasing which may not capture the desired attributes, and b) leaves in place a human-written
beginning (as tokens are only generated left-to-right), which may create distributional artifacts.

4Our ordering is the following field types in order: domain, date, authors, headline, and then the body.
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TargetContext
wired.com New Research Shows that 

Vaccines Cause Autism
New research from the University of California, 

Davis, finds that childhood vaccinations 
themselves can cause autism in some kids…

domain

May 29, 2019

date authors headline body

wired.com New Research Shows that 
Vaccines Cause Autism

New research from the 
University of California, Davis, 

finds that childhood  …

domain

May 29, 2019

date headline body

Justin Furillo

authors

wired.com Justin Furillo
New research from the 

University of California, Davis, 
finds that childhood  …

domain

May 29, 2019

date bodyauthors
Vaccines Might Be a Bigger Threat to 

Your Child's Future Than You Realized

headline

a)

b)

c)

Figure 2: A diagram of three Grover examples for article generation. In row a), the body is generated
from partial context (the authors field is missing). In b), the model generates the authors. In c), the
model uses the new generations to regenerate the provided headline to one that is more realistic.

Figure 2 shows an example of using Grover to generate an anti-vaccine article. Here, the adversary
specifies a domain, date, and headline. After Grover generates the body, it can be used to generate a
fake author, before finally generating a new and more appropriate headline.

During training, we simulate inference by randomly partitioning an article’s fields into two disjoint
sets F1 and F2. We also randomly drop out individual fields with probability 10%, and drop out all
but the body with probability 35%. This allows the model to learn how to perform unconditional
generation. We sort the metadata fields in each set using our standard order, and concatenate the
underlying tokens. The model is then trained to minimize the cross-entropy of predicting the tokens
in F1 followed by the tokens in F2.5

Architecture. We draw on recent progress in training large Transformers for language modeling
(Vaswani et al., 2017), building Grover using the same architecture as for GPT2 (Radford et al.,
2019). We consider three model sizes. Our smallest model, Grover-Base, has 12 layers and 124
million parameters, on par with GPT and BERT-Base (Radford et al., 2018; Devlin et al., 2018). Our
next model, Grover-Large, has 24 layers and 355 million parameters, on par with BERT-Large. Our
largest model, Grover-Mega, has 48 layers and 1.5 billion parameters, on par with GPT2.

Dataset. We present RealNews, a large corpus of news articles from Common Crawl. Training
Grover requires a large corpus of news articles with metadata, but none currently exists. Thus, we
construct one by scraping dumps from Common Crawl, limiting ourselves to the 5000 news domains
indexed by Google News. We used the Newspaper Python library to extract the body and meta-
data from each article. News from Common Crawl dumps from December 2016 through March 2019
were used as training data; articles published in April 2019 from the April 2019 dump were used for
evaluation. After deduplication, RealNews is 120 gigabytes without compression.

Learning. We trained each Grover model on randomly-sampled sequences from RealNews with
length 1024. Other optimization hyperparameters are in Appendix A. We trained Grover-Mega for
800k iterations, using a batch size of 512 and 256 TPU v3 cores. Training time was two weeks.

3.1 Language Modeling results: measuring the importance of data, context, and size

We validate Grover, versus standard unconditional language models, on the April 2019 test set. We
consider two evaluation modes: unconditional, where no context is provided and the model must
generate the article body; and conditional, in which the full metadata is provided as context. In both
cases, we calculate the perplexity only over the article body.

Our results, shown in Figure 3, show several conclusions. First, Grover noticeably improves (between
.6 to .9 perplexity points) when conditioned on metadata. Second, perplexity decreases with size,
with Grover-Mega obtaining 8.7 perplexity in the conditional setting. Third, the data distribution is
still important: though the GPT2 models with 124M parameters and 355M parameters respectively
match our Grover-Base and Grover-Large architectures, our model is over 5 perplexity points lower
in both cases, possibly because the OpenAI WebText corpus also contains non-news articles.

5All tokens use the same vocabulary. By using a standard order, but partitioning the fields into two sets, the
model can generate any field conditioned on others while only needing to learn 2|F | orderings, versus |F |!.
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Figure 3: Language Modeling results on the
body field of April 2019 articles. We evaluate
in the Unconditional setting (without provided
metadata) as well as in the Conditional setting
(with all metadata). Grover sees over a 0.6 point
drop in perplexity when given metadata.

Figure 4: Human evaluation. For each article,
three annotators evaluated style, content, and
the overall trustworthiness; 100 articles of each
category were used. The results show that propa-
ganda generated by Grover is rated more plausi-
ble than the original human-written propaganda.

3.2 Carefully restricting the variance of generations with Nucleus Sampling

Sampling from Grover is straightforward as it behaves like a left-to-right language model during
decoding. However, the choice of decoding algorithm is important. While likelihood-maximization
strategies such as beam search work well for closed-ended generation tasks where the output contains
the same information as the context (like machine translation), these approaches have been shown
to produce degenerate text during open-ended generation (Hashimoto et al., 2019; Holtzman et al.,
2019). However, as we will show in Section 6, restricting the variance of generations is also crucial.

In this paper, we primarily use Nucleus Sampling (top-p): for a given threshold p, at each timestep
we sample from the most probable words whose cumulative probability comprises the top-p% of the
entire vocabulary (Holtzman et al., 2019).6

4 Humans are Easily Fooled by Grover-written Propaganda

We evaluate the quality of disinformation generated by our largest model, Grover-Mega, using p“.96.
We consider four classes of articles: human-written articles from reputable news websites (Human
News), Grover-written articles conditioned on the same metadata (Machine News), human-written arti-
cles from known propaganda websites (Human Propaganda), and Grover-written articles conditioned
on the propaganda metadata (Machine Propaganda).7 The domains used are in Appendix B; examples
are in Appendix F. We asked a pool of qualified workers on Amazon Mechanical Turk to rate each
article on three dimensions: stylistic consistency, content sensibility, and overall trustworthiness.8

Results (Figure 4) show a striking trend: though the quality of Grover-written news is not as high
as human-written news, it is adept at rewriting propaganda. The overall trustworthiness score of
propaganda increases from 2.19 to 2.42 (out of 3) when rewritten by Grover.9

6In early experiments, we found Nucleus Sampling produced better and less-detectable generations than
alternatives like top-k sampling, wherein the most probable k tokens are used at each timestep (Fan et al., 2018).

7We use the technique described in Figure 2 to rewrite the propaganda: given the metadata, generate the
article first, and then rewrite the headline.

8With these guidelines, we tried to separate style versus content. Overall trustworthiness asks ‘Does the
article read like it comes from a trustworthy source?’ which emphasizes style, while content sensibility asks
whether the content is believable on a semantic level.

9This di↵erence is statistically significant at p “ 0.01. One possible hypothesis for this e↵ect is that
Grover ignores the provided context. To test this hypothesis, we did a human evaluation of the consistency
of the article body with the headline, date, and author. We found that human-written propaganda articles are
consistent with the headline with an average score of 2.85 of 3 on the same 1-3 scale, while machine-written
propaganda is consistent with 2.64 of 3.
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5 Neural Fake News Detection

The high quality of neural fake news written by Grover, as judged by humans, makes automatic neural
fake news detection an important research area. Using models (below) for the role of the Verifier

can mitigate the harm of neural fake news by classifying articles as Human or Machine written. These
decisions can assist content moderators and end users in identifying likely (neural) disinformation.

a. Grover. We consider a version of our model adapted for discrimination. Similar to GPT (Radford
et al., 2018), we place a special [CLS] token at the end of each article, and extract the final hidden
state at that point. The hidden state is fed to a linear layer to predict the label Human or Machine.
To simulate real conditions, and ensure minimal overlap between the generator and discriminator
parameters, we initialize Grover for discrimination using the checkpoint at iteration 700k, whereas
the generator uses the checkpoint at iteration 800k.

b. GPT2, a 124M or 355M parameter pretrained Transformer language model. Similar to Grover,
we follow the GPT approach and extract the hidden state from a newly-added [CLS] token.

c. BERT, a 110M parameter (BERT-Base) or 340M parameter (BERT-Large) bidirectional Trans-
former encoder commonly used for discriminative tasks. We perform domain adaptation to adapt
BERT to the news domain, as well as to account for long articles; details in Appendix C.

d. FastText, an o↵-the-shelf library for bag-of-ngram text classification (Joulin et al., 2017). Though
not pretrained, similar models do well at detecting human-written fake news.

All models are trained to minimize the cross-entropy loss of predicting the right label. Hyperparame-
ters used during discrimination are in Appendix D.

5.1 A semi-supervised setting for neural fake news detection

While there are many human-written articles online, most are from the distant past, whereas articles to
be detected will likely be set in the present. Likewise, there might be relatively few neural fake news
articles from a given adversary.10 We thus frame neural fake news detection as a semi-supervised
problem. A neural verifier (or discriminator) has access to many human-written news articles
from March 2019 and before – the entire RealNews training set. However, it has limited access to
generations, and more recent news articles. Using 10k news articles from April 2019, we generate
article body text; another 10k articles are used as a set of human-written news articles. We split the
articles in a balanced way, with 10k for training (5k per label), 2k for validation, and 8k for testing.

We consider two evaluation modes. In the unpaired setting, a discriminator is provided single
news articles, and must classify each independently as Human or Machine. In the paired setting,
a model is given two news articles with the same metadata, one real and one machine-generated.
The discriminator must assign the machine-written article a higher Machine probability than the
human-written article. We evaluate both modes in terms of accuracy.

5.2 Discrimination results: Grover performs best at detecting Grover’s fake news

We present experimental results in Table 1 for all generator and discriminator combinations. For
each pair, we show the test results using the most adversarial generation hyperparameters (top-p) as
judged on the validation set.11 The results show several trends. First, the paired setting appears much
easier than the unpaired setting, suggesting that it is di�cult for the model to calibrate its predictions.
Second, model size is highly important in the arms race between generators and discriminators. Using
Grover to discriminate Grover’s generations results in roughly 90% accuracy across the range of
sizes. If a larger generator is used, accuracy slips below 81%; conversely, if the discriminator is
larger, accuracy is above 98%. Third, other discriminators perform worse than Grover overall, even
when controlling for architecture size and (for both BERT models) the domain.

That Grover is the best discriminator is possibly surprising: being unidirectional, it is less expressive
than deep bidirectional models such as BERT.12 That the more expressive model here is not the best at

10Moreover, since disinformation can be shared on a heterogeneous mix of platforms, it might be challenging
to pin down a single generated model.

11For each discriminator/generator pair, we search over p P t.9, .92, .94, .96, .98, 1.0u.
12Indeed, bidirectional approaches perform best on leaderboards like GLUE (Wang et al., 2018).

6



Table 1: Results of discriminators versus gener-
ators, in both the paired and unpaired settings
and across architecture sizes. We also vary the
generation hyperparameters for each generator-
discriminator pair, reporting the discrimination
test accuracy for the hyperparameters with the
lowest validation accuracy. Compared with other
models such as BERT, Grover is the best at de-
tecting its own generations as neural fake news.

Unpaired Accuracy Paired Accuracy
Generator size Generator size

1.5B 355M 124M 1.5B 355M 124M

Chance 50.0 50.0

D
is

cr
im

in
at

or
si

ze

1.5B Grover-Mega 92.0 98.5 99.8 97.4 100.0 100.0

355M
Grover-Large 80.8 91.2 98.4 89.0 96.9 100.0
BERT-Large 73.1 75.9 97.5 84.1 91.5 99.9
GPT2 70.1 78.0 90.3 78.8 87.0 96.8

124M
Grover-Base 70.1 80.0 89.2 77.5 88.2 95.7
BERT-Base 67.2 76.6 84.1 80.0 89.5 96.2
GPT2 66.2 71.9 83.5 72.5 79.6 89.6

11M FastText 63.8 65.6 69.7 65.9 69.0 74.4

Figure 5: Exploring weak supervision for dis-
criminating Grover-Mega generations. With
no weak supervision, the discriminator sees x

machine-written articles (from Grover Mega).
For `Grover-Base and `Grover-Mega, the dis-
criminator sees 5000´x machine-written articles
given by the weaker generator in question. See-
ing weaker generations improves performance
when few in-domain samples are given.

discriminating between real and generated news articles suggests that neural fake news discrimination
requires having a similar inductive bias as the generator.13

5.3 Weak supervision: what happens if we don’t have access to Grover-Mega?

These results suggest that Grover is an e↵ective discriminator when we have a medium number of
fake news examples from the exact adversary that we will encounter at test time. What happens if we
relax this assumption? Here, we consider the problem of detecting an adversary who is generating
news with Grover-Mega and an unknown top-p threshold.14 In this setup, during training, we have
access to a weaker model (Grover-Base or Grover-Large). We consider the e↵ect of having only x

examples from Grover-Mega, and sampling the missing 5000´x articles from one of the weaker
models, where the top-p threshold is uniformly chosen for each article in the range of r0.9, 1.0s.
We show the results of this experiment in Figure 5. The results suggest that observing additional
generations greatly helps discrimination performance when few examples of Grover-Mega are
available: weak supervision with between 16 and 256 examples from Grover-Large yields around
78% accuracy, while accuracy remains around 50% without weak supervision. As the portion of
examples that come from Grover-Mega increases, however, accuracy converges to 92%.15

6 How does a model distinguish between human and machine text?

In this section, we explore why Grover performs best at detecting fake news generated by other
Grover models. We find that there is a double-bind between exposure bias and variance-reduction
algorithms that alleviate these biases while at the same time creating other artifacts.

Exposure Bias. Models maximizing Equation 1 are trained only conditioned on human-written
text, never on its own generations, creating a problem known as exposure bias (Ranzato et al., 2016).

We investigate the importance of exposure bias towards creating artifacts. In Figure 6 we plot the
perplexities given by Grover-Mega over each position for body text at top-p thresholds of 0.96
and 1, as well as over human text. Generating the first token after <startbody> results in high

13This matches findings on the HellaSwag dataset (Zellers et al., 2019b). Given human text and machine text
written by a finetuned GPT model, a GPT discriminator outperforms BERT-Base at picking out human text.

14The top-p threshold used was p“0.96, but we are not supposed to know this!
15In additional experiments we show that accuracy increases even more – up to 98% – when the number of

examples is increased (Zellers et al., 2019c). We also find that Grover when trained to discriminate between real
and fake Grover-generated news can detect GPT2-Mega generated news as fake with 96% accuracy.
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Figure 6: Perplexities of Grover-Mega, averaged over
each position in the body (after conditioning on meta-
data). We consider human-written with Grover-Mega
generated text at p“1 (random sampling) and p“.96.
The perplexity of randomly sampled text is higher than
human-written text, and the gap increases with position.
This suggests that sampling without variance reduction
increasingly falls out-of-distribution.

Figure 7: Unpaired validation accuracy,
telling apart generated news articles (from
GroverMega) from real articles, at di↵er-
ent variance reduction thresholds p (for
Nucleus Sampling). Results varying p

show a sweet spot (p “ 0.92 – 0.96)
wherein discrimination is hardest.

perplexity. However, the rest of the positions show a curious pattern: the perplexity of human-written
text is lower than randomly sampled text, and this gap increases with sequence length, suggesting
that random sampling causes Grover to fall increasingly out of the distribution of human language.
However, limiting the variance (p“0.96) lowers the resulting perplexity and limits its growth.

Limiting the variance of a model also creates artifacts On the other hand, clipping the model’s
variance also leaves an artifact, as prior work has observed for top-k sampling (Strobelt and Gehrmann,
2019). A similar phenomenon holds for Nucleus (top-p) sampling. The probability of observing a
human-written article where all tokens are drawn from the top-p% of the distribution is p

n, where n

is the document’s length. This probability goes to zero as n increases. However, for Nucleus Sampled
text – in which the final 1´p is cut o↵ – all tokens come from the top-p.

The visibility of the artifacts depends on the choice of discriminator. The top-p at each timestep
is calculated under the generator’s worldview, meaning that if the discriminator models text in a
di↵erent way, it might have a harder time pinpointing the empty 1´p tail. This could explain BERT’s
lower performance during discrimination.

A sweet spot of careful variance reduction Not reducing the variance, as well as significantly
reducing the variance, both cause problems. Might there be a sweet spot for how much to truncate
the variance, to make discrimination maximally hard? In Figure 7, we show results varying the
top-p threshold for the discrimination task applied to Grover-Mega’s generations. The results indeed
show a sweet spot, roughly between p“0.92 and p“0.98 depending on the discriminator, wherein
discrimination is hardest. Interestingly, we note that the most adversarial top-p threshold for BERT-
Large is considerably lower than the corresponding top-p for Grover-Large of the same size. This
supports our hypothesis that BERT’s view of language di↵ers markedly from Grover; using a lower
top-p threshold does not seem to give it much more information about the missing tail.

Overall, our analysis suggests that Grover might be the best at catching Grover because it is the
best at knowing where the tail is, and thus whether it was truncated.

7 Conclusion: a Release Strategy for Grover

This paper investigates the threats posed by adversaries seeking to spread disinformation. Our sketch
of what these threats might look like – a controllable language model named Grover – suggests that
these threats are real and dangerous. Grover can rewrite propaganda articles, with humans rating the
rewritten versions as more trustworthy. At the same time, there are defenses to these models – notably,
in the form of Grover itself. We conclude with a discussion of next steps and ethical considerations.
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The Era of Neural Disinformation. Though training Grover was challenging, it is easily achiev-
able by real-world adversaries today. Obtaining the data required through Common Crawl cost
$10k in AWS credits and can be massively parallelized over many CPUs. Training Grover-Mega is
relatively inexpensive: at a cost of $0.30 per TPU v3 core-hour and two weeks of training, the total
cost is $25k. Spending more money and engineering time could yield even more powerful generators.

Release of generators is critical. At first, it would seem like keeping models like Grover private
would make us safer. However, Grover serves as an e↵ective detector of neural fake news, even
when the generator is much larger (Section 5). If generators are kept private, then there will be little
recourse against adversarial attacks. We thus released our models to researchers (Zellers, 2019).

Future of progress in generation. Models like BERT are strong discriminators for many NLP
tasks, but they are not as good at detecting Grover’s generations as left-to-right models like Grover,
even after domain adaptation. One hypothesis is that the artifacts shown in Section 6 are most visible
to a left-to-right discriminator. This also suggests that recent progress on generating text in any order
(Gu et al., 2019; Stern et al., 2019; Ghazvininejad et al., 2019) may lead to models that evade a
Grover discriminator. Likewise, models that are trained conditioned on their own predictions might
avoid exposure bias, however, these objectives often lead to low performance on language tasks
(Caccia et al., 2018). One additional possibility is the use of Adversarial Filtering (Zellers et al., 2018;
2019b) to oversample and then select a subset of generations. However, we found this didn’t work
well for very long sequences (up to 1024 BPE tokens), possibly as these are far from the ‘Goldilocks
Zone’ wherein discrimination is hard for machines.

Additional threat models. In this paper, we studied the threat model whereby an adversary gener-
ates an entire news article from scratch, given minimal context. Other threat models are possible: for
instance, an adversary might generate comments or have entire dialogue agents, they might start with
a human-written news article and modify a few sentences, and they might fabricate images or video.
These threat models ought to be studied by researchers also so that we can create better defenses.

Machine-generated real news? Our study focused on detecting machine-written fake news,
though the same Grover approach can be used for spotting human-written fake news as well (Zellers
et al., 2019c). However, machines can also generate truthful news using templated systems. Domains
with templated news articles exist in our dataset,16 and are easy for Grover to spoof convincingly.

Future of progress in discrimination. Our discriminators are e↵ective, but they primarily leverage
distributional features rather than evidence. In contrast, humans assess whether an article is truthful
by relying on a model of the world, assessing whether the evidence in the article matches that
model. Future work should investigate integrating knowledge into the discriminator (e.g. for claim
verification in FEVER; Thorne et al., 2018). An open question is to scale progress in this task towards
entire news articles, and without paired evidence (similar to open-domain QA; Chen et al., 2017).

What should platforms do? Video-sharing platforms like YouTube use deep neural networks to
scan videos while they are uploaded, to filter out content like pornography (Hosseini et al., 2017).
We suggest platforms do the same for news articles. An ensemble of deep generative models, such as
Grover, can analyze the content of text – together with more shallow models that predict human-
written disinformation. However, humans must still be in the loop due to dangers of flagging real
news as machine-generated, and possible unwanted social biases of these models.
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